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Remarks on hyperstability of the Cauchy functional equation

Janusz Brzdȩk

Abstract. We present some simple observations on hyperstability for the Cauchy equation
on a restricted domain. Namely, we show that (under some weak natural assumptions) func-
tions that satisfy the equation approximately (in some sense), must be actually solutions
to it. In this way we demonstrate in particular that hyperstability is not a very exceptional
phenomenon as it has been considered so far. We also provide some simple examples of
applications of those results.
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1. Introduction

In this paper N, Z, Q, R and C denote the sets of positive integers, inte-
gers, rationals, reals and complex numbers, respectively; N0 := N ∪ {0} and
R+ := [0,∞). Moreover, X and Y always stand for normed spaces (unless
clearly stated otherwise) and U ⊂ X is nonempty.

In what follows we say that a function f mapping U into a set Z, endowed
with a binary operation + : Z2 → Z, is additive on U provided it satisfies the
conditional Cauchy functional equation

f(x + y) = f(x) + f(y) x, y ∈ U, x + y ∈ U ; (1.1)

if U = X, then we simply say that f is additive.
We present some simple hyperstability results for Eq. (1.1). Namely, we

show that, for some natural particular forms of ϕ (and under some additional
assumptions on U), the conditional functional Eq. (1.1) is ϕ-hyperstable in the
class of functions f : U → Y , i.e., each f : U → Y satisfying the inequality

‖f(x + y) − f(x) − f(y)‖ ≤ ϕ(x, y) x, y ∈ U, x + y ∈ U, (1.2)
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must be additive on U . In this way we expect to stimulate somewhat the fur-
ther research of the issue of hyperstability, which seems to be a very promising
subject to study within the theory of Hyers–Ulam stability.

Let us recall that the problem of stability of functional equations was moti-
vated by a question of S.M. Ulam asked in 1940 and an answer to it published
by Hyers [22]. Since then numerous papers on this subject have been published
and we refer to [8–10,19,23,26,27,30,31] for more details, some discussions,
further references and examples of very recent results. According to our best
knowledge, the first hyperstability result was published in [4] and concerned
ring homomorphisms. However, it seems that the term hyperstability was used
for the first time in [29] (quite often it is confused with superstability, which
admits also bounded functions).

2. The first observations

We start with the following three simple propositions for U = X.

Proposition 2.1. Let (X, 〈·|·〉) be a real inner product space with dim X > 1
and g : X → Y . Suppose that there are positive real numbers p and L with

‖g(x + y) − g(x) − g(y)‖ ≤ L
∣
∣〈x|y〉∣∣p x, y ∈ X. (2.1)

Then the following two statements are valid.

(A) If p �= 1, then g is additive.
(B) If p = 1, then there exist additive a : X → Y and a vector z0 ∈ Y such

that 2‖z0‖ ≤ L and

g(x) = a(x) + ‖x‖2z0 x ∈ X.

Proof. Let g1 and g2 denote the odd and even parts of g, i.e.,

g1(x) :=
1
2
(g(x) − g(−x)), g2(x) :=

1
2
(g(x) + g(−x)), x ∈ X.

Then it is easily seen that

‖gi(x + y) − gi(x) − gi(y)‖ ≤ L
∣
∣〈x|y〉∣∣p x, y ∈ X, i = 1, 2, (2.2)

which yields

gi(x + y) = gi(x) + gi(y) x, y ∈ X, 〈x|y〉 = 0, i = 1, 2.

Hence, by [35, Theorem 5], g1 is additive. Further, according to [35, Theorem
9], there exists an additive b : R → Y such that g2(x) = b(‖x‖2) for x ∈ X.
Take x0 ∈ X with ‖x0‖ = 1. Clearly, (2.2) with x = y = ξx0 implies that

2‖b(ξ2)‖ = ‖b(‖2ξx0‖2) − 2b(‖ξx0)‖2)‖ ≤ Lξ2p ξ ∈ R,
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whence b is linear. This means that b(ξ) = ξz0 for ξ ∈ R with z0 := b(1) and
consequently

g2(x) = ‖x‖2z0 x ∈ X.

