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Abstract. Let X be a linear space over the field K of real or complex numbers and (S, ◦) be
a semigroup. We determine all solutions of the functional equation

f(x + g(x)y) = f(x) ◦ f(y) for x, y ∈ X

in the class of pairs of functions (f,g) such that f : X → S and g : X → K satisfies some
regularity assumptions. Several consequences of this result are presented.
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1. Introduction

Let X be a linear space over the field K of real or complex numbers. The
solutions f : X → K of the Go�la̧b-Schinzel functional equation

f(x+ f(x)y) = f(x)f(y) for x, y ∈ X, (1)

have been intensively studied in the last half-century. Equation (1) is one of
the most important equations of a composite type and plays a prominent role
e.g. in the determination of substructures of various algebraical structures [1,
pp. 311–319], [3,4]. The solutions of (1) and its further generalizations, namely

f(x+ f(x)ny) = tf(x)f(y) for x, y ∈ X, (2)

where n is a nonnegative integer and t is a nonzero real number; and

f(x+M(f(x))y) = f(x)f(y) for x, y ∈ X, (3)

where M : K → K, have been considered under various regularity assumptions
e.g. in [2–4] and [19–21]. In the real case the functional equation

f(x+M(f(x))y) = f(x) ◦ f(y) for x, y ∈ X, (4)
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where ◦ is a binary operation on R satisfying some additional conditions (com-
mutativity, associativity etc.), was studied in [5,7,16,25] and [26]. For more
information concerning (1)–(4) and their further applications (e.g. to math-
ematical meteorology and fluid dynamics) we refer to the survey paper [6].
Various aspects of stability problems for the Go�la̧b-Schinzel functional equa-
tions were considered in [8–13,15,17] and [18]. In the case where (S, ◦) is an
arbitrary semigroup, the general solution of the equation

f(x+ g(x)y) = f(x) ◦ f(y) for x, y ∈ R

in the class of pairs (f, g) such that f : R → S and g : R → R is continuous,
was determined in [14]. The functional equation

f(x+ g(x)y) = f(x)f(y) for x, y ∈ X

was considered in [22] under the assumption that f and g, mapping a real
linear space X into R, are continuous on rays.

In the present paper we generalize substantially the results from [14] and
[22] in various directions. Namely, we determine the general solution of the
equation

f(x+ g(x)y) = f(x) ◦ f(y) for x, y ∈ X (5)

in the case where X is a linear space over the field K of real or complex num-
bers, (S, ◦) is an arbitrary semigroup, f : X → S and g : X → K satisfies
some regularity assumptions. Several consequences of this result are presented,
as well. In particular, applying our main result and using a natural correspon-
dence between (5) and the pexiderized version of the Go�la̧b-Schinzel equation,
that is

F (x+G(x)y)) = H(x) ◦K(y) for x, y ∈ X, (6)

we obtain a generalization of the results in [23].
In what follows B(x, r) denotes the open ball (in K) with a center at x ∈ K

and a radius r > 0. Let us recall [24, p. 596] that given a nonempty subset A
of X, we say that a ∈ A is an algebraically interior point of A, provided, for
every x ∈ X \ {0}, there is rx > 0 such that a + B(0, rx)x = {a + bx : b ∈
B(0, rx)} ⊂ A. By intaA we denote a set of all algebraically interior points
of A. If f : X → R and x ∈ X then a function fx : R → R is given by
fx(t) = f(tx) for t ∈ R. Furthermore, given a nonempty subset S0 of S, we
put ZL(S0) := {s ∈ S : s ◦ a = s for a ∈ S0} and Z(S0) := {s ∈ S : s ◦ a =
a ◦ s = s for a ∈ S0}.

2. Preliminary results

Remark 1. Let X be a linear space over the field K of real or complex numbers
and (S, ◦) be a semigroup. Equation (5) has a solution if and only if E(S) :=



Vol. 88 (2014) Semigroup-valued solutions of some composite equations 185

{s ∈ S : s ◦ s = s} �= ∅. In fact, if (f, g) is a solution of (5), then f(0) =
f(0) ◦ f(0), so f(0) ∈ E(S). Conversely, if s ∈ E(S), then the pair (f, g),
where g is an arbitrary function and f ≡ s ∈ E(S), is a solution of (5).

Next, we present a result describing degenerate solutions of (5), i.e. such
solutions (f, g) that either f or g is constant.

Proposition 1. A pair of functions (f, g) is a degenerate solution of (5) if and
only if one of the following conditions is valid:

(i) there is an s ∈ E(S) such that f ≡ s;
(ii) g ≡ 0 and there exists a subsemigroup S0 of S such that u ◦ v = u for

u, v ∈ S0 and f(X) ⊂ S0;
(iii) g ≡ 1 and f is a homomorphism of the additive group of K into (S, ◦).

