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JACEK CHUDZIAK

Abstract. Let X be a linear space over the field K of real or complex numbers and (.S, 0) be
a semigroup. We determine all solutions of the functional equation

fl@+g(@)y) = f(z)o f(y) for z,yeX

in the class of pairs of functions (f,g) such that f: X — S and g : X — K satisfies some
regularity assumptions. Several consequences of this result are presented.
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1. Introduction

Let X be a linear space over the field K of real or complex numbers. The
solutions f : X — K of the Gotab-Schinzel functional equation

flx+ f(2)y) = f(x)f(y) for z,y€X, (1)

have been intensively studied in the last half-century. Equation (1) is one of
the most important equations of a composite type and plays a prominent role
e.g. in the determination of substructures of various algebraical structures [1,
pp. 311-319], [3,4]. The solutions of (1) and its further generalizations, namely

fle+ fo)"y) = tf(x)f(y) for zyeX, (2)
where n is a nonnegative integer and ¢ is a nonzero real number; and
fle+M(f(2))y) = f(x)f(y) for z,yeX, (3)

where M : K — K, have been considered under various regularity assumptions
e.g. in [2-4] and [19-21]. In the real case the functional equation

fle+M(f(zx))y) = f(z)o fly) for w,yeX, (4)
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where o is a binary operation on R satisfying some additional conditions (com-
mutativity, associativity etc.), was studied in [5,7,16,25] and [26]. For more
information concerning (1)—(4) and their further applications (e.g. to math-
ematical meteorology and fluid dynamics) we refer to the survey paper [6].
Various aspects of stability problems for the Golab-Schinzel functional equa-
tions were considered in [8-13,15,17] and [18]. In the case where (S,0) is an
arbitrary semigroup, the general solution of the equation

flx+g(@)y) = f(z)o f(y) for z,yeR

in the class of pairs (f,g) such that f : R — S and g : R — R is continuous,
was determined in [14]. The functional equation

flz+g(@)y) = f(x)f(y) for z,yeX

was considered in [22] under the assumption that f and g, mapping a real
linear space X into R, are continuous on rays.

In the present paper we generalize substantially the results from [14] and
[22] in various directions. Namely, we determine the general solution of the
equation

flx+g(x)y) = f(x)o f(y) for z,y€X (5)

in the case where X is a linear space over the field K of real or complex num-
bers, (5,0) is an arbitrary semigroup, f : X — S and g : X — K satisfies
some regularity assumptions. Several consequences of this result are presented,
as well. In particular, applying our main result and using a natural correspon-
dence between (5) and the pexiderized version of the Gotab-Schinzel equation,
that is

F(z+ G(x)y)) = H(x)o K(y) for xz,y€ X, (6)

we obtain a generalization of the results in [23].

In what follows B(x, r) denotes the open ball (in K') with a center at 2 € K
and a radius r > 0. Let us recall [24, p. 596] that given a nonempty subset A
of X, we say that a € A is an algebraically interior point of A, provided, for
every x € X \ {0}, there is r, > 0 such that a + B(0,r,)z = {a +bx : b €
B(0,r;)} C A. By int, A we denote a set of all algebraically interior points
of A. If f: X — R and = € X then a function f, : R — R is given by
fz(t) = f(tx) for t € R. Furthermore, given a nonempty subset Sy of S, we
put Z5(Sp) :={s €S :s0a=s for a € Sp} and Z(Sp) :={s€S:s50a=
aos=s for a € Sp}.

2. Preliminary results

Remark 1. Let X be a linear space over the field K of real or complex numbers
and (S, 0) be a semigroup. Equation (5) has a solution if and only if E(S) :=
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{s € S:s0s =35} # 0 In fact, if (f,g) is a solution of (5), then f(0)
f(0) o f(0), so f(0) € E(S). Conversely, if s € E(S), then the pair (f,
where g is an arbitrary function and f = s € E(S), is a solution of (5).

)

Next, we present a result describing degenerate solutions of (5), i.e. such
solutions (f, g) that either f or g is constant.

Proposition 1. A pair of functions (f,g) is a degenerate solution of (5) if and
only if one of the following conditions is valid:
(i) there is an s € E(S) such that f = s;
(ii) g = 0 and there exists a subsemigroup Sy of S such that uwov = u for
u,v € Sy and f(X) C So;
(iii) g =1 and f is a homomorphism of the additive group of K into (.S,0).

