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On a functional equation related to competition

Peter Kahlig and Janusz Matkowski

Abstract. The functional equation

f

(
x + y

1 − xy

)
=

f (x) + f (y)

1 + f (x) f (y)
, xy < 1,

(introduced by the first author in a competition model) is considered. The main result says
that a function f : R → R satisfies this equation if, and only if, f = tanh ◦ α ◦ tan−1, where
α : R → R is an additive function.
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1. Introduction

Motivated by a model of competition coming from cloud physics, the first-
named author [1,2] introduced the following functional equation

f

(
x + y

1 − xy

)
=

f (x) + f (y)
1 + f (x) f (y)

, (x, y) ∈ R
2, xy �= 1. (1)

Applying a uniqueness result [3] for a related equation in a single variable,
the form of solutions under some special regularity conditions was established
(cf. Remark 5).

In Sect. 2 we present properties of solutions of this equation which in a
natural way lead to the consideration of Eq. (1) with the domain restricted to
the set

{
(x, y) ∈ R

2 : xy < 1
}
. We prove, among other things, that if f : R → R

satisfies this equation and f (y0) = 1 or f (y0) = −1 for some y0 ∈ R, then f
is a constant function (Proposition 1). Moreover f (0) is either 0 or −1 or 1.
If f (0) = 0 then f is an odd function. In Sect. 3 we prove that the function
f = tanh ◦α ◦ tan−1, where α : R → R is an arbitrary additive function, is the
general solution. As a corollary we obtain that, under some weak regularity
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conditions, every solution must be of the form f (x) = tanh
(
c tan−1 (x)

)
(x ∈

R) for some c ∈ R.

2. Properties of solutions of the functional equation

Since the function (x, y) → x+y
1−xy occurring in Eq. (1) is not defined on the

set
{

(x, y) ∈ R
2 : xy = 1

}
, instead of Eq. (1), it is natural to consider the

following two functional equations on a restricted domain:

f

(
x + y

1 − xy

)
=

f (x) + f (y)
1 + f (x) f (y)

, (x, y) ∈ R
2, xy < 1, (2)

and

f

(
x + y

1 − xy

)
=

f (x) + f (y)
1 + f (x) f (y)

, (x, y) ∈ R
2, xy > 1. (3)

Remark 1. Since {x ∈ R : xy < 1 for some y ∈ R} = R, it is reasonable to ask
for solutions of the type f : R → R of Eq. (2), that are defined on the whole
R.

Note that this problem makes no sense in the case of Eq. (3), as no point
(x, y) with x = 0 satisfies the condition xy > 1. Moreover, the domain of Eq.
(3), the set D := {(x, y) : xy > 1} is the sum of two disjoint open connected
sets D+ :=

{
(x, y) : x > 0 ∧ y > 1

x

}
and D− :=

{
(x, y) : x < 0 ∧ y < 1

x

}
. Since

x + y

1 − xy
< 0 for all (x, y) ∈ D+ and

x + y

1 − xy
> 0 for all (x, y) ∈ D−,

neither the problem to find a solution f : (0,∞) → R nor the problem to find
a solution f : (−∞, 0) → R make sense in the case of Eq. (3).

(These facts show that in the case of Eq. (3) one could look for solutions
f : [(−∞, 0) ∪ (0,∞)] → R.)

Note also that if f : R → R satisfies (1) then, clearly, it satisfies (2), and
its restriction to R\ {0} satisfies (3).

We begin with the following:

Proposition 1. Suppose that a function f : R → R satisfies Eq. (1). Then
(i) the function −f satisfies Eq. (1);
(ii) if f (y0) = 1 for some y0 ∈ R then f (x) = 1 for all x ∈ R;
(iii) if f (y0) = −1 for some y0 ∈ R then f (x) = −1 for all x ∈ R.

Proof. The result (i) is obvious.
To prove (ii) assume that f (y0) = 1 for some y0 ∈ R. If y0 = 0, setting

y = y0 = 0 in (1), we get

f (x) =
f (x) + 1
1 + f (x)

= 1, x ∈ R.
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If y0 > 0 we get

f

(
x + y0

1 − xy0

)
=

f (x) + 1
1 + f (x)

= 1, x <
1
y0

.

Since the range of the function(
−∞,

1
y0

)
	 x 
−→ x + y0

1 − xy0

is the interval
(
− 1

y0
,∞
)
, we get

f (x) = 1, x ∈
(

− 1
y0

,∞
)

,

in particular f (x) = 1 for all x ∈ (0,∞). Taking y0 arbitrarily close to 0 from
the right, we obtain

f (x) = 1, x ∈ (−∞,∞) ,

which was to be shown. If y0 < 0, the argument is similar.
We omit an analogous proof of (iii). �

Proposition 2. Neither Eq. (2) nor Eq. (3) has a solution that is continuous
at a point x0 and unbounded in a vicinity of 0.