Proof. It is clear that if one of the conditions (i) − (iii) holds, then (f, g) is a
degenerate solution of (5). So, assume that (f, g) is a degenerate solution of
(5). If f is constant, then according to Remark 1, we get (i) with s := f(0).
Now, assume that f is nonconstant and g is constant, say g ≡ c. If c = 0, then
(ii) holds with S0 := f(X). The case where c = 1 leads to (iii). Suppose that
c /∈ {0, 1}. Then, in view of (5), we obtain f(x+cy) = f(x)◦f(y) for x, y ∈ X,
whence f(cy) = f(0) ◦ f(y) for y ∈ X. Therefore, for every x, y ∈ X, we get

f(y) = f

(
c
cx− y

c2 − c
+ c2

y − x

c2 − c

)
= f(0) ◦ f

(
cx− y

c2 − c
+ c

y − x

c2 − c

)

= f(0) ◦ f
(
cx− y

c2 − c

)
◦ f

(
y − x

c2 − c

)
= f

(
c
cx− y

c2 − c

)
◦ f

(
y − x

c2 − c

)

= f

(
c
cx− y

c2 − c
+ c

y − x

c2 − c

)
= f(x).

This yields a contradiction, because f is nonconstant. �

From now on we will deal only with the non-degenerate solutions of (5),
i.e. with such solutions (f, g) that neither f nor g is constant.

The following result plays a crucial role in our considerations.

Proposition 2. Let X be a linear space over the field K of real or complex
numbers, (S, ◦) be a semigroup, f : X → S and g : X → K. Assume that
(f, g) is a non-degenerate solution of (5). Then each of the following regularity
conditions:

(C1) 0 ∈ g(X) and inta{x ∈ X|g(x) �= 0} �= ∅;
(C2) inta{x ∈ X|g(x) �∈ {0, 1}} �= ∅;
(C3) g is continuous on rays

implies that either there exists a nontrivial K-linear functional L : X → K
such that
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g(x) = L(x) + 1 for x ∈ X, (7)

or there exists a nontrivial R-linear functional L : X → R such that

g(x) = max{L(x) + 1, 0} for x ∈ X. (8)

Proof. In view of (5), for every x, y, z ∈ X, we have

(f(x) ◦ f(y)) ◦ f(z) = f(x+ g(x)y) ◦ f(z) = f(x+ g(x)y + g(x+ g(x)y)z)

and

f(x) ◦ (f(y) ◦ f(z)) = f(x) ◦ f(y + g(y)z) = f(x+ g(x)y + g(x)g(y)z).

Thus, as ◦ is associative, we get

f(x+ g(x)y + g(x+ g(x)y)z) = f(x+ g(x)y + g(x)g(y)z) for x, y, z ∈ X.

Therefore, if g(x+ g(x)y) = 0 for some x, y ∈ X then

f(x+ g(x)y) = f(x+ g(x)y + g(x)g(y)z) for z ∈ X

and so, as f is nonconstant, we get g(x)g(y) = 0. Similarly if, for some x, y ∈ X,
g(x)g(y) = 0 then

f(x+ g(x)y + g(x+ g(x)y)z) = f(x+ g(x)y) for z ∈ X.

Since f is nonconstant, this means that g(x + g(x)y) = 0. In this way we
have proved that, for every x, y ∈ X, it holds that

g(x+ g(x)y) = 0 if and only if g(x)g(y) = 0. (9)

So, if (C1) is valid, according to [17, Theorem 1], we obtain that

g(x+ g(x)y) = g(x)g(y) for x, y ∈ X. (10)

Hence, applying [4, Theorem 3], we get the assertion.
Now, assume that (C2) holds. We show that 0 ∈ g(X). Suppose that

0 �∈ g(X). Then, by (5), we get

f(0) = f

(
x+ g(x)

(
− x

g(x)

))
= f(x) ◦ f

(
− x

g(x)

)
for x ∈ X. (11)

Therefore, taking x ∈ G1 := {x ∈ X|g(x) �= 1} and y = x
1−g(x) , we have

x+ g(x)y = y, so by (5) and (11), we obtain

f(x) = f(x) ◦ f(0) = f(x) ◦ f(y) ◦ f
(

− y

g(y)

)

= f(x+ g(x)y) ◦ f
(

− y

g(y)

)
= f(y) ◦ f

(
− y

g(y)

)
= f(0).