Proof. Tt is clear that if one of the conditions (i) — (¢i¢) holds, then (f,g) is a
degenerate solution of (5). So, assume that (f,g) is a degenerate solution of
(5). If f is constant, then according to Remark 1, we get (i) with s := f(0).
Now, assume that f is nonconstant and g is constant, say g = c¢. If ¢ = 0, then
(74) holds with Sp := f(X). The case where ¢ = 1 leads to (ii¢). Suppose that
¢ ¢ {0,1}. Then, in view of (5), we obtain f(x+cy) = f(z)o f(y) for z,y € X,
whence f(cy) = f(0) o f(y) for y € X. Therefore, for every z,y € X, we get

f(y)zf(ccz_y+02y_x> :f(o)of(ccz:zc/+cy—a:>

2 —c 2 —c 2 —c

B cr—y y—z\ _ -y y— T
_f<0)of(020>of(626) _f<0020)0f(020>

:f<ccx_y+cy_x> = f(x).

c2—c 2 —c

This yields a contradiction, because f is nonconstant. O

From now on we will deal only with the non-degenerate solutions of (5),
i.e. with such solutions (f,g) that neither f nor g is constant.
The following result plays a crucial role in our considerations.

Proposition 2. Let X be a linear space over the field K of real or complex
numbers, (S,0) be a semigroup, f : X — S and g : X — K. Assume that
(f,9) is a non-degenerate solution of (5). Then each of the following regularity
conditions:

(C1) 0 € g(X) and int,{x € X|g(x) # 0} # 0;
(C2) into{z € X|g(x) € {0,1}} # 0;
(C3) g is continuous on rays

implies that either there exists a montrivial K-linear functional L : X — K
such that
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glx)=L(z)+1 for xz€X, (7)
or there exists a nontrivial R-linear functional L : X — R such that
g(x) = max{L(x) + 1,0} for xe€ X. (8)

Proof. In view of (5), for every z,y,z € X, we have
(f(@) o f(y)) o f2) = fx+g(x)y) o f(2) = [+ g(x)y + g(z + g(x)y)z2)
and
f@)o(f(y)o f(2) = f(x)o fly +9(y)2) = [z + g(x)y + g(x)g9(y)2).
Thus, as o is associative, we get
f@+g(@)y+9(x+g(@)y)z) = fx+9(x)y + g(x)g(y)z) for z,y,2 € X.
Therefore, if g(z + g(x)y) = 0 for some z,y € X then
fe+g(@)y) = fz+g(x)y +g(x)g(y)z) for z € X

and so, as f is nonconstant, we get g(x)g(y) = 0. Similarly if, for some x,y € X,
9(x)g(y) = 0 then

flx+g(@)y +g(z + g(x)y)z) = f(x + g(z)y) for z € X.

Since f is nonconstant, this means that g(z + g(z)y) = 0. In this way we
have proved that, for every x,y € X, it holds that

gz +g(x)y) =0 ifand only if g(z)g(y) = 0. 9)
So, if (C1) is valid, according to [17, Theorem 1], we obtain that
9(x +g(x)y) = g(x)g(y) for =,y e X. (10)

Hence, applying [4, Theorem 3], we get the assertion.
Now, assume that (C3) holds. We show that 0 € ¢(X). Suppose that
0 & g(X). Then, by (5), we get

f(O)zf(aH—g(ac) (—g(”“"x))):f(x)of(_g(“;)> for zeX. (11)

Therefore, taking z € G; := {z € X|g(x) # 1} and y = T4 We have
x4 g(x)y =y, so by (5) and (11), we obtain

— fa+ gle)y) o f (—g(yy)) — Jy)ef (—gy) - £(0).

Thus
f(x) = f(0) for ze€G. (12)
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Next, as (f, g) is a non-degenerate solution of (5), there is z € X \ {0} such
that f, is a nonconstant function. Fix a € int,{z € X|g(x) ¢ {0,1}} = int,G;.
Then, in view of (12), f(a) = f(0). Furthermore, let r, > 0 be such that

a+ B(0,r;)x C Gy. (13)
We claim that there is » > 0 such that
f(B(0,r)z) = {f(0)}. (14)

Suppose that (14) does not hold. Then there exists a sequence (t,) of
elements of K converging to 0 and such that f(t,z) # f(0) for n € N. Then,
by (12), g(tnz) = 1 for n € N and so, in view of (5), for every n € N, we get
fla+tnz)=f(tne + g(tnz)a) = f(tnz) o fa) = f(tnz) 0 f(0) = f(tnz) # f(0).

