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On a functional equation related to competition

PETER KAHLIG AND JANUSZ MATKOWSKI

Abstract. The functional equation

z+y\ _ f(@)+f(y)
f<1fa:y> 1+ f() f(y)’

y <1,

(introduced by the first author in a competition model) is considered. The main result says
that a function f : R — R satisfies this equation if, and only if, f = tanh o oo tan—!, where
a: R — R is an additive function.
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1. Introduction

Motivated by a model of competition coming from cloud physics, the first-
named author [1,2] introduced the following functional equation

z+y f@)+ 1) 2
f<1—a;y>_1+f(x)f(y)’ (z,y) €R, ay#1. (1)
Applying a uniqueness result [3] for a related equation in a single variable,
the form of solutions under some special regularity conditions was established
(cf. Remark 5).

In Sect. 2 we present properties of solutions of this equation which in a
natural way lead to the consideration of Eq. (1) with the domain restricted to
the set {(z, y) ER? 1oy < 1}. We prove, among other things, that if f : R — R
satisfies this equation and f (yo) = 1 or f (yo) = —1 for some yo € R, then f
is a constant function (Proposition 1). Moreover f (0) is either 0 or —1 or 1.
If f(0) =0 then f is an odd function. In Sect. 3 we prove that the function
f =tanhoaotan™!, where a : R — R is an arbitrary additive function, is the
general solution. As a corollary we obtain that, under some weak regularity
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conditions, every solution must be of the form f (z) = tanh (c tan™! (z)) (z €
R) for some ¢ € R.

2. Properties of solutions of the functional equation

T4y

Since the function (z,y) — oy

set { (z,y) € R? : zy = 1}, instead of Eq. (1), it is natural to consider the
following two functional equations on a restricted domain:

occurring in Eq. (1) is not defined on the

ety _ f@O+fly) 2
f<1—xy>‘1+f<x>f(y>’ (@.9) €R%, zy <1, @
and
ety \_ f@+fly) 2

Remark 1. Since {x € R: 2y < 1 for some y € R} =R, it is reasonable to ask
for solutions of the type f : R — R of Eq. (2), that are defined on the whole
R.

Note that this problem makes no sense in the case of Eq. (3), as no point
(z,y) with x = 0 satisfies the condition zy > 1. Moreover, the domain of Eq.
(3), the set D := {(x,y) : xy > 1} is the sum of two disjoint open connected
sets Dy = {(m,y) tx>0Ay > %} and D_ := {(x7y) e <0Ay < %} Since

rty <0 forall (z,y) € Dy and Ty
1—2y 1 -2y

>0 forall (z,y) e D_,

neither the problem to find a solution f : (0,00) — R nor the problem to find
a solution f : (—o0,0) — R make sense in the case of Eq. (3).

(These facts show that in the case of Eq. (3) one could look for solutions
[ [(=00,0) U (0,00)] = R.)

Note also that if f : R — R satisfies (1) then, clearly, it satisfies (2), and
its restriction to R\ {0} satisfies (3).
We begin with the following:

Proposition 1. Suppose that a function f:R — R satisfies Eq. (1). Then
(i) the function —f satisfies Eq. (1);

(ii) if f (yo) =1 for some yo € R then f(x) =1 for all z € R;

(iil) if f (yo) = —1 for some yo € R then f (x) = —1 for all x € R.

Proof. The result (i) is obvious.
To prove (ii) assume that f (yo) = 1 for some yg € R. If yo = 0, setting
y=1yo=01in (1), we get
f@)+1

f(x):m—l, z eR.
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If yo > 0 we get
1 1
f<x+y0>:f(x)+ =1, z<—.
1 —ayo 1+ f(2) Yo
Since the range of the function

( 1) T+ Yo
—00,— | DX +——
Yo 1 —zyo

is the interval <_y%’ oo)7 we get

f@) =1, we (—l,oo)

Yo

in particular f (x) =1 for all x € (0, 00). Taking yo arbitrarily close to 0 from
the right, we obtain

f@)=1 z€(—o00,00),

which was to be shown. If yy < 0, the argument is similar.
We omit an analogous proof of (iii). O

Proposition 2. Neither Eq. (2) nor Eq. (3) has a solution that is continuous
at a point xo and unbounded in a vicinity of 0.

