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Remarks on hyperstability of the Cauchy functional equation
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Abstract. We present some simple observations on hyperstability for the Cauchy equation
on a restricted domain. Namely, we show that (under some weak natural assumptions) func-
tions that satisfy the equation approximately (in some sense), must be actually solutions
to it. In this way we demonstrate in particular that hyperstability is not a very exceptional
phenomenon as it has been considered so far. We also provide some simple examples of
applications of those results.
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1. Introduction

In this paper N, Z, @, R and C denote the sets of positive integers, inte-
gers, rationals, reals and complex numbers, respectively; Ny := N U {0} and
R, := [0,00). Moreover, X and Y always stand for normed spaces (unless
clearly stated otherwise) and U C X is nonempty.

In what follows we say that a function f mapping U into a set Z, endowed
with a binary operation + : Z? — Z, is additive on U provided it satisfies the
conditional Cauchy functional equation

fa+y)=f@)+fly) =xyelUzr+tyel; (1.1)

if U = X, then we simply say that f is additive.

We present some simple hyperstability results for Eq. (1.1). Namely, we
show that, for some natural particular forms of ¢ (and under some additional
assumptions on U), the conditional functional Eq. (1.1) is ¢-hyperstable in the
class of functions f: U — Y, i.e., each f:U — Y satisfying the inequality

[f(z+y) = @) = fWI <pley)  wyelztyel, (12
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must be additive on U. In this way we expect to stimulate somewhat the fur-
ther research of the issue of hyperstability, which seems to be a very promising
subject to study within the theory of Hyers—Ulam stability.

Let us recall that the problem of stability of functional equations was moti-
vated by a question of S.M. Ulam asked in 1940 and an answer to it published
by Hyers [22]. Since then numerous papers on this subject have been published
and we refer to [8-10,19,23,26,27,30,31] for more details, some discussions,
further references and examples of very recent results. According to our best
knowledge, the first hyperstability result was published in [4] and concerned
ring homomorphisms. However, it seems that the term hyperstability was used
for the first time in [29] (quite often it is confused with superstability, which
admits also bounded functions).

2. The first observations

We start with the following three simple propositions for U = X.

Proposition 2.1. Let (X, (-|-)) be a real inner product space with dim X > 1
and g : X — Y. Suppose that there are positive real numbers p and L with

lg(z +y) = g(z) =9Il < L|(zly)|"  z,y € X. (2.1)
Then the following two statements are valid.

(A) Ifp # 1, then g is additive.
(B) If p =1, then there exist additive a : X — 'Y and a vector zg € Y such
that 2||zo|| < L and

g(z) = a(z) + ||z||*20 z e X.

Proof. Let g1 and g5 denote the odd and even parts of g, i.e.,

1 1

91(2) = 5(9(2) —g(=2)),  g(2):=5(g9(2) +g(-2)), zeX

Then it is easily seen that
lgi(z +y) = gi(2) = giW)ll < L|zly)|”  zyeX,i=1,2,  (2.2)
which yields
g9i(r +y) = g9i(x) + gi(y)  =ye X, (2ly) =0,i=1,2

Hence, by [35, Theorem 5], g; is additive. Further, according to [35, Theorem
9], there exists an additive b : R — Y such that go(z) = b(||z||?) for z € X.
Take xg € X with [|zg| = 1. Clearly, (2.2) with z = y = xo implies that

2016l = 1b(l|126z0l1*) — 2b(lI€z0) )] < LE® € €R,
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whence b is linear. This means that b(§) = £z for £ € R with zp := b(1) and
consequently
ga(x) = ||z]|*20 z e X.
Now using (2.2) (with z and y replaced by &x) we get

26%||z)? |20l < LEP (2| € X, E€R, (2.3)
which is possible only when p = 1 or zg = 0. Clearly, if p = 1, then (2.3) yields
that 2||zo|| < L. O

It is easily seen that if g has the form described either by (A) or by (B),
then it fulfils (2.1).

Proposition 2.2. Letdim X > 2 and g : X — Y. Suppose that there are positive
real numbers p and Lo with

lg(x +y) = g(2) = 9@l < Lolllz +yl* — lz —yl?|”  wyeX. (2.4)
Then the following two statements are valid.