Now using (2.2) (with x and y replaced by ξx) we get

2ξ2‖x‖2‖z0‖ ≤ Lξ2p‖x‖2p x ∈ X, ξ ∈ R, (2.3)

which is possible only when p = 1 or z0 = 0. Clearly, if p = 1, then (2.3) yields
that 2‖z0‖ ≤ L. �

It is easily seen that if g has the form described either by (A) or by (B),
then it fulfils (2.1).

Proposition 2.2. Let dim X > 2 and g : X → Y . Suppose that there are positive
real numbers p and L0 with

‖g(x + y) − g(x) − g(y)‖ ≤ L0

∣
∣‖x + y‖2 − ‖x − y‖2

∣
∣
p

x, y ∈ X. (2.4)

Then the following two statements are valid.

(α) If p �= 1 or X is not a real inner product space, then g is additive.
(β) If X is a real inner product space and p = 1, then there exist an additive

mapping a : X → Y and a vector z0 ∈ Y such that ‖z0‖ ≤ 2L0 and

g(x) = a(x) + ‖x‖2z0 x ∈ X.

Proof. Note that (2.4) yields

g(x + y) = g(x) + g(y) x, y ∈ X, ‖x + y‖ = ‖x − y‖. (2.5)

If X is not a real inner product space, then it follows from [39] that the even
part of g is identically equal zero. This means that g is odd and consequently
it is additive in view of [38, Theorem, p. 270].

So it remains to consider the case where the norm in X comes from some
real inner product 〈·|·〉. Then (2.4) takes form (2.1) with L = 4L0 and it is
enough to use Proposition 2.1. �

Proposition 2.3. Let dim X > 2 and let g : X → Y . Suppose that there are
functions η, μ : R → R with μ(0) = 0 and

‖g(x + y) − g(x) − g(y)‖ ≤ μ
(

η(‖x‖) − η(‖y‖)
)

x, y ∈ X. (2.6)

Then g is additive.

Proof. Taking x = y in (2.6) we obtain that

g(x + y) = g(x) + g(y) x, y ∈ X, ‖x‖ = ‖y‖.

Hence, by [38, Theorem 3.1], g is additive. �
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3. Some further hyperstability results

Given A,B : X → X, for the simplicity of notations we write AB := A ◦ B
and define the mapping A + B : X → X by (A + B)(x) := A(x) + B(x) for
x ∈ X; moreover, if V ⊂ X, U ⊂ V and A : V → X, then

‖A‖U := inf {ξ ∈ R : ‖A(x) − A(y)‖ ≤ ξ‖x − y‖ for x, y ∈ U}.

It is easily seen that, in the particular case where A is additive (i.e., A(x+y) =
A(x) + A(y) for every x, y ∈ X), we have (with U = X)

‖A‖X = inf {ξ ∈ R : ‖A(x)‖ ≤ ξ‖x‖ for x ∈ X}.

Now, we are in a position to show the following result.

Theorem 3.1. Assume that C,D : X → X are additive,

CD = DC, (3.1)
C(x),D(x), C(x) + D(x) ∈ U x ∈ U. (3.2)

Let p ∈ R+ be such that one of the following two conditions is valid:

(a) E := D + C is injective, U ⊂ E(U) and

(‖D‖U
p + ‖C‖U

p)‖E−1‖U
p

< 1;

(b) U ⊂ D(U), D is injective and

(‖E‖U
p + ‖C‖U

p)‖D−1‖U
p

< 1.

Then every function g : U → Y for which there exists L ∈ R+ such that

‖g(x + y) − g(x) − g(y)‖ ≤ L‖C(x) − D(y)‖p x, y ∈ U, x + y ∈ U, (3.3)

is additive on U .