Proof. Assume that f satisfies Eq. (2) or Eq. (3), is continuous at the point zq,
and there exists a sequence (y,,) such that lim, o ¢y, = 0 and lim,, o | f (yn)]
= 00. Of course f (zg) # 0. Then

n—oo” \1—2oyn ) n—oe 1+ f(z0)f(yn)
f(zo)
R iy IS
= lim — = ,
0 T + f (o) f (o)
which implies that f(x9) = 1 or f(z9) = —1. In view of Proposition 1 the
function f would be constant, contradicting the assumption. O

In the sequel we shall deal with the functional equation (2).

Remark 2. If f : R — R satisfies Eq. (2), then either f (0) =0or f(0) =1 or
£0) = 1.

Indeed, setting x =y = 0 in (2) we get
7 (I ) =1) =o.
Hence, making use of Proposition 1, we obtain:

Corollary 1. If f : R — R satisfies Eq. (2) then either f(0) = 0 or f is a
constant function of the value 1 or —1.
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Therefore in the sequel we are mainly interested in the solutions f : R — R
of Eq. (2) such that f(0) = 0.

Remark 3. If f: R — R satisfies equation (2) and f(0) = 0 then f is an odd
function.

Indeed, for y = —z we have zy = —x? < 1 and, setting y = —z in Eq. (2),
we obtain
)+ f(—x
0=f(0) = M’
L+ f(x) f (=)

whence f (—z) = —f () for all z € R.

Remark 4. Suppose that f : R — R satisfies Eq. (2). If f(yo) = 0 for some
Yo # 0, then f(0) =0 and

T4y \

Indeed, in view of Corollary 1, we have f (0) = 0. The remaining part of
this remark one gets immediately by setting y = yo in (2).
From Proposition 1 and Corollary 1 we obtain the following:

Corollary 2. Suppose that f : R — R is a continuous solution of Eq. (2). Then
the following conditions are pairwise equivalent:

(i) there exist x1,x9 € R such that f(x1) # land f (x2) # —1;
(ii) there emsts xo € R such that f (zg) € (—1,1);
)
v)

(iii) f(0) =
(iv) |f (= )|<1f0rallx€R

Remark 5. Setting y = x in Eq. (2) we obtain the following functional equation
in a single variable

2x B 2f (x) .
f(1w2> 1+ [f (@) =t

which is used in [1,2].
Assume that f : R — R satisfies Eq. (1). Replacing y in (1) by ijzz we
obtain
f(x+y+z—xy5> _S@)+ W+ () + f(eyz)
1—zy—az—yz L+ f(zy) + f(@2) + f (y2)
whence, setting z = y = x, we obtain the following functional equation in a
single variable

3z — _3f(x)+f(x3) 5
f<1—3x2>_ 1+3f(22)

Ty +xz+yz # 1,

22 < 1.
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By induction, this procedure and Eq. (1) lead to the following infinite system

of functional equations of n variables z1,...,z,,
(5] _ 2j—1 (3] 2j—1
PBRCD D | N D DR DI | TN
f J=1 i1<...<@gj—1 k=1 o J=1 i1<...<igj—1 k=1
[ _ 2 (5] 2j 7
1= 0 Y Tew | 1+ > > I/ @)
j=1 i1<...<i2j k=1 j=1 i1<...<i2j k=1
where n € Nyn > 2, and x1,...,x, € R are such that
(5] _ 2j
> v > [ A1
j=1 i1 <...<t25 k=1
(here ["TH} denotes the largest integer not greater than "TH) Setting here
1,...,T, = x we obtain for f the system of iterative functional equations
4] (2]
j n ) — i n 27—1
Z (=1 (2%1)952] ! Z (1) (2j71)f(x) !
A= _ =1
=] X -
L= > (=1)7 ()% 1- (=1)" (35) f (2)”
Jj=1 j=1
(4]

for all n € N,n > 2, and = € R such that >_; 3 (=1) (;j)ij # 1.

3. Main result

Theorem 1. A function f : R — R satisfies the functional equation (2) if, and
only if, there exists an additive function o : R — R such that

f=tanhoaotan™'.