Thus

f(x) = f(0) for x ∈ G1. (12)
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Next, as (f, g) is a non-degenerate solution of (5), there is x ∈ X \{0} such
that fx is a nonconstant function. Fix a ∈ inta{x ∈ X|g(x) �∈ {0, 1}} = intaG1.
Then, in view of (12), f(a) = f(0). Furthermore, let rx > 0 be such that

a+B(0, rx)x ⊂ G1. (13)

We claim that there is r > 0 such that

f(B(0, r)x) = {f(0)}. (14)

Suppose that (14) does not hold. Then there exists a sequence (tn) of
elements of K converging to 0 and such that f(tnx) �= f(0) for n ∈ N. Then,
by (12), g(tnx) = 1 for n ∈ N and so, in view of (5), for every n ∈ N, we get

f(a+ tnx)=f(tnx+ g(tnx)a)=f(tnx) ◦ f(a)=f(tnx) ◦ f(0) = f(tnx) �= f(0).

On the other hand, from (13) it follows that a + tnx ∈ G1 for suffi-
ciently large n ∈ N. Hence, by (12), f(a + tnx) = f(0) for sufficiently large
n ∈ N, which yields a contradiction. In this way we have proved (14). Since the
function fx is nonconstant, there is k ∈ K with f(kx) = fx(k) �= fx(0) = f(0).
Therefore, making use of (12), we get

g(kx) = 1. (15)

Now, we show by induction that for every b ∈ B(0, r) and n ∈ N it holds
that

f((k + nb)x) �= f(0). (16)

Note that by (5), (14) and (15), for every b ∈ B(0, r), we have

f((k + b)x) = f(kx+ g(kx)bx)=f(kx) ◦ f(bx)=f(kx) ◦ f(0)=f(kx) �= f(0).

Thus, (16) is valid for n = 1. Next, fix n ∈ N and assume that (16) holds
for every b ∈ B(0, r). Then, in view of (12), g((k+ bn)x) = 1, so applying (5),
(14) and (16), for every b ∈ B(0, r), we obtain

f((k + (n+ 1)b)x) = f((k + nb)x+ bx) = f((k + nb)x+ g((k + nb)x)bx)
= f((k + nb)x) ◦ f(bx) = f((k + nb)x) ◦ f(0)
= f((k + nb)x) �= f(0).

In this way we have proved that (16) holds for every b ∈ B(0, r) and n ∈ N.
Note however that, taking n0 ∈ N with k

n0
∈ B(0, r), we have

f

(
kx+ n0

(
− k

n0

)
x

)
= f(0).

This yields a contradiction and shows that 0 ∈ g(X). Since by (C2)

∅ �= inta{x ∈ X|g(x) �∈ {0, 1}} ⊂ inta{x ∈ X|g(x) �= 0},
applying [17, Theorem 1], from (9) we deduce (10). Thus, according to [4,
Theorem 3], we get the assertion.
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Finally, if (C3) holds for n, as in the previous case, we get that the function
fx is nonconstant for some x ∈ X \ {0}. Moreover, by (C3), gx is continuous
and, in view of (5),

fx(t+ gx(t)s) = f(tx+ g(tx)sx) = f(tx) ◦ f(sx) = fx(t) ◦ fx(s) for s, t ∈ R.

So, applying [14, Lemma 1], we obtain that gx(t0) = 0 for some t0 ∈ R,
that is 0 ∈ gx(R) ⊂ g(X). Note also that by [14, Lemma 2], we have g(0) =
gx(0) = 1. Thus, in view of (C3), 0 ∈ inta{x ∈ X|g(x) �= 0}. Consequently,
applying [17, Theorem 1], from (9) we derive (10). Therefore, according to [4,
Theorem 3], we get the assertion. �

3. Main results

The next theorem is the main result of the paper.

Theorem 1. Assume that X is a linear space over the field K of real or complex
numbers, (S, ◦) is a semigroup, f : X → S, g : X → K and one of the condi-
tions (C1)-(C3) holds. A pair of functions (f, g) is a non-degenerate solution
of (5) if and only if one of the following two cases holds:

(i) there exist a nontrivial K-linear functional L : X → K and functions
a : X → S and φ : K → S satisfying the conditions

a(x+ y) = a(x) ◦ a(y) for x, y ∈ X, (17)
φ(st) = φ(s) ◦ φ(t) for s, t ∈ K, (18)

and

φ(t) ◦ a(x) = a(tx) ◦ φ(t) for x ∈ X, t ∈ K (19)

such that g is of the form (7) and

f(x) = a(x) ◦ φ(L(x) + 1) for x ∈ X; (20)

(ii) there exist a nontrivial R-linear functional L : X → R, functions
a : X → S and φ : [0,∞) → S satisfying (17),