Proof. In view of (3.2), from (3.3) (with x replaced by D(x) and y = C(x))
we obtain

g ((D + C)x) = g(D(x)) + g(C(x)) x ∈ U. (3.4)

First consider the case of (a). Then U = E(U) and (3.4) yields

g(x) = g
(

DE−1x
)

+ g
(

CE−1x
)

x ∈ U. (3.5)

Let κ := (‖D‖U
p + ‖C‖U

p)‖E−1‖U
p. We show that, for each n ∈ N0,

‖g(x + y) − g(x) − g(y)‖ ≤ κnL‖C(x) − D(y)‖p

x, y ∈ U, x + y ∈ U. (3.6)
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The proof is by induction. Clearly the case n = 0 is just (3.3). So fix l ∈ N0

and assume that (3.6) holds true with n = l. Then, by (3.5),

‖g(x + y) − g(x) − g(y)‖
=

∥
∥
∥g

(

DE−1(x + y)
)

+ g
(

CE−1(x + y)
) − g

(

DE−1(x)
)

−g
(

CE−1(x)
) − g

(

DE−1(y)
) − g

(

CE−1(y)
)
∥
∥
∥

≤
∥
∥
∥g

(

DE−1(x) + DE−1(y)
) − g

(

DE−1(x)
) − g

(

DE−1(y)
)
∥
∥
∥

+
∥
∥
∥g

(

CE−1(x) + CE−1(y)
) − g

(

CE−1(x)
) − g

(

CE−1(y)
)
∥
∥
∥

≤ κlL
(∥
∥CDE−1(x) − DDE−1(y)

∥
∥

p
)

+κlL
∥
∥CCE−1(x) − DCE−1(y)

∥
∥

p
x, y ∈ U, x + y ∈ U.

Since, according to (3.1), CE−1(x) = E−1C(x) and DE−1(x) = E−1D(x)
for each x ∈ U , this means that

‖g(x + y) − g(x) − g(y)‖
≤ κlL

(∥
∥DE−1C(x) − DE−1D(y)

∥
∥

p
)

+κlL
∥
∥CE−1C(x) − CE−1D(y)

∥
∥

p

≤ κlL
(

‖D‖U
p‖E−1‖U

p
+ ‖C‖U

p‖E−1‖U
p
)

‖C(x)−D(y)‖p

= κl+1L ‖C(x) − D(y)‖p
x, y ∈ U, x + y ∈ U.

Thus we have proved that (3.6) is valid for each n ∈ N0. Since κ < 1, letting
n → ∞ in (3.6) we obtain that g is additive on U .

Next assume that (b) holds. From (3.4) we deduce that

g(x) = g
(

ED−1(x)
) − g

(

CD−1(x)
)

x ∈ U. (3.7)

Write η := (‖E‖U
p + ‖C‖U

p)‖D−1‖U
p. We show by induction that, for each

n ∈ N0,

‖g(x + y) − g(x) − g(y)‖ ≤ ηnL‖C(x) − D(y)‖p

x, y ∈ U, x + y ∈ U. (3.8)

The case n = 0 is trivial. Take l ∈ N0 and assume that (3.8) is valid for
n = l. Then, by (3.7),

‖g(x + y) − g(x) − g(y)‖
=

∥
∥g

(

ED−1(x + y)
) − g

(

CD−1(x + y)
) − g

(

ED−1(x)
)

+g
(

CD−1 (x)
) − g

(

ED−1(y)
)

+ g
(

CD−1(y)
) ∥
∥

≤ ∥
∥g

(

ED−1(x) + ED−1(y)
) − g

(

ED−1(x)
) − g

(

ED−1(y)
) ∥
∥

+
∥
∥g

(

CD−1 (x) + CD−1 (y)
) − g

(

CD−1(x)
) − g

(

CD−1(y)
) ∥
∥
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≤ ηlL
∥
∥CED−1(x) − DED−1(y)

∥
∥

p

+ηlL
∥
∥CCD−1(x) − DCD−1(y)

∥
∥

p

= ηlL
(

‖E‖U
p‖D−1‖U

p
+ ‖C‖U

p‖D−1‖U
p
)

‖C(x) − D(y)‖p

= ηl+1L ‖C(x) − D(y)‖p
x, y ∈ U, x + y ∈ U.