On the other hand, from (13) it follows that a + ¢,z € G; for suffi-
ciently large n € N. Hence, by (12), f(a + t,x) = f(0) for sufficiently large
n € N, which yields a contradiction. In this way we have proved (14). Since the
function f, is nonconstant, there is k € K with f(kx) = f.(k) # f.(0) = £(0).
Therefore, making use of (12), we get

g(kz) =1. (15)

Now, we show by induction that for every b € B(0,r) and n € N it holds
that

f((k+nb)z) # f(0). (16)
Note that by (5), (14) and (15), for every b € B(0,r), we have
f((k+b)x) = f(kx + g(kx)bx) = f(kx) o f(bx) = f(kx) o f(0)= f(kx) # f(0).
Thus, (16) is valid for n = 1. Next, fix n € N and assume that (16) holds
for every b € B(0,r). Then, in view of (12), g((k + bn)x) = 1, so applying (5),
(14) and (16), for every b € B(0,r), we obtain
f((k+ (n+1b)x) = f((k+nb)x + bx) = f((k + nb)x + g((k + nb)z)bx)
= f((k+nb)x) o f(br) = f((k+ nb)z) o f(0)
= f((k +nb)z) # f(0).
In this way we have proved that (16) holds for every b € B(0,7) and n € N.
Note however that, taking ng € N with % € B(0,r), we have

(1o (~£)2) = s

This yields a contradiction and shows that 0 € g(X). Since by (Cs)

0 # into{z € X|g(x) ¢ {0,1}} C inta{z € X|g(x) # 0},

applying [17, Theorem 1], from (9) we deduce (10). Thus, according to [4,
Theorem 3], we get the assertion.
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Finally, if (C3) holds for n, as in the previous case, we get that the function
fx 18 nonconstant for some z € X \ {0}. Moreover, by (C3), g, is continuous
and, in view of (5),

fe(t+ g:(t)s) = f(tx + g(tx)sz) = f(tx) o f(sx) = fu(t) o fu(s) for s,t € R.

So, applying [14, Lemma 1], we obtain that g,(to) = 0 for some ty € R,
that is 0 € ¢, (R) C g(X). Note also that by [14, Lemma 2], we have g(0) =
92(0) = 1. Thus, in view of (C3), 0 € int,{z € X|g(z) # 0}. Consequently,
applying [17, Theorem 1], from (9) we derive (10). Therefore, according to [4,
Theorem 3], we get the assertion. U

3. Main results

The next theorem is the main result of the paper.

Theorem 1. Assume that X is a linear space over the field K of real or complex
numbers, (S,0) is a semigroup, f: X — S, g: X — K and one of the condi-
tions (C1)-(Cs) holds. A pair of functions (f,g) is a non-degenerate solution
of (5) if and only if one of the following two cases holds:

(i) there exist a nontrivial K-linear functional L : X — K and functions
a:X — S and ¢: K — S satisfying the conditions

az+y) = a(z) oaly) for zyeX, (7)
¢(st) = @(s)op(t) for s,teK, (18)

and
p(t)oa(z) =a(tr)op(t) for zeX,teK (19)

such that g is of the form (7) and
f(@) =a(x) o ¢(L(x) +1) for =€ X; (20)

(ii) there exist a nontrivial R-linear functional L : X — R, functions
a:X — S and ¢:[0,00) — S satisfying (17),

p(st) = o(s
atz) o p(t) = o(t

and l € Zr(6(]0,00))) N E(S) such that g is of the form (8) and

Jo¢(t) for s,tel0,00), (21)
Joa(x) for xze€ X,te[0,00) (22)

)
a(a:) d(L(x) +1) whenever L(x)+1>0
@)= { o¢p(—(L(x) + 1)) ol otherwise.
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Proof. Assume that a pair (f,g) is a non-degenerate solution of (5). Then,
according to Proposition 2, g is either of the form (7) or (8). In the first case,
let us fix xg € X \ ker L and define the functions ITy, Ils : X — X by