φ(st) = φ(s) ◦ φ(t) for s, t ∈ [0,∞), (21)
a(tx) ◦ φ(t) = φ(t) ◦ a(x) for x ∈ X, t ∈ [0,∞) (22)

and l ∈ ZL(φ([0,∞))) ∩ E(S) such that g is of the form (8) and

f(x) =
{
a(x) ◦ φ(L(x) + 1) whenever L(x) + 1 ≥ 0
a(x) ◦ φ(−(L(x) + 1)) ◦ l otherwise. (23)
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Proof. Assume that a pair (f, g) is a non-degenerate solution of (5). Then,
according to Proposition 2, g is either of the form (7) or (8). In the first case,
let us fix x0 ∈ X \ kerL and define the functions Π1,Π2 : X → X by

Π1(x) = x− L(x)
L(x0)

x0 for x ∈ X (24)

and

Π2(x) =
L(x)
L(x0)

x0 for x ∈ X. (25)

Then Π1 and Π2 are linear and Π1(x) + Π2(x) = x for x ∈ X. Moreover
L(Π1(x)) = 0 for x ∈ X, which yields that

g(Π1(x)) = 1 for x ∈ X. (26)

Therefore, taking a : X → S of the form

a(x) = f(Π1(x)) for x ∈ X (27)

and φ : K → S of the form

φ(t) = f

(
t− 1
L(x0)

x0

)
for t ∈ K, (28)

in view of (5), we obtain

a(x+ y) = f(Π1(x+ y)) = f(Π1(x) +Π1(y))=f(Π1(x)+g(Π1(x))Π1(y))
= f(Π1(x)) ◦ f(Π1(y)) = a(x) ◦ a(y) for x, y ∈ X

and, since st− 1 = s− 1 + ((s− 1) + 1)(t− 1),

φ(st) = f

(
st− 1
L(x0)

x0

)
= f

(
s− 1
L(x0)

x0 +
(
L

(
s− 1
L(x0)

x0

)
+ 1

)
t− 1
L(x0)

x0

)

=f
(
s− 1
L(x0)

x0 + g

(
s− 1
L(x0)

x0

)
t− 1
L(x0)

x0

)

=f
(
s− 1
L(x0)

x0

)
◦ f

(
t− 1
L(x0)

x0

)

=φ(s) ◦ φ(t) for s, t ∈ K.

Moreover, for every x ∈ X, we get

f(x)=f(Π1(x)+Π2(x))=f(Π1(x) + g(Π1(x))Π2(x)) = f(Π1(x)) ◦ f(Π2(x)).

Hence by (25) and (27), we obtain

f(x) = a(x) ◦ f
(
L(x)
L(x0)

x0

)
for x ∈ X. (29)

Thus, taking (28) into account, we conclude that (20) holds. It remains to
show (19). To this end note that, in view of (26), for every x ∈ X and t ∈ K,
we have
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Π1(tx) + g(Π1(tx))
t− 1
L(x0)

x0 =
t− 1
L(x0)

x0 +
(
t− 1
L(x0)

L(x0) + 1
)
Π1(x)

=
t− 1
L(x0)

x0 +
(
L

(
t− 1
L(x0)

x0

)
+ 1

)
Π1(x)

=
t− 1
L(x0)

x0 + g

(
t− 1
L(x0)

x0

)
Π1(x).

Hence, by (5), we obtain

f(Π1(tx)) ◦ f
(
t− 1
L(x0)

x0

)
= f

(
t− 1
L(x0)

x0

)
◦ f(Π1(x)) for x ∈ X, t ∈ K.

So, taking (27) and (28) into account, we get (19). In this way we have
proved that (i) is valid.

Next consider the case where g is of the form (8). Let x0 ∈ X \ kerL and
let Π1,Π2 : X → X be given by (24) and (25), respectively. Furthermore, let
a : X → S be of the form (27) and φ : [0,∞) → S be given by

φ(t) = f

(
t− 1
L(x0)

x0

)
for t ∈ [0,∞). (30)

Then, arguing as in the previous case, we obtain (17), (21), (22) and (29).
In particular, by (29) and (30), we have

f(x) = a(x) ◦ φ(L(x) + 1) whenever L(x) + 1 ≥ 0. (31)

Fix x ∈ X with L(x) + 1 < 0. Then

L

(−(L(x) + 2)
L(x0)

x0

)
+ 1 = −(L(x) + 1) > 0, (32)

so by (8), we get g
(

−(L(x)+2)
L(x0)

x0

)
= −(L(x) + 1). Therefore, making use of

(5), (31) and (32), we obtain

f

(
L(x)
L(x0)

x0

)
= f

(−(L(x) + 2)
L(x0)

x0 + g

(−(L(x) + 2)
L(x0)

x0

) ( −2x0

L(x0)

))

=f
(−(L(x) + 2)

L(x0)
x0

)
◦ f

( −2x0

L(x0)

)

=a
(−(L(x) + 2)

L(x0)
x0

)
◦ φ(−(L(x) + 1)) ◦ f

( −2x0

L(x0)

)
.