Thus we have proved by induction that (3.8) is valid for each n ∈ N0. Since
η < 1, letting n → ∞ in (3.8) we obtain that g is additive on U . �

Remark 3.2. Observe that condition (3.1) in Theorem 3.1 is valid for instance
when D = Cn with some n ∈ N0 or Dx = γx for x ∈ X with some γ ∈ Q

(because C is assumed to be additive).

Remark 3.3. Note that the inequality in (a) holds when p > 1, U = X and
C(x) = D(x) = λx for x ∈ X, with some λ ∈ R. Analogously, the inequality
in (b) holds when p > 1, U = X, C(x) = −λx and D(x) = 2λx for x ∈ X
(with some λ ∈ R). It is easy to find several further examples.

There arises a natural open problem whether we can get similar hyper-
stability results in some of the situations where neither condition (a) nor (b)
is fulfilled. In some of these cases we can derive some complementary stabil-
ity and hyperstability results from the subsequent proposition, which follows
easily from [7, Theorem 1] (cf. also [21]).

Proposition 3.4. Let V ⊂ X be nonempty, ϕ : V 2 → R and f : V → Y satisfy

‖g(x + y) − g(x) − g(y)‖ ≤ ϕ(x, y) x, y ∈ V, x + y ∈ V.

Suppose that Y is complete and there is ε ∈ {−1, 1} such that 2εV ⊂ V and

H(x) :=
∞∑

i=0

2−iεϕ(2iεx, 2iεx) < ∞ x ∈ V,

lim inf
n→∞ |2−nεϕ(2nεx, 2nεy)| = 0 x, y ∈ V.

(3.9)

Then there exists a unique F : V → Y that is additive on V and

‖F (x) − f(x)‖ ≤ H0(x) x ∈ V,

where

H0(x) :=

{

2−1H(x), if ε = 1;
H(2−1x), if ε = −1.

Proposition 3.4 yields in particular the subsequent two corollaries gener-
alizing the results of Hyers [22], Aoki [2], Rassias [32,33] and Gajda [20] (see
also [34, Theorem 1]).
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Corollary 3.5. Let Y be complete, g : U → Y , δ, L1, L2 ∈ R+, q, r ∈ (−∞, 1),
and 2U ⊂ U . Suppose that there exist L ∈ R+, p ∈ (0, 1), and C : U → X
such that

‖C(2x) − C(2y)‖ ≤ 2‖C(x) − C(y)‖ x, y ∈ U

and

‖g(x + y) − g(x) − g(y)‖ ≤ δ + L1‖x‖q + L2‖y‖r + L‖C(x) − C(y)‖p

for every x, y ∈ U\{0} with x+y ∈ U\{0}. Then there exists a unique function
G : U → Y that is additive on U and satisfies

‖G(x) − g(x)‖ ≤ δ +
L1‖x‖q

2 − 2q
+

L2‖y‖r

2 − 2r
x ∈ U. (3.10)

Proof. It is enough to use Proposition 3.4 with V := U \{0}, ε = 1 and

ϕ(x, y) := δ + L1‖x‖q + L2‖y‖r + L‖C(x) − C(y)‖p x, y ∈ U

and next take G(x) := F (x) for x ∈ V . Further, in the case when 0 ∈ U , we
must have G(0) = 0. Since in such a situation

‖g(0)‖ ≤ δ,

G defined in this way fulfils (3.10). �

Corollary 3.6. Let Y be complete, g : U → Y , L1, L2 ∈ R+, q, r ∈ (1,∞), and
U ⊂ 2U . Suppose that there exist L ∈ R+, p ∈ (1,∞), and C : U → X such
that

∥
∥
∥
∥
C

(
1
2
x

)

− C

(
1
2
y

)∥
∥
∥
∥

≤ 1
2
‖C(x) − C(y)‖

and

‖g(x + y) − g(x) − g(y)‖ ≤ L1‖x‖q + L2‖y‖r + L‖C(x) − C(y)‖p

for every x, y ∈ U with x + y ∈ U . Then there exists a unique function G :
U → Y that is additive on U and satisfies

‖G(x) − g(x)‖ ≤ L1‖x‖q

2q − 2
+

L2‖y‖r

2r − 2
x ∈ U.