II(z) =2 — II//((;O)):EO for zeX (24)
and
o(x) = f((jo)) xg for xe€X. (25)

Then I1; and IIy are linear and IT;(z) + IIx(x) = x for € X. Moreover
L(II1(z)) = 0 for x € X, which yields that

g(ITy(z)) =1 for ze€ X. (26)
Therefore, taking a : X — S of the form
a(z) = f(I1(z)) for ze X (27)
and ¢ : K — S of the form
t—1
t) = — f te K 2
o) =1 (fym) for tek. (29)

in view of (5), we obtain

a(x+y) = fUL(z +y)) = fUL(z) + IL(y) = (I (2)+g (I (2)) T (y))
= f(IL(2)) o f(IL(y)) = a(z) o aly) for w,ye X
and, since st —1=s— 1+ ((s—1)+ 1)t — 1),

o001 (o) =1 (i (+ (i) +1) )
(oo (z) 7o)

(i) (™)

o(t) for s,te K.

4

—~

N
[e]

Moreover, for every x € X, we get

J(@)=J (I () + T (@) = f (I3 (1) + g(ITy (@) T (2)) = [Ty (@) o F(ITa(z).
Hence by (25) and (27), we obtain

) =ata)of (1)

Thus, taking (28) into account, we conclude that (20) holds. It remains to

show (19). To this end note that, in view of (26), for every z € X and t € K,
we have

x0> for xe€ X. (29)
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— 1 g = 2(;01) xo + (é(xol)L(zo) + 1) I, (z)

:2(;%1)% + (L (2(;3)3:0) + 1) 11 ()
t—1

t—1
L) Y <L<>) ).

I (t2) + 9(ITy (1) £

Hence, by (5), we obtain
i) o f (1) = £ (fgm) o SUN(@) for we Xtk

So, taking (27) and (28) into account, we get (19). In this way we have
proved that (i) is valid.

Next consider the case where g is of the form (8). Let xg € X \ ker L and
let IT1, Il : X — X be given by (24) and (25), respectively. Furthermore, let
a: X — S be of the form (27) and ¢ : [0,00) — S be given by

t—1
H=f—
o) =1 (1
Then, arguing as in the previous case, we obtain (17), (21), (22) and (29).

In particular, by (29) and (30), we have

f(z) =a(z) o p(L(x) +1) whenever L(z)+1>0. (31)
Fix z € X with L(z) +1 < 0. Then

x0> for t €0, 00). (30)

—(L(z)+2) >
L 222 ) S 1= (L) +1) >0, 32
(FHaL2,, (L) + 1) (32)
so by (8), we get g (on) = —(L(x) + 1). Therefore, making use of

(5), (31) and (32), we obtain
1 (ze) =7 (F e (Fg ) (7))
4 () s ()

o (T ) o)+ 1) o f ( 72,

On the other hand, in view of (24), we get IT;(0) =0 and Iy (%xo)

= 0, whence by (27), a (%xo) = f(0) = a(0). Thus, for every x € X

with L(z) + 1 < 0, we have

P (a0 ) = at0) o s(~(2t) + 1) o f ( 725 )
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and so, by (17),
o) f (1

H010) = atw) o o(-(2) + 1) 0 (72 ).

Hence, taking (29) into account, we conclude that

f(@)=a(z)od(—(L(z)+1)) ol whenever L(z)+1<0, (33)

where [ := f (L_(QXOO)) Note also that L (L_(z;;‘)))—l—l =-1<0,s0g (Zf;)o)

Thus, in view of (5), for every z € X, it holds that

)
o) =1 (7)1 =1 (o o (70es ) ) = () =

Hence | € Z,(f(X)). Since | € f(X) and, by (30), ¢([0,00)) C f(X), this

account, we get (23). Consequently (i7) holds.
Since the converse is easy to check, the proof is completed. O

In the case of a commutative semigroup, a description of the solutions of
(5) is significantly simpler. Namely, we have the following result.