On the other hand, in view of (24), we get Π1(0)=0 and Π1

(
−(L(x)+2)

L(x0)
x0

)

= 0, whence by (27), a
(

−(L(x)+2)
L(x0)

x0

)
= f(0) = a(0). Thus, for every x ∈ X

with L(x) + 1 < 0, we have

f

(
L(x)
L(x0)

x0

)
= a(0) ◦ φ(−(L(x) + 1)) ◦ f

( −2x0

L(x0)

)
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and so, by (17),

a(x) ◦ f
(
L(x)
L(x0)

x0

)
= a(x) ◦ φ(−(L(x) + 1)) ◦ f

( −2x0

L(x0)

)
.

Hence, taking (29) into account, we conclude that

f(x) = a(x) ◦ φ(−(L(x) + 1)) ◦ l whenever L(x) + 1 < 0, (33)

where l := f
(

−2x0
L(x0)

)
. Note also that L

(
−2x0
L(x0)

)
+1 = −1 < 0, so g

(
−2x0
L(x0)

)
= 0.

Thus, in view of (5), for every x ∈ X, it holds that

l ◦ f(x) = f

( −2x0

L(x0)

)
◦ f(x) = f

( −2x0

L(x0)
+ g

( −2x0

L(x0)

)
x

)
= f

( −2x0

L(x0)

)
= l.

Hence l ∈ ZL(f(X)). Since l ∈ f(X) and, by (30), φ([0,∞)) ⊂ f(X), this
implies that l ∈ ZL(φ([0,∞))) ∩ E(S). Therefore, taking (31) and (33) into
account, we get (23). Consequently (ii) holds.

Since the converse is easy to check, the proof is completed. �

In the case of a commutative semigroup, a description of the solutions of
(5) is significantly simpler. Namely, we have the following result.

Proposition 3. Let X be a linear space over the field K of real or complex
numbers, (S, ◦) be a commutative semigroup, f : X → S, g : X → K and
assume that one of the conditions (C1)–(C3) holds. Then a pair (f, g) is a
non-degenerate solution of (5) if and only if one of the subsequent cases holds:

(a) there exist a nontrivial K-linear functional L : X → K and a nontrivial
homomorphism ψ of the multiplicative semigroup of K into (S, ◦) such
that g is of the form (7) and

f(x) = ψ(L(x) + 1) for x ∈ X; (34)

(b) there exist a nontrivial R-linear functional L : X → R, a homomorphism
ψ of the multiplicative semigroup of nonnegative real numbers into (S, ◦)
and z ∈ Z(ψ([0,∞))) such that ψ �= z, g is of the form (8) and

f(x) =
{
ψ(L(x) + 1) whenever L(x) + 1 ≥ 0
z otherwise. (35)

Proof. Assume that a pair (f, g) is a non-degenerate solution of (5). Then one
of the conditions (i), (ii) of Theorem 1 holds. In the case of (i), (19) and the
commutativity of ◦ imply that a(2x) ◦ φ(2) = a(x) ◦ φ(2) for x ∈ X, whence
by (18), a(2x) ◦ φ(1) = a(x) ◦ φ(1) for x ∈ X. Thus, in view of (17), for every
x ∈ X, we get

a(x) ◦ φ(1) = a(−x) ◦ a(2x) ◦ φ(1) = a(−x) ◦ a(x) ◦ φ(1) = a(0) ◦ φ(1). (36)
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Therefore, taking ψ := a(0) ◦ φ, by (17), (18), (20) and (36), for every
x ∈ X, we obtain

f(x) = a(x) ◦ φ(L(x) + 1) = a(x) ◦ a(0) ◦ φ(1) ◦ φ(L(x) + 1)
=a(x) ◦ φ(1) ◦ a(0) ◦ φ(L(x) + 1) = a(0) ◦ φ(1) ◦ a(0) ◦ φ(L(x) + 1)
=a(0) ◦ φ(L(x) + 1).
= ψ(L(x) + 1).

Moreover, by (17), a(0) = a(0) ◦ a(0), so using (18) one can easily check
that ψ is a homomorphism of the multiplicative semigroup of K into (S, ◦).
Note also that, as f is nonconstant, ψ is nontrivial. In this way we have proved
that (a) holds.