Proof. It is enough to use Proposition 3.4 with V := U , ε = −1 and

ϕ(x, y) := L1‖x‖q + L2‖y‖r + L‖C(x) − C(y)‖p x, y ∈ U.

�

Note that Corollaries 3.5 and 3.6 with δ = L1 = L2 = 0 supply additional
two hyperstability results, which cannot be deduced from Theorem 3.1.
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Remark 3.7. In connection with the statements of Theorem 3.1 and Corol-
laries 3.5 and 3.6 there arises the natural question when a function that is
additive on U can be extended to an additive function f : X → Y . Some infor-
mation on investigations of this issue can be found in [1], [28, Theorem 1.1,
Ch. XVIII]) and [36, Chapter 4] (see also [37, pp. 143-4] for some extension
procedure). Below we provide one more result concerning this problem, which
corresponds somewhat to the outcomes in [1]. (Let us recall that I ⊂ 2X is an
ideal provided A ∪ B ∈ I and 2A ⊂ I for every A,B ∈ I).

Proposition 3.8. Let h : U → Y satisfy

h(x + y) = h(x) + h(y) x, y ∈ U, x + y ∈ U. (3.11)

Assume that there exists an ideal I ⊂ 2X such that X �∈ I, X\U ∈ I and

B + x ∈ I B ∈ I, x ∈ X. (3.12)

Then there is a unique additive f : X → Y such that h(x) = f(x) for x ∈ U .

Proof. It is easy to deduce from [6, Lemma 1] that

U − U := {x − y : x, y ∈ U} = X. (3.13)

Take a, b, c, d ∈ U with a − b = c − d and write

U1 := (U − a) ∩ (U − a − d), U2 := (U − b) ∩ (U − b − c).

Clearly, by (3.12), X\U1,X\U2 ∈ I, whence U0 := U ∩ U1 ∩ U2 �= ∅.
Let v ∈ U0. Then v, v + a, v + b, v + a + d, v + b + c ∈ U . Consequently, by

(3.11),

h(v) + h(b) + h(c) = h(v + b) + h(c) = h(v + b + c)
= h(v + a + d) = h(v + a) + h(d)
= h(v) + h(a) + h(d).

Thus we have proved that

h(a) − h(b) = h(c) − h(d) a, b, c, d ∈ U, a − b = c − d. (3.14)

According to (3.13), we may define f : X → Y by:

f(z) = h(a) − h(b) z ∈ X, a, b ∈ U, z = a − b.

First we show that f is an extension of h. To this end fix z ∈ U and
u ∈ U ∩ (U − z). Then (3.11) yields

f(z) = f(z + u − u) = h(z + u) − h(u) = h(z) + h(u) − h(u) = h(z).

Next we prove that f is additive. Take z, w ∈ X. According to (3.13),
z = a − b and w = c − d for some a, b, c, d ∈ U . Hence f(z) = h(a) − h(b) and
f(w) = h(c) − h(d). Take

u ∈ U ∩ (U − a) ∩ (U − a − c) ∩ (U − b) ∩ (U − b − d).
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Then

f(z + w) = f(u + a + c − (u + b + d)) = h(u + a + c) − h(u + b + d)
= h(u + a) + h(c) − (h(u + b) + h(d))
= h(u) + h(a) + h(c) − (h(u) + h(b) + h(d))
= h(a) − h(b) + h(c) − h(d) = f(z) + f(w).

To complete the proof it remains to show the uniqueness of f . So, suppose
that f1 : X → Y is additive and f1(x) = h(x) for x ∈ U . Take z ∈ X and
a, b ∈ U with z = a − b. Then

f1(z) = f1(a − b) = f1(a) − f1(b) = h(a) − h(b) = f(a − b) = f(z).

�

Remark 3.9. Below we give some natural examples of ideals I satisfying con-
dition (3.12).
(a) I is the family of all subsets T of X with card T < card X.
(b) I is the family of all bounded subsets of X.
(c) I is the family of all first category subsets of X.
(d) X = R

n with some n ∈ N and I is the family of all subsets of X that are
of finite Lebesgue measure.