Proof. We have the identity

x+y
1—a2y

1

= tan (tan_1 T+ tan~ y) , xy < 1.

Since
tanh z + tanhy
1+ (tanh ) (tanhy)

=tanh(z+y), =z,y€R,

we also have the identity
u+v
14+ uv

= tanh (taunh_1 (u) + tanh ™! (), w,ve(-1,1).
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Hence, assuming that f : R — R satisfies Eq. (2), we obtain
f (tan (tan™' z + tan™" y)) =tanh (tanh_1 (f (x))+tanh™* (f (), =xy<Ll.
Setting here v = tan~! z,v = tan~' y, we obtain

tanh™ ' of o tan (u + v) = tanh™ " of o tan (u) + tanh™ " of o tan (v)
for all u,v € R such that (tanw) (tanv) < 1.

It follows that the function « : (fg, g) — R defined by a := tanh ™! o fotan
satisfies the Cauchy functional equation

alu+v)=a(u)+a), u,v €R, (tanu) (tanv) < 1.

As the set { (u,v) € R?: (tanu) (tanv) < 1} is an open connected set such
that (0,0) is its interior point, the function « has a unique additive extension
defined on R. Without any loss of generality, we can denote it also by «. Thus
we have shown that if f : R — R satisfies Eq. (2), then there exists an additive
function o : R — R such that

f=tanhoaotan™t.

To prove the converse implication assume that f : R — R is of this form.
Then, making use of the additivity of a and the properties of the functions
tanh and tan, we have for all z,y € R such that zy < 1,

f (fj:ryy) = tanhoaotan™ ' (fjﬁi)
an (tan~ 'z an (tan ™!
= tanh (0‘ [tanl <1t— tfgjl (tam2 ;L)t tarst(tan?zj) )} >
= tanh (a [tan_1 (tan (tan_l x+tan” ! y))D
tanh (a [‘caunf1 z+tan " yD =tanh (a (taIfl x) +a (tarf1 y))
_ tanh (« (tan™'z)) + tanh (o (tan™ ' y))
"~ 1+ (tanh (o (tan—12))) (tanh (o (tan—15)))

tanhoa otan™' (z) +tanhoaotan™' (y)  f(2)+ f(y)
1+ [tanhoa o tan—! (z)] [tanhoa o tan=! (y)] 1+ f(x) f (y)°

This completes the proof. O

Remark 6. The family of all solutions of Eq. (2) is extremely big in the follow-
ing sense: for each point (x¢,%) € R? such that zg # 0 and yo € (—1,1) there
exists a continuum of different solutions of the form f = tanhoaotan~! with
an additive function a such that f (zg) = yo.

Corollary 3. Suppose that f : R — R satisfies one of the following conditions:

(i) f is continuous at a point;
(ii) f is measurable in the sense of Lebesque;
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(iii) f s bounded from above or bounded from below on a set of positive
Lebesgue measure;
(iv) the graph of f is not dense in R?.

Then f satisfies the functional equation (2),

ety \_ f@+fly
f<1—wy>1+f($)f(y)’ vt

[or Eq. (1)] if, and only if, there exists a constant ¢ € R such that
f =tanho (c tanfl) .

Proof. Since a := tanh™' of o tan, it satisfies one of the conditions (i), (ii),
(iii), (iv) and is an additive function. This implies (cf. M. Kuczma [4]) that
there exists a constant ¢ € R such that a(u) = cu, u € R. O

Hence, taking also into account Proposition 1, we obtain

Remark 7. The family of regular solutions of Eq. (2) [Eq. (1)] [i-e. satisfying
one of conditions (i)—(iv)] form a one-parameter family of functions such that
for each point (zg,y0) € R? such that zg # 0 and yo € [—1, 1] there exists a
unique solution f : R — R of Eq. (2) [Eq. (1)] such that f (z¢) = yo. Moreover,
if yo € (—1,1) then

-1
f =tanho Mtarﬁ1 ;
tan™t (z)

if yp = —1 then f = —1;if yo =1 then f = 1.
In particular the sum of all graphs of this family of solutions is the set

(R\{0}) x [-1,1]) U ({0} x {-1,0,1}).
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