(a) If p# 1 or X is not a real inner product space, then g is additive.
(8) If X is a real inner product space and p = 1, then there exist an additive
mapping a : X — Y and a vector zg € Y such that ||zo|| < 2Ly and

g(z) = a(z) + |z)*20 =z €X.
Proof. Note that (2.4) yields

gz +y)=gx)+gly) wyeX|rtyl=Ilzr—yl. (2.5)

If X is not a real inner product space, then it follows from [39] that the even
part of g is identically equal zero. This means that ¢ is odd and consequently
it is additive in view of [38, Theorem, p. 270].

So it remains to consider the case where the norm in X comes from some
real inner product (-|-). Then (2.4) takes form (2.1) with L = 4L and it is
enough to use Proposition 2.1. O

Proposition 2.3. Let dim X > 2 and let g : X — Y. Suppose that there are
functions n, p : R — R with 4(0) =0 and

l9(z +y) —g(x) =gl < u(nllzl) =n(lyl))  zyeX. (26)
Then g is additive.

Proof. Taking =y in (2.6) we obtain that

9@ +y) =g(x)+9ly) .y X[zl =yl
Hence, by [38, Theorem 3.1], g is additive. O
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3. Some further hyperstability results

Given A, B : X — X for the simplicity of notations we write AB := Ao B
and define the mapping A+ B : X — X by (4 + B)(z) := A(z) + B(z) for
r € X; moreover, if V.C X, UCV and A:V — X, then

[Allp == inf { € R: [[A(z) — A(y)[| < &flz -yl for 2,y € U}

Tt is easily seen that, in the particular case where A is additive (i.e., A(z+y) =
A(z) + A(y) for every z,y € X), we have (with U = X)

[Allx =inf{ e R: [|A(z)]| < ¢l for z € X}
Now, we are in a position to show the following result.
Theorem 3.1. Assume that C, D : X — X are additive,

CD = DC, (3.1)
C(x),D(x),C(x)+ D(z) e U xz e U. (3.2)

Let p € Ry be such that one of the following two conditions is valid:
(a) E:=D + C is injective, U C E(U) and

(1Dl + ICIo"IE 0" < 1;
(b) U C D(U), D is injective and
(IElu” + [IClle)I D" < 1.
Then every function g : U — Y for which there exists L € Ry such that
lg(z +y) —g(x) =gl < LIC(z) = D)|I*  =zyelzt+yel, (3.3)
1s additive on U.

Proof. In view of (3.2), from (3.3) (with z replaced by D(z) and y = C(z))
we obtain

9((D+C)z) =g(D(x)) +9(C(z)) =€l (3.4)
First consider the case of (a). Then U = E(U) and (3.4) yields
9(z) =g (DE"'z) + g (CE '2) xeU. (3.5)
Let # := (|| D||g” + |Cllv®)|E~|v”. We show that, for each n € Ny,

lg(z +y) —g(z) — g(y)|| < £"L||C(x) — D(y)||”
z,yeUx+yeU. (3.6)
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The proof is by induction. Clearly the case n = 0 is just (3.3). So fix I € Ny
and assume that (3.6) holds true with n = [. Then, by (3.5),

lg(z +y) — g(x) — g(y)|
= Hg (DE" Yz +y)) +9(CE ' (z+y)) — g (DE ' (2))

~g(CE™ (z)) =g (DE™!(y)) — g (CE~'(y)) H
< |9 (PE @) + DE"'() ~ g (DE (@) ~ 9 (DE"'(v)) |
| (CE @)+ CE W) — 9 (CE' (@) — g (CE~'w) |
<#'L(|cDE () - DDE ' (y)|")

+&'L||CCE~ (z) - DCE  (y)||” z,yeUz+yel.
Since, according to (3.1), CE~!(z) = E~'C(x) and DE~!(z) = E~'D(x)
for each x € U, this means that
lg(z +y) = g(z) — g(W)|l
<#'L(|pE~'C() - DE'DW)|")
+r'L||CE~'C(x) — CE~'D(y)||”