Next assume that condition (ii) of Theorem 1 holds. Then, as in the pre-
vious case, we obtain that (36) is valid, ψ := a(0) ◦ φ is a homomorphism
of the multiplicative semigroup of [0,∞) into (S, ◦) and f(x) = ψ(L(x) + 1)
whenever L(x) + 1 ≥ 0. Furthermore, the commutativity of ◦ implies that
z := a(0) ◦ l ∈ Z(ψ([0,∞))). Hence, as (S, ◦) is commutative, by (17), (18),
(23) and (36), for every x ∈ X with L(x) + 1 < 0, we get

f(x)=a(x) ◦φ(−(L(x) + 1)) ◦ l=a(x) ◦ a(0) ◦ a(0) ◦ φ(1) ◦ φ(−(L(x) + 1)) ◦ l
= a(x) ◦ φ(1) ◦ a(0) ◦ l ◦ a(0) ◦ φ(−(L(x) + 1))

= a(0) ◦ φ(1) ◦ z ◦ ψ(−(L(x) + 1)) = ψ(1) ◦ z = z.

Thus f is of the form (35) and therefore (b) is valid.
The converse is easy to check, so the proof is completed. �

The next result concerns the case where X = R.

Proposition 4. Assume that (S, ◦) is a semigroup, f : R → S, g : R → R

are nonconstant functions and int{x ∈ R|g(x) �∈ {0, 1}} �= ∅. Then a pair of
functions (f, g) satisfies (5) if and only if one of the following two conditions
holds:
(a) there exist a nontrivial homomorphism ψ : R → S of the multiplicative

semigroup of real numbers into (S, ◦) and c ∈ R \ {0} such that

g(x) = cx+ 1 for x ∈ R,

f(x) = ψ(cx+ 1) for x ∈ R;

(b) there exist a nontrivial homomorphism ψ : [0,∞) → S of the multiplica-
tive semigroup of nonnegative real numbers into (S, ◦), c ∈ R \ {0} and
z ∈ Z(ψ([0,∞))) ∩ E(S) such that

g(x) = max{cx+ 1, 0} for x ∈ R,

f(x) =
{
ψ(cx+ 1) whenever cx+ 1 ≥ 0
z otherwise.
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Proof. Assume that a pair (f, g) satisfies (5). Since f and g are nonconstant
and int{x ∈ X|g(x) �∈ {0, 1}} �= ∅, the assumptions of Theorem 1 are satisfied
with X = R. So, one of the conditions (i) or (ii) of Theorem 1 holds. In the
case of (i), we have L(x) = cx for x ∈ R with some c ∈ R \ {0}. Let

ψ(t) := a

(
−1
c

)
◦ φ(t) ◦ a

(
1
c

)
for t ∈ R. (37)

Since, by (19), a(0) ◦ φ(t) = φ(t) ◦ a(0) for t ∈ X and φ : R → S is a
homomorphism of the multiplicative semigroup of real numbers into (S, ◦),
making use of (17), we obtain

ψ(st) = a

(
−1
c

)
◦ φ(st) ◦ a

(
1
c

)
= a

(
−1
c

)
◦ φ(s) ◦ φ(t) ◦ a

(
1
c

)

=a
(

−1
c

)
◦ φ(s) ◦ φ(t) ◦ a(0) ◦ a

(
1
c

)

=a
(

−1
c

)
◦ φ(s) ◦ a(0) ◦ φ(t) ◦ a

(
1
c

)

=a
(

−1
c

)
◦ φ(s) ◦ a

(
1
c

)
◦ a

(
−1
c

)
◦ φ(t) ◦ a

(
1
c

)

=ψ(s) ◦ ψ(t) for s, t ∈ R.

Hence ψ is a homomorphism of the multiplicative semigroup of real numbers
into (S, ◦). Moreover, by (17) and (37), we get φ(t) = a

(
1
c

) ◦ψ(t) ◦ a (− 1
c

)
for

t ∈ R. Thus, as φ is nontrivial, so is ψ. Furthermore, considering (17), (19)
and (20), we have

f(x) = a(x) ◦ φ(cx+ 1) = a

(
−1
c

)
◦ a

(
1
c

(cx+ 1)
)

◦ φ(cx+ 1)

=a
(

−1
c

)
◦ φ(cx+ 1) ◦ a

(
1
c

)
= ψ(cx+ 1) for x ∈ R.