(e) X is a Polish space and I is the σ-ideal of Christensen zero subsets of X
(see, e.g., [18]).

4. Some consequences

In what follows, given I ⊂ 2X and f, g : X → Y , we say that f = g I-almost
everywhere (abbreviated to I-a.e.) in X if there is a set T ∈ I such that
f(x) = g(x) for every x ∈ X \T . Moreover we write αT := {αx : x ∈ T} for
T ⊂ X and α ∈ R. The next theorem is a consequence of some previous results
in this paper. (An ideal I ⊂ 2X is a σ-ideal provided

⋃

n∈N
Tn ∈ I for every

family of sets {Tn}n∈N ⊂ I).

Theorem 4.1. Let g : X → Y and I ⊂ 2X be a σ-ideal such that (3.12) holds
and

αT ∈ I T ∈ I, α ∈ R. (4.1)

Assume that one of the following two conditions is fulfilled.
(i) There exist T ∈ I, c, d ∈ R, cd(c + d) �= 0, and reals L > 0 and p > 1

such that

‖g(x + y) − g(x) − g(y)‖ ≤ L‖cx − dy‖p x, y ∈ X\T. (4.2)

(ii) There exist T ∈ I, C : X → X with C(2x) = 2C(x) for x ∈ X, and
positive reals L and p �= 1 such that
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‖g(x + y) − g(x) − g(y)‖ ≤ L‖C(x) − C(y)‖p x, y ∈ X\T.

Then there is a unique additive operator f : X → Y with f = g I-a.e. in X.

Proof. First assume that (i) holds. Define C,D : X → X by: C(x) = cx and
D(x) = dx for x ∈ X. Write XT := X\T ,

U1 :=
⋂

n∈Z

(c + d)nXT , U2 :=
⋂

n∈Z

cnXT , U3 :=
⋂

n∈Z

dnXT ,

and U := U1 ∩ U2 ∩ U3. It is easily seen that X\U ∈ I, cU = U , dU = U and
(c + d)U = U . Further, if cd > 0, then |c + d| = |c| + |d| and consequently

|d|p + |c|p < |c + d|p;
if cd < 0, then (without loss of generality, because (4.2) is symmetric with
regard to x and y) we can assume that |d| = |c| + |d + c| and consequently

|d + c|p + |c|p < |d|p.
This means that one of conditions (a) and (b) of Theorem 3.1 is valid and con-
sequently g is additive on U . Hence, by Proposition 3.8, there is an additive
operator f : X → Y with g(x) = f(x) for x ∈ U . The uniqueness of f also
follows from Proposition 3.8.

If (ii) holds, then we write

U :=
⋂

n∈Z

2n(X\T ).

Clearly 2U = U . Let W be the Banach space that is the completion of Y . Then
we can consider g to be a mapping from X into W . Hence, by Corollaries 3.5
(when p < 1) and 3.6 (when p > 1) with δ = L1 = L2 = 0, g is additive on U .
Now it is enough to apply Proposition 3.8 analogously as before. �

Remark 4.2. Note that examples (a), (c) and (e) in Remark 3.9 describe
σ-ideals I satisfying condition (4.1).

The next two corollaries provide two further examples of simple applications
of Theorem 3.1, which correspond to some results in [3,5,11–17,24] concerning
the inhomogeneous Cauchy equation and the cocycle equation.

Corollary 4.3. Let C,D : X → X be additive, (3.1) and (3.2) be valid, and
G : U2 → Y be such that G(x0, y0) �= 0 for some x0, y0 ∈ U with x0 + y0 ∈ U .
Assume that there exist positive reals L and p such that one of conditions (a)
and (b) holds and

‖G(x, y)‖ ≤ L‖C(x) − D(y)‖p x, y ∈ U, x + y ∈ U. (4.3)