<AL (DI 1B~ 0" + IClo? 1B~ [u” ) IC(2) - D) I
=rML|C@) -DW)|"  wycUz+yecl

Thus we have proved that (3.6) is valid for each n € Ny. Since k < 1, letting
n — oo in (3.6) we obtain that g is additive on U.
Next assume that (b) holds. From (3.4) we deduce that

gx) = g (ED'(@)) — g (CD"'(@))  xel. (3.7)

Write 7 == (| E|o” + [|C[lu”)||D~|lu”. We show by induction that, for each
n € Ny,

lg(z +y) —g(x) =gl <n"LIC(z) — D"
z,yeUaxz+yel. (3.8)
The case n = 0 is trivial. Take | € Ny and assume that (3.8) is valid for
n = 1l. Then, by (3.7),
lg(z +y) = g(=) = g(y)|
=|lg (ED™ (z +y)) =g (CD7 (= +y)) —g (ED™'(x))
+9(CD™ (2)) =g (ED™(y)) + 9 (CD™'(v)) ||
<|lg (ED™(x) + ED"'(y)) — g (ED~"(2)) — g (ED~"(y)) |
+|g (D7 (@) + €D (y)) — g (CD™!(2)) — g (CD™(v)) ||
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<1'L||CED™'(z) - DED ' (y)|"

+n'L|[cCD™ Y (z) — DCD ™ (y)|”
=1'L (IIEHUPIID”IIU” + \ICIIUPIID‘l\IUp) IC(z) — D)|”
=T L | C(x) — D(y)||” z,yeUxz+yel.

Thus we have proved by induction that (3.8) is valid for each n € Ny. Since
n < 1, letting n — oo in (3.8) we obtain that g is additive on U. O

Remark 3.2. Observe that condition (3.1) in Theorem 3.1 is valid for instance
when D = C™ with some n € Ny or Dx = vz for x € X with some v € Q
(because C' is assumed to be additive).

Remark 3.3. Note that the inequality in (a) holds when p > 1, U = X and
C(z) = D(x) = Az for z € X, with some A € R. Analogously, the inequality
in (b) holds when p > 1, U = X, C(z) = —Az and D(z) = 2X\z for x € X
(with some X € R). It is easy to find several further examples.

There arises a natural open problem whether we can get similar hyper-
stability results in some of the situations where neither condition (a) nor (b)
is fulfilled. In some of these cases we can derive some complementary stabil-

ity and hyperstability results from the subsequent proposition, which follows
easily from [7, Theorem 1] (cf. also [21]).

Proposition 3.4. Let V C X be nonempty, ¢ : V2 - R and f : V — Y satisfy

gz +y) —g(x) =g < wlz,y) zyeViat+yeV
Suppose that Y is complete and there is € € {—1,1} such that 2°V C V and

H(z):= Z 27 (2%, 2 ) < o0 eV,
=0 (39)

liminf |27 (2" 2, 2"y)| = 0 z,yeV.

Then there exists a unique F : V — 'Y that is additive on V and
[F(z) = f(z)| < Ho(z)  zeV,
where
27'H(z), ife=1,;
Hy(e) = 2 00
H(2 'z), ife=-1.

Proposition 3.4 yields in particular the subsequent two corollaries gener-
alizing the results of Hyers [22], Aoki [2], Rassias [32,33] and Gajda [20] (see
also [34, Theorem 1]).
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Corollary 3.5. Let Y be complete, g : U — Y, §,L1,Ls € Ry, q,1 € (—00,1),
and 2U C U. Suppose that there exist L € Ry, p € (0,1), and C : U — X
such that

[C(2z) - C(2y)[| < 2[|C(z) = C(y)l zyeU
and
lg(z +y) —g(x) — gl <6+ Lallz[|?+ Lally||" + L[|C(z) — C(y)[[

for every x,y € U\{0} with x+y € U\{0}. Then there exists a unique function
G :U =Y that is additive on U and satisfies