Proof. Assume that f satisfies Eq. (2) or Eq. (3), is continuous at the point x0,
and there exists a sequence (yn) such that limn→∞ yn = 0 and limn→∞ |f (yn)|
= ∞. Of course f (x0) �= 0. Then

f (x0) = lim
n→∞ f

(
x0 + yn

1 − x0yn

)
= lim

n→∞
f (x0) + f (yn)

1 + f (x0) f (yn)

= lim
n→∞

f(x0)
f(yn) + 1
1

f(yn) + f (x0)
=

1
f (x0)

,

which implies that f (x0) = 1 or f (x0) = −1. In view of Proposition 1 the
function f would be constant, contradicting the assumption. �

In the sequel we shall deal with the functional equation (2).

Remark 2. If f : R → R satisfies Eq. (2), then either f (0) = 0 or f (0) = 1 or
f (0) = −1.

Indeed, setting x = y = 0 in (2) we get

f (0)
(
[f (0)]2 − 1

)
= 0.

Hence, making use of Proposition 1, we obtain:

Corollary 1. If f : R → R satisfies Eq. (2) then either f (0) = 0 or f is a
constant function of the value 1 or −1.
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Therefore in the sequel we are mainly interested in the solutions f : R → R

of Eq. (2) such that f (0) = 0.

Remark 3. If f : R → R satisfies equation (2) and f (0) = 0 then f is an odd
function.

Indeed, for y = −x we have xy = −x2 < 1 and, setting y = −x in Eq. (2),
we obtain

0 = f (0) =
f (x) + f (−x)

1 + f (x) f (−x)
,

whence f (−x) = −f (x) for all x ∈ R.

Remark 4. Suppose that f : R → R satisfies Eq. (2). If f (y0) = 0 for some
y0 �= 0, then f (0) = 0 and

f

(
x + y0

1 − xy0

)
= f (x) , x ∈ R.

Indeed, in view of Corollary 1, we have f (0) = 0. The remaining part of
this remark one gets immediately by setting y = y0 in (2).

From Proposition 1 and Corollary 1 we obtain the following:

Corollary 2. Suppose that f : R → R is a continuous solution of Eq. (2). Then
the following conditions are pairwise equivalent:

(i) there exist x1, x2 ∈ R such that f (x1) �= 1and f (x2) �= −1;
(ii) there exists x0 ∈ R such that f (x0) ∈ (−1, 1) ;
(iii) f (0) = 0;
(iv) |f (x)| < 1 for all x ∈ R.

Remark 5. Setting y = x in Eq. (2) we obtain the following functional equation
in a single variable

f

(
2x

1 − x2

)
=

2f (x)
1 + [f (x)]2

, |x| < 1,

which is used in [1,2].
Assume that f : R → R satisfies Eq. (1). Replacing y in (1) by y+z

1−yz we
obtain

f

(
x + y + z − xyz

1 − xy − xz − yz

)
=

f (x) + f (y) + f (z) + f (xyz)
1 + f (xy) + f (xz) + f (yz)

, xy + xz + yz �= 1,

whence, setting z = y = x, we obtain the following functional equation in a
single variable

f

(
3x − x3

1 − 3x2

)
=

3f (x) + f
(
x3
)

1 + 3f (x2)
, 3x2 < 1.



Vol. 87 (2014) Functional equation 305

By induction, this procedure and Eq. (1) lead to the following infinite system
of functional equations of n variables x1, . . . , xn,

f

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[n+1
2 ]∑

j=1

(−1)j
∑

i1<...<i2j−1

2j−1∏
k=1

xik

1 −
[n+1

2 ]∑
j=1

(−1)j
∑

i1<...<i2j

2j∏
k=1

xik

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

[n+1
2 ]∑

j=1

∑
i1<...<i2j−1

2j−1∏
k=1

f (xik
)

1 +
[n+1

2 ]∑
j=1

∑
i1<...<i2j

2j∏
k=1

f (xik
)

,

where n ∈ N, n ≥ 2, and x1, . . . , xn ∈ R are such that

[n+1
2 ]∑

j=1

(−1)j
∑

i1<...<i2j

2j∏
k=1

xik
�= 1

(here
[

n+1
2

]
denotes the largest integer not greater than n+1

2 ). Setting here
x1, . . . , xn = x we obtain for f the system of iterative functional equations

f

⎛
⎜⎜⎜⎜⎜⎜⎝

[n+1
2 ]∑

j=1

(−1)j ( n
2j−1

)
x2j−1

1 −
[n+1

2 ]∑
j=1

(−1)j (n
2j

)
x2j

⎞
⎟⎟⎟⎟⎟⎟⎠

=

[n+1
2 ]∑

j=1

(−1)j ( n
2j−1

)
f (x)2j−1

1 −
[n+1

2 ]∑
j=1

(−1)j (n
2j

)
f (x)2j

,

for all n ∈ N, n ≥ 2, and x ∈ R such that
∑[n+1

2 ]
j=1 (−1)j (n

2j

)
x2j �= 1.