Then the conditional functional equation

g(x + y) = g(x) + g(y) + G(x, y) x, y ∈ U, x + y ∈ U, (4.4)

has no solutions in the class of functions g : U → Y .
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Proof. Let g : U → Y be a solution to (4.4). Then, in view of (4.3), (3.3) holds.
Hence, by Theorem 3.1, g is a solution to (1.1). This means that G(x0, y0) = 0,
which is a contradiction. �

Corollary 4.4. Let C,D : X → X be additive, (3.1) and (3.2) be valid, and
G : X2 → Y be a symmetric (i.e., G(x, y) = G(y, x) for x, y ∈ X) solution to
the cocycle functional equation

G(x, y) + G(x + y, z) = G(x, y + z) + G(y, z) x, y, z ∈ X. (4.5)

Assume that there exist positive reals L and p such that (4.3) and one of con-
ditions (a) and (b) hold. Then G(x, y) = 0 for x, y ∈ U with x + y ∈ U .

Proof. Suppose that G(x0, y0) �= 0 for some x0, y0 ∈ U with x0 + y0 ∈ U . It
is well known that G is coboundary (see [16] or [25]), i.e., there is g : X → Y
with G(x, y) = g(x + y) − g(x) − g(y) for x, y ∈ X. Hence g is a solution to
(4.4). This contradicts Corollary 4.3. �

Analogous corollaries follow from Corollaries 3.5 and 3.6 with δ = L1 =
L2 = 0 and Propositions 2.1–2.3. For the convenience of the readers we end
the paper with two of them, which are derived from Proposition 2.1.

Corollary 4.5. Let (X, 〈·|·〉) be a real inner product space with dim X > 1 and
G : X2 → Y . Suppose that there are positive real numbers p and L with

‖G(x, y)‖ ≤ L
∣
∣〈x|y〉∣∣p x, y ∈ X. (4.6)

Then the following two statements are valid.
(A) If p �= 1, then the functional equation

g(x + y) = g(x) + g(y) + G(x, y) (4.7)

has a solution g : X → Y if and only if G(x, y) = 0 for every x, y ∈ X.
(B) If p = 1, then g : X → Y and G satisfy (4.7) if and only if there exist

additive a : X → Y and a vector z0 ∈ Y such that

g(x) = a(x) + ‖x‖2z0, G(x, y) = 2〈x|y〉 z0 x, y ∈ X.

Proof. In the case of (A) it is enough to argue analogously as in the proof of
Corollary 4.3, replacing Theorem 3.1 with Proposition 2.1.

So assume that p = 1 and g : X → Y and G satisfy (4.7). Then Propo-
sition 2.1 implies that there exist additive a : X → Y and a vector z0 ∈ Y
such that g(x) = a(x) + ‖x‖2z0 for x ∈ X. It is easy to check that this yields
G(x, y) = 2〈x|y〉 z0 for x, y ∈ X. The converse is also easy to verify. �

Corollary 4.6. Let (X, 〈·|·〉) be a real inner product space with dim X > 1 and
G : X2 → Y be symmetric. Suppose that there are positive real numbers p and
L such that (4.6) holds. Then the following two statements are valid.

1◦ If p �= 1, then G is a solution to the cocycle functional Eq. (4.5) if and
only if G(x, y) = 0 for every x, y ∈ X.
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2◦ If p = 1, then G satisfies Eq. (4.5) if and only if there exists a vector
u0 ∈ Y such that G(x, y) = 〈x|y〉u0 for x, y ∈ X.

Proof. If p �= 1, then it is enough to argue analogously as in the proof of
Corollary 4.4, replacing Corollary 4.3 with Corollary 4.5.

It remains to consider the case p = 1. Then there is g : X → Y with
G(x, y) = g(x + y) − g(x) − g(y) for x, y ∈ X (see [16] or [25]), whence g is
a solution to (4.7). Hence, by Corollary 4.5, there exist additive a : X → Y
and a vector z0 ∈ Y such that g(x) = a(x) + ‖x‖2z0 for x ∈ X, whence
G(x, y) = 2〈x|y〉z0 for x, y ∈ X and we take u0 := 2z0. The converse is easy
to check. �
Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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Department of Mathematics
Pedagogical University
Podchora̧żych 2
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