Laflz][® Lellyll"
2—24 2-2r
Proof. Tt is enough to use Proposition 3.4 with V := U\{0}, e = 1 and

p(@,y) =0+ Loz + Lafly|" + L C(z) = CW)II” @,y cU

and next take G(x) := F(z) for € V. Further, in the case when 0 € U, we
must have G(0) = 0. Since in such a situation

l9(0)I] <,
G defined in this way fulfils (3.10). O

|G(z) = g(2)|| <6+ zeU. (3.10)

Corollary 3.6. Let Y be complete, g: U — Y, L1,Ly € Ry, q,7 € (1,00), and
U C 2U. Suppose that there exist L € Ry, p € (1,00), and C : U — X such

that
le(5¢) - ¢ (39)| = gle@ -cw

l9(x +y) = g(x) =gl < Lallzl|? + Lally]" + LIC(z) = Cy)[|”

for every x,y € U with x +y € U. Then there exists a unique function G :
U — Y that is additive on U and satisfies

L 7 L T
6(@) - gla)) < I Lol ey

29 —2 2r —2
Proof. 1t is enough to use Proposition 3.4 with V :=U, ¢ = —1 and
ez, y) = Lllz|[* + Le|lyl|” + LIC(2) = CW)[" zyeU.

and

O

Note that Corollaries 3.5 and 3.6 with § = Ly = Lo = 0 supply additional
two hyperstability results, which cannot be deduced from Theorem 3.1.
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Remark 3.7. In connection with the statements of Theorem 3.1 and Corol-
laries 3.5 and 3.6 there arises the natural question when a function that is
additive on U can be extended to an additive function f : X — Y. Some infor-
mation on investigations of this issue can be found in [1], [28, Theorem 1.1,
Ch. XVIII]) and [36, Chapter 4] (see also [37, pp. 143-4] for some extension
procedure). Below we provide one more result concerning this problem, which
corresponds somewhat to the outcomes in [1]. (Let us recall that Z C 2% is an
ideal provided AUB € T and 24 C T for every A, B € T).

Proposition 3.8. Let h: U — Y satisfy

h(z+y) = h(z) + h(y) z,yeUax+yel. (3.11)
Assume that there exists an ideal T C 2% such that X ¢ T, X\U € T and
B+zel BeZzelX. (3.12)

Then there is a unique additive f : X — Y such that h(x) = f(z) for x € U.
Proof. Tt is easy to deduce from [6, Lemma 1] that
U-U={z—y:z,ycU}=X. (3.13)
Take a,b,c,d € U with a — b = ¢ — d and write
Up:=U-a)n (U —a—d), Uy:=(U-b)Nn({U—-b—c).

Clearly, by (3.12), X\U;, X\U; € Z, whence Uy := U NU; N Uy # 0.
Let v € Uy. Then v,v+a,v+b,v+a+d,v+ b+ ¢ € U. Consequently, by
(3.11),

h(v) + h(b) + h(c) = h(v +b) + h(c) = h(v+b+c)
h(v+a+d) = h(v+a)+ h(d)
h

(v) + h(a) + h(d).

Thus we have proved that
h(a) — h(b) = h(c) — h(d) a,byc,deUa—b=c—d. (3.14)
According to (3.13), we may define f: X — Y by:
f(z) = h(a) — h(D) ze€X,a,beU,z=a—0.

First we show that f is an extension of h. To this end fix z € U and
uw€UN (U — z). Then (3.11) yields

f@)=fz+u—u)=nh(z+u)— h(u) =h(z) + h(u) — h(u) = h(z).

Next we prove that f is additive. Take z,w € X. According to (3.13),
z=a—band w = c—d for some a,b,c,d € U. Hence f(z) = h(a) — h(b) and
f(w) = h(c) — h(d). Take

welUNU-—a)n(U—a—c)nU—b)N(U—b—d).
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Then
fz+w)=flu+a+c—(u+b+d)=h(u+a+c)—h(u+b+d)

(u+a) + h(c) = (h(u+b) + h(d))
(u) + h(a) + h(c) — (h(u) + h(b) + h(d))
(@) = h(b) + h(c) — h(d) = f(2) + f(w).