Proposition 3. Let X be a linear space over the field K of real or complex
numbers, (S,0) be a commutative semigroup, f : X — S, g: X — K and
assume that one of the conditions (C1)—(Cs) holds. Then a pair (f,g) is a
non-degenerate solution of (5) if and only if one of the subsequent cases holds:

(a) there exist a nontrivial K -linear functional L : X — K and a nontrivial
homomorphism i of the multiplicative semigroup of K into (S,0) such
that g is of the form (7) and

fl@)=¢(L(z)+1) for zeX; (34)

(b) there exist a nontrivial R-linear functional L : X — R, a homomorphism
¥ of the multiplicative semigroup of nonnegative real numbers into (S, o)
and z € Z((]0,00))) such that ¢ # z, g is of the form (8) and

[ ¢(L(z)+1) whenever L(z)+1>0
@)= {z otherwise. (35)

Proof. Assume that a pair (f,g) is a non-degenerate solution of (5). Then one

of the conditions (¢), (i7) of Theorem 1 holds. In the case of (), (19) and the

commutativity of o imply that a(2x) o ¢(2) = a(z) o #(2) for x € X, whence
by (18), a(2x) o ¢(1) = a(x) o ¢(1) for € X. Thus, in view of (17), for every

z € X, we get

a(x) o ¢(1) = a(—x) 0 a(2z) 0 ¢(1) = a(—x) 0 a(x) o §(1) = a(0) o $(1).  (36)
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Therefore, taking ¢ := a(0) o ¢, by (17), (18), (20) and (36), for every
x € X, we obtain

f(@) = a(z) 0 ¢(L(z) + 1) = a(z) 0 a(0) 0 ¢(1) 0 $(L(x) + 1)
=a(z) 0 ¢(1) 0 a(0) 0 ¢(L(x) + 1) = a(0) o $(1) 0 a(0) o $(L(x) + 1)
() P(L(z) +1).
P(L(x) +1).

Moreover, by (17), a(0) = a(0) o a(0), so using (18) one can easily check
that v is a homomorphism of the multiplicative semigroup of K into (.5,0).
Note also that, as f is nonconstant, ¢ is nontrivial. In this way we have proved
that (a) holds.

Next assume that condition (i) of Theorem 1 holds. Then, as in the pre-
vious case, we obtain that (36) is valid, ¥ := a(0) o ¢ is a homomorphism
of the multiplicative semigroup of [0, c0) into (S,0) and f(x) = ¢¥(L(x) + 1)
whenever L(z) + 1 > 0. Furthermore, the commutativity of o implies that
z:=a(0) ol € Z(¢([0,00))). Hence, as (5, 0) is commutative, by (17), (18),
(23) and (36), for every x € X with L(z) + 1 < 0, we get

J(@)=a(z) 0 6(—(L(z) +1)) o I=a(x) 0 a(0) 0 a(0) 0 $(1) 0 §(—(L(z) + 1)) o
= a() 0 §(1) 0 a(0) o L 0 a(0) 0 $(~ (L(z) + 1))
= a(0) 0 6(1) 0 z 0 (~(L(2) + 1)) = (1) 0 2 = 2.

Thus f is of the form (35) and therefore () is valid.
The converse is easy to check, so the proof is completed. O

The next result concerns the case where X = R.

Proposition 4. Assume that (S,0) is a semigroup, f : R — S;g : R - R
are nonconstant functions and int{x € R|g(x) & {0,1}} # 0. Then a pair of
functions (f,g) satisfies (5) if and only if one of the following two conditions
holds:

(a) there exist a nontrivial homomorphism v : R — S of the multiplicative
semigroup of real numbers into (S,0) and ¢ € R\ {0} such that
g()=cx+1 for z€eR,
f(z) =v(cx+1) for zeR;
(b) there exist a nontrivial homomorphism 1 : [0,00) — S of the multiplica-
tive semigroup of nonnegative real numbers into (S,0), ¢ € R\ {0} and
z € Z(Y([0,00))) N E(S) such that
g(x) = max{cx + 1,0} for x€R,

fla) = Y(cx +1) whenever cx+1>0
)= otherwise.
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Proof. Assume that a pair (f,g) satisfies (5). Since f and g are nonconstant
and int{z € X|g(x) &€ {0,1}} # 0, the assumptions of Theorem 1 are satisfied
with X = R. So, one of the conditions (i) or (ii) of Theorem 1 holds. In the
case of (i), we have L(x) = cx for © € R with some ¢ € R\ {0}. Let

W) = a <_1> o 6(t)oa <1> for teR. (37)

Since, by (19), a(0) o ¢(t) = ¢(t) o a(0) for t € X and ¢ : R — S is a
homomorphism of the multiplicative semigroup of real numbers into (.5, 0),
making use of (17), we obtain

W(st) = (1) o d(st)oa (1) =a <i) o p(s) o d(t) oa <i)
y ( i) cottayaa (1)

=p(s)op(t) for s,teR.