In this way we have proved that (a) holds.
In the case of (ii), similar arguments lead to (b). As the converse is easy to

check, this completes the proof. �

Remark 2. Proposition 4 together with Proposition 1 generalizes [14, Theo-
rem 1]. Note that in [14, Theorem 1] and [14, Corollary 1] in the formulae
“l ∈ ZL(φ([0,∞))) ∩E(S)” and “l ∈ Z(ψ([0,∞))) ∩E(S)” the term “∩E(S)”
is missing.

In general, the function a acting in the assertion of Theorem 1 need not be
constant.
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Example 1. Let X be a real linear space of dimension at least 2 and let S = R
2

be endowed with the following binary operation

(x1, y1) ◦ (x2, y2) = (x1y1, x1y2 + y1) for (x1, y1), (x2, y2) ∈ S.

Define the functions a : X → S and φ : R → S by a(x) = (1, x) for
x ∈ X and φ(t) = (t, 0) for t ∈ R, respectively. Then an easy calculation shows
that (17)–(19) hold. So, taking a nontrivial R-linear functional L : X → R

and applying Theorem 1(i), we conclude that a pair of functions (f, g), where
g : X → R is of the form (7) and f : X → S is given by

f(x) = a(x) ◦ φ(L(x) + 1) = (L(x) + 1, x) for x ∈ X,

satisfies (5). Note also that f is injective and, as dim X ≥ 2, L is not. Thus,
f can not be represented in the form f(x) = ψ(L(x) + 1) for x ∈ X with some
ψ : R → S.

Next, we present the result concerning the solutions of (5) in the case where
(S, ◦) is a group.

Proposition 5. Let X be a linear space over the field K of real or complex
numbers and let (S, ◦) be a group (with unit element e). Assume that f :
X → S, g : X → K and that one of the conditions (C1)–(C3) holds. Then
a pair (f, g) satisfies (5) if and only if either f = e, or g = 1 and f is a
homomorphism of an additive group (X,+) into (S, ◦).

Proof. Suppose that (f, g) is a non-degenerate solution of (5). Then one of
the conditions (i) or (ii) of Theorem 1 holds. In the first case, putting t = 0
in (18) and considering the fact that (S, ◦) is a group, we conclude that φ
is constant. Furthermore, applying (19) with t = 0, we get φ(0) ◦ a(x) =
a(0) ◦ φ(0) for x ∈ X, so also a is constant. Hence, in view of (20), f is
constant, which yields a contradiction. In the case where condition (ii) of
Theorem 1 holds, the same arguments yield a contradiction (note that in this
case φ = e, ZL(φ([0,∞))) ∩ E(S) = {e} and so l = e).

In this way we have proved that Eq. (5) has only degenerate solutions.
Furthermore, as (S, ◦) is a group, we have E(S) = {e}. Moreover, the only
subsemigroup S0 of (S, ◦) such that u ◦ v = u for u, v ∈ S0, is S0 = {e}.
Therefore, applying Proposition 1, we obtain the assertion. �

We complete the paper with two results concerning (6), which generalize
some results in [23].

Proposition 6. Let X be a linear space over the field K of real or complex num-
bers and let (S, ◦) be a commutative semigroup with unit element e. Assume
that F,H,K : X → S, G : X → K, F and G are nonconstant and the set
F (X) contains at least one invertible element. Then a quadruple (F,G,H,K)
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satisfies equation (6) if and only if there exist x0 ∈ X, s, t ∈ S, k ∈ K \ {0}
and functions f : X → S, g : X → K such that a pair (f, g) satisfies (5) and

F (x)=s ◦ t ◦ f(x− x0) for x ∈ X, (38)
G(x)=kg(x− x0) for x ∈ X, (39)
H(x)= t ◦ f(x− x0) for x ∈ X, (40)
K(x)=s ◦ f(kx) for x ∈ X. (41)

Proof. Assume that a quadruple (F,G,H,K) satisfies Eq. (6). By the assump-
tion, there is x0 ∈ X such that F (x0) ◦ p = p ◦ F (x0) = e for some p ∈ S. In
(6) taking y = 0 and next x = x0, we get

F (x) = H(x) ◦K(0) for x ∈ X (42)

and

F (x0 +G(x0)y) = H(x0) ◦K(y) for y ∈ X, (43)

respectively. Since, in view of (42),

F (x0) = H(x0) ◦K(0), (44)

using the commutativity of ◦, we derive that

H(x) = H(x) ◦ e = H(x) ◦ F (x0) ◦ p = H(x0) ◦ p ◦H(x) ◦K(0) for x ∈ X.