3. Main result

Theorem 1. A function f : R → R satisfies the functional equation (2) if, and
only if, there exists an additive function α : R → R such that

f = tanh ◦α ◦ tan−1 .

Proof. We have the identity
x + y

1 − xy
= tan

(
tan−1 x + tan−1 y

)
, xy < 1.

Since
tanhx + tanh y

1 + (tanhx) (tanh y)
= tanh (x + y) , x, y ∈ R,

we also have the identity
u + v

1 + uv
= tanh

(
tanh−1 (u) + tanh−1 (v)

)
, u, v ∈ (−1, 1) .
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Hence, assuming that f : R → R satisfies Eq. (2), we obtain

f
(
tan

(
tan−1 x + tan−1 y

))
=tanh

(
tanh−1 (f (x))+tanh−1 (f (y))

)
, xy < 1.

Setting here u = tan−1 x, v = tan−1 y, we obtain

tanh−1 ◦f ◦ tan (u + v) = tanh−1 ◦f ◦ tan (u) + tanh−1 ◦f ◦ tan (v)

for all u, v ∈ R such that (tan u) (tan v) < 1.
It follows that the function α :

(−π
2 , π

2

)→ R defined by α := tanh−1 ◦f◦tan
satisfies the Cauchy functional equation

α (u + v) = α (u) + α (v) , u, v ∈ R, (tan u) (tan v) < 1.

As the set
{

(u, v) ∈ R
2 : (tanu) (tan v) < 1

}
is an open connected set such

that (0, 0) is its interior point, the function α has a unique additive extension
defined on R. Without any loss of generality, we can denote it also by α. Thus
we have shown that if f : R → R satisfies Eq. (2), then there exists an additive
function α : R → R such that

f = tanh ◦α ◦ tan−1 .

To prove the converse implication assume that f : R → R is of this form.
Then, making use of the additivity of α and the properties of the functions
tanh and tan, we have for all x, y ∈ R such that xy < 1,

f

(
x + y

1 − xy

)
= tanh ◦ α ◦ tan−1

(
x + y

1 − xy

)

= tanh

(
α

[
tan−1

(
tan

(
tan−1 x

)
+ tan

(
tan−1 y

)
1 − tan (tan−1 x) · tan (tan−1 y)

)])

= tanh
(
α
[
tan−1

(
tan

(
tan−1 x + tan−1 y

))])

= tanh
(
α
[
tan−1 x+tan−1 y

])
=tanh

(
α
(
tan−1 x

)
+α

(
tan−1 y

))

=
tanh

(
α
(
tan−1 x

))
+ tanh

(
α
(
tan−1 y

))
1 + (tanh (α (tan−1 x))) (tanh (α (tan−1 y)))

=
tanh ◦α ◦ tan−1 (x) + tanh ◦α ◦ tan−1 (y)

1 + [tanh ◦α ◦ tan−1 (x)] [tanh ◦α ◦ tan−1 (y)]
=

f (x) + f (y)

1 + f (x) f (y)
.

This completes the proof. �
Remark 6. The family of all solutions of Eq. (2) is extremely big in the follow-
ing sense: for each point (x0, y0) ∈ R

2 such that x0 �= 0 and y0 ∈ (−1, 1) there
exists a continuum of different solutions of the form f = tanh ◦α ◦ tan−1 with
an additive function α such that f (x0) = y0.

Corollary 3. Suppose that f : R → R satisfies one of the following conditions:
(i) f is continuous at a point;
(ii) f is measurable in the sense of Lebesgue;
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(iii) f is bounded from above or bounded from below on a set of positive
Lebesgue measure;

(iv) the graph of f is not dense in R
2.

Then f satisfies the functional equation (2),

f

(
x + y

1 − xy

)
=

f (x) + f (y)
1 + f (x) f (y)

, xy < 1,

[or Eq. (1)] if, and only if, there exists a constant c ∈ R such that

f = tanh ◦ (c tan−1
)
.

Proof. Since α := tanh−1 ◦f ◦ tan, it satisfies one of the conditions (i), (ii),
(iii), (iv) and is an additive function. This implies (cf. M. Kuczma [4]) that
there exists a constant c ∈ R such that α(u) = c u, u ∈ R. �

Hence, taking also into account Proposition 1, we obtain

Remark 7. The family of regular solutions of Eq. (2) [Eq. (1)] [i.e. satisfying
one of conditions (i)–(iv)] form a one-parameter family of functions such that
for each point (x0, y0) ∈ R

2 such that x0 �= 0 and y0 ∈ [−1, 1] there exists a
unique solution f : R → R of Eq. (2) [Eq. (1)] such that f (x0) = y0. Moreover,
if y0 ∈ (−1, 1) then

f = tanh ◦
(

tanh−1 (y0)
tan−1 (x0)

tan−1

)
;

if y0 = −1 then f = −1; if y0 = 1 then f = 1.
In particular the sum of all graphs of this family of solutions is the set

((R\ {0}) × [−1, 1]) ∪ ({0} × {−1, 0, 1}) .
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