Hence 1) is a homomorphism of the multiplicative semigroup of real numbers
into (,0). Moreover, by (17) and (37), we get ¢(t) = a (1) o9(t)oa (—1) for
t € R. Thus, as ¢ is nontrivial, so is ¥. Furthermore, considering (17), (19)
and (20), we have

F(@) = a(z) o d(cz +1) = a (i) oa C(cx + 1)> o dcx+1)
:a(—i)O(b(cx—Fl)oa(i) —(cx+1) for zER

In this way we have proved that (a) holds.
In the case of (i), similar arguments lead to (b). As the converse is easy to
check, this completes the proof. O

Remark 2. Proposition 4 together with Proposition 1 generalizes [14, Theo-
rem 1]. Note that in [14, Theorem 1] and [14, Corollary 1] in the formulae
“le Zr(¢([0,00)))NE(S)” and “l € Z(1)([0,00))) N E(S)” the term “NE(S)”

is missing.

In general, the function a acting in the assertion of Theorem 1 need not be
constant.
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Ezample 1. Let X be a real linear space of dimension at least 2 and let S = R?
be endowed with the following binary operation

(x1,91) 0 (w2,92) = (1y1, w1y2 +31) for  (z1,91), (22,92) € S.

Define the functions ¢ : X — S and ¢ : R — S by a(z) = (1,2) for
x € X and ¢(t) = (¢,0) for t € R, respectively. Then an easy calculation shows
that (17)-(19) hold. So, taking a nontrivial R-linear functional L : X — R
and applying Theorem 1(4), we conclude that a pair of functions (f, g), where
g: X — Ris of the form (7) and f: X — S is given by

f(@)=a(x)od(L(x)+1)=(L(z)+1,z) for ze€X,

satisfies (5). Note also that f is injective and, as dim X > 2, L is not. Thus,
f can not be represented in the form f(z) = ¢ (L(z)+ 1) for x € X with some
P :R—S.

Next, we present the result concerning the solutions of (5) in the case where
(S,0) is a group.

Proposition 5. Let X be a linear space over the field K of real or complex
numbers and let (S,0) be a group (with unit element e). Assume that f :
X — S, 9g: X — K and that one of the conditions (C1)—(C3) holds. Then
a pair (f,g) satisfies (5) if and only if either f = e, or g =1 and f is a
homomorphism of an additive group (X,+) into (S, 0).

Proof. Suppose that (f,g) is a non-degenerate solution of (5). Then one of
the conditions (i) or (i7) of Theorem 1 holds. In the first case, putting ¢t = 0
in (18) and considering the fact that (S,0) is a group, we conclude that ¢
is constant. Furthermore, applying (19) with ¢ = 0, we get ¢(0) o a(z) =
a(0) o ¢(0) for z € X, so also a is constant. Hence, in view of (20), f is
constant, which yields a contradiction. In the case where condition (ii) of
Theorem 1 holds, the same arguments yield a contradiction (note that in this
case ¢ = e, Zr(¢([0,00))) N E(S) = {e} and so [ =e).

In this way we have proved that Eq. (5) has only degenerate solutions.
Furthermore, as (S,0) is a group, we have E(S) = {e}. Moreover, the only
subsemigroup Sy of (S,0) such that v ov = wu for u,v € Sp, is Sy = {e}.
Therefore, applying Proposition 1, we obtain the assertion. O

We complete the paper with two results concerning (6), which generalize
some results in [23].

Proposition 6. Let X be a linear space over the field K of real or complex num-
bers and let (S,0) be a commutative semigroup with unit element e. Assume
that FFH K : X — S, G: X — K, F and G are nonconstant and the set
F(X) contains at least one invertible element. Then a quadruple (F,G, H, K)
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satisfies equation (6) if and only if there exist xg € X, s,t € S, k € K \ {0}
and functions f : X — S, g: X — K such that a pair (f,g) satisfies (5) and

F(z)=soto f(x —z) for z€X, (38)
G(zx)=kg(x —x9) for zeX, (39)
H(z)=to f(xr —x¢) for zeX, (40)
K(x)=so f(kx) for ze€X (41)