So considering (42), we get

H(x) = H(x0) ◦ p ◦ F (x) for x ∈ X. (45)

In a similar way, using (43), we obtain

K(x) = K(0) ◦ p ◦ F (x0 +G(x0)x) for x ∈ X. (46)

Furthermore, by (6) and (44), for every x, y ∈ X, we get

F (x+G(x)y)) = F (x+G(x)y)) ◦ e = F (x+G(x)y)) ◦ F (x0) ◦ p
= p ◦H(x) ◦K(0) ◦H(x0) ◦K(y).

Hence, in view of (42) and (43), we obtain

F (x+G(x)y)) = p ◦ F (x) ◦ F (x0 +G(x0)y) for x, y ∈ X. (47)

Note also that G(x0) �= 0. Otherwise, as G is nonconstant, In (45) putting
y = y1 with G(y1) �= 0, we would have that F is constant, which yields a
contradiction. Now, let

f(x) = p ◦ F (x+ x0) for x ∈ X (48)

and

g(x) =
G(x+ x0)
G(x0)

for x ∈ X. (49)
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Then, making use of (47), we obtain

f(x+ g(x)y) = p ◦ F
(
x0 + x+G(x+ x0)

y

G(x0)

)

=p ◦ F (x0 + x) ◦ p ◦ F
(
x0 +G(x0)

y

G(x0)

)

=f(x) ◦ f(y) for x, y ∈ X,

so a pair (f, g) satisfies (5). Moreover, considering (44)–(46), (48) and (49), we
obtain (38)–(41) with k := G(x0), s := K(0) and t := H(x0).

Conversely, assume that (38)–(41) hold with some k ∈ K \ {0}, x0 ∈ X,
s, t ∈ S and functions f : X → S, g : X → K such that the pair (f, g) satisfies
(5). Then, for every x, y ∈ X, we have

F (x+G(x)y))=s ◦ t ◦ f(x− x0 + kg(x− x0)y))
=s ◦ t ◦ f(x− x0) ◦ f(ky) = H(x) ◦K(y).

�

Proposition 7. Let X be a linear space over the field K of real or complex num-
bers, (S, ◦) be a commutative semigroup with unit element e and let F,H,K :
X → S, G : X → K. Assume that F and G are nonconstant, G satisfies one
of the conditions (C1)–(C3) and the set F (X) contains at least one invertible
element. Then the quadruple (F,G,H,K) satisfies Eq. (6) if and only if one
of the following two cases holds:

(i) there exist a nontrivial K-linear functional L : X → K and a nontrivial
homomorphism ψ of the multiplicative semigroup of K into (S, ◦), s, t
∈ S, k ∈ K \ {0} and l ∈ K such that

F (x)=s ◦ t ◦ ψ(L(x) + l) for x ∈ X,

G(x)=k(L(x) + l) for x ∈ X,

H(x)= t ◦ ψ(L(x) + l) for x ∈ X,

K(x)=s ◦ ψ(L(kx) + 1) for x ∈ X;

(ii) there exist a nontrivial R-linear functional L : X → R, a homomorphism
ψ of the multiplicative semigroup of nonnegative real numbers into (S, ◦),
z ∈ Z(ψ([0,∞))), s, t ∈ S, k ∈ K \ {0} and l ∈ R such that

F (x)=
{
s ◦ t ◦ ψ(L(x) + l) whenever L(x) + l ≥ 0
s ◦ t ◦ z otherwise,

G(x)=kmax{L(x) + l, 0} for x ∈ X,
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H(x)=
{
t ◦ ψ(L(x) + l) whenever L(x) + l ≥ 0
t ◦ z otherwise,

K(x)=
{
s ◦ ψ(L(kx) + l) whenever L(kx) + l ≥ 0
s ◦ z otherwise.

Proof. Assume that a quadruple (F,G,H,K) satisfies equation (6). Then, ac-
cording to Proposition 6 there exist x0 ∈ X, s, t ∈ S, k ∈ K \{0} and functions
f : X → S, g : X → K such that the pair (f, g) satisfies (5) and (38)–(41)
hold. Moreover, as G satisfies one of the conditions (C1)–(C3), so does g; and
as F and G are nonconstant, so are f and g. Hence one of the conditions (a)
or (b) of Proposition 3 holds. Therefore, taking l := 1 − L(x0), we obtain (i)
or (ii), respectively.

Since the converse is easy to check, the proof is completed. �

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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[23] Jab�lońska, E.: The Pexiderized Go�la̧b–Schinzel functional equation. J. Math. Anal.
Appl. 381, 565–572 (2011)

[24] Kominek, Z., Kuczma, M.: Theorems of Bernstein-Doetsch, Piccard and Mehdi and
semilinear topology. Arch. Math. (Basel) 52, 595–602 (1989)
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