Proof. Assume that a quadruple (F, G, H, K) satisfies Eq. (6). By the assump-
tion, there is o9 € X such that F(zg) op = po F(zg) = e for some p € S. In
(6) taking y = 0 and next = = g, we get

F(z)=H(z)o K(0) for xz€X (42)
and
F(xo + G(xo)y) = H(xp) o K(y) for ye X, (43)
respectively. Since, in view of (42),
F(zo) = H(zo) o K(0), (44)
using the commutativity of o, we derive that
H(x)=H(zx)oe=H(x)o F(xog)op=H(xg)opo H(z) o K(0) for ze€ X.
So considering (42), we get
H(z)=H(zp)opo F(x) for z€X. (45)
In a similar way, using (43), we obtain
K(z)=K(0)opo F(xg+ G(xg)x) for z € X. (46)
Furthermore, by (6) and (44), for every z,y € X, we get
Flo+Ga)y) = F(z + G(a)y) o e = F(z + G(z)y)) o Flzo) o p
=poH(xz)o K(0)o H(zg) o K(y).
Hence, in view of (42) and (43), we obtain
F(z+G(z)y)) =po F(z) o Fzo + G(zo)y) for zyeX.  (47)

Note also that G(xg) # 0. Otherwise, as G is nonconstant, In (45) putting
y = y1 with G(y1) # 0, we would have that F is constant, which yields a
contradiction. Now, let

fx)=poF(z+uzy) for z€X (48)
and

G(z + x0)

g(z) = Glao) for z e X. (49)
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Then, making use of (47), we obtain

=po F(JTO + gj) opo F <.TO + G(‘IO) G(Z()))
=f(x)o f(y) for z.y€X,

so a pair (f, g) satisfies (5). Moreover, considering (44)—(46), (48) and (49), we
obtain (38)—(41) with k := G(z¢), s := K(0) and ¢ := H ().

Conversely, assume that (38)—(41) hold with some k € K \ {0}, zo € X,
s,t € S and functions f : X — S, g : X — K such that the pair (f, g) satisfies
(5). Then, for every z,y € X, we have

F(z +G(z)y))=soto f(z —zo + kg(z — z0)y))
=soto f(z —m)o f(ky) = H(x) o K(y).

O

Proposition 7. Let X be a linear space over the field K of real or complex num-
bers, (S,0) be a commutative semigroup with unit element e and let F, H, K :
X — S5, G: X — K. Assume that F' and G are nonconstant, G satisfies one
of the conditions (C1)—(C3) and the set F(X) contains at least one invertible
element. Then the quadruple (F,G, H, K) satisfies Eq. (6) if and only if one
of the following two cases holds:

(i) there exist a nontrivial K-linear functional L : X — K and a nontrivial
homomorphism 1 of the multiplicative semigroup of K into (S,0), s,t
€S, ke K\{0} and !l € K such that

F(z)=sotoyp(L(x)+1) for zeX,
G(x)=k(L(z) +1) for zeX,
H(z)=toy(L(x)+1) for ze€X,
K(z)=soy(L(kx)+1) for z€ X;

(ii) there exist a nontrivial R-linear functional L : X — R, a homomorphism
Y of the multiplicative semigroup of nonnegative real numbers into (S, o),
z € Z(Y([0,00))), s,t € S, ke K\ {0} and ! € R such that

Plz) = sotoy(L(x)+1) whenever L(z)+1>0
TV sotoz otherwise,

G(z)=kmax{L(z)+ 1,0} for ze€X,
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toy(L(z)+1) whenever L(z)+1>0
toz otherwise,

so(L(kx)+1) whenever L(kz)+1>0
soz otherwise.

H(z) {
K(z) :{

Proof. Assume that a quadruple (F, G, H, K) satisfies equation (6). Then, ac-
cording to Proposition 6 there exist g € X, s,t € S, k € K\ {0} and functions
f:X — S, g: X — K such that the pair (f,g) satisfies (5) and (38)—(41)
hold. Moreover, as G satisfies one of the conditions (Cy)—-(Cs), so does g; and
as F' and G are nonconstant, so are f and g. Hence one of the conditions (a)
or (b) of Proposition 3 holds. Therefore, taking [ := 1 — L(zg), we obtain (i)
or (i), respectively.

Since the converse is easy to check, the proof is completed. 0

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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