To complete the proof it remains to show the uniqueness of f. So, suppose
that fi1 : X — Y is additive and fi(z) = h(z) for x € U. Take z € X and
a,b € U with z =a — b. Then

fi(z) = fila=b) = fi(a) = f1(b) = h(a) = h(b) = f(a —b) = [f(2).

h
h
h

O

Remark 3.9. Below we give some natural examples of ideals 7 satisfying con-
dition (3.12).
(a) Z is the family of all subsets T" of X with card T < card X.
(b) Z is the family of all bounded subsets of X.
(¢) Z is the family of all first category subsets of X.
(d) X =R"™ with some n € N and 7 is the family of all subsets of X that are
of finite Lebesgue measure.
(e) X is a Polish space and Z is the o-ideal of Christensen zero subsets of X
(see, e.g., [18]).

4. Some consequences

In what follows, given Z C 2% and f,g: X — Y, we say that f = g Z-almost
everywhere (abbreviated to Z-a.e.) in X if there is a set T € Z such that
f(z) = g(x) for every x € X\T. Moreover we write aT := {ax : x € T} for
T C X and a € R. The next theorem is a consequence of some previous results
in this paper. (An ideal Z C 2% is a o-ideal provided |J . Tn € Z for every
family of sets {T}, }nen C Z).

Theorem 4.1. Let g: X — Y and T C 2% be a o-ideal such that (3.12) holds
and

neN

ol el TeZ,acR (4.1)

Assume that one of the following two conditions is fulfilled.

(i) There exist T € Z, ¢,d € R, ed(c+d) # 0, and reals L > 0 and p > 1
such that

lg(x +y) —g(x) —gW)I| < Lllex —dyl|”  z,y € X\T. (4.2)

(ii) There exist T € I, C : X — X with C(2z) = 2C(z) for x € X, and
positive reals L and p # 1 such that
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l9(z +y) —g9(x) — gyl < LI|C(x) = CWI" =,y e X\T.
Then there is a unique additive operator f: X — Y with f =g Z-a.e. in X.

Proof. First assume that (i) holds. Define C, D : X — X by: C(x) = ¢z and
D(x) = dz for z € X. Write Xp := X\T,

Uy = ()(c+d)"Xr, Uy = () ¢"Xr, Us:= () d"Xr,
neZ neZ ne”Z
and U := Uy N Uy N Us. Tt is easily seen that X\U € Z, ¢U = U, dU = U and
(c+d)U =U. Further, if ¢d > 0, then |c + d| = |¢| 4 |d| and consequently

|dIP +|ef” < le+dl”;

if ed < 0, then (without loss of generality, because (4.2) is symmetric with
regard to = and y) we can assume that |d| = |¢| + |d 4 ¢| and consequently

|d +cf” + [e[” < [d]".
This means that one of conditions (a) and (b) of Theorem 3.1 is valid and con-
sequently ¢ is additive on U. Hence, by Proposition 3.8, there is an additive
operator f : X — Y with g(z) = f(x) for 2 € U. The uniqueness of f also

follows from Proposition 3.8.
If (ii) holds, then we write

U= () 2(X\T).
nez
Clearly 2U = U. Let W be the Banach space that is the completion of Y. Then
we can consider g to be a mapping from X into W. Hence, by Corollaries 3.5
(when p < 1) and 3.6 (when p > 1) with § = L; = Ly =0, g is additive on U.
Now it is enough to apply Proposition 3.8 analogously as before. g

Remark 4.2. Note that examples (a), (c¢) and (e) in Remark 3.9 describe
o-ideals 7 satisfying condition (4.1).

The next two corollaries provide two further examples of simple applications
of Theorem 3.1, which correspond to some results in [3,5,11-17,24] concerning
the inhomogeneous Cauchy equation and the cocycle equation.

Corollary 4.3. Let C,D : X — X be additive, (3.1) and (3.2) be valid, and
G :U? =Y be such that G(xzg,%0) # 0 for some xqg,yo € U with o+ yo € U.
Assume that there exist positive reals L and p such that one of conditions (a)

and (b) holds and

|Gz, y)|| < LI|C(x) = D) xyeUz+yel. (4.3)
Then the conditional functional equation
g@x+y)=g@)+gy)+ Gy ayelUazt+yel, (4.4)

has no solutions in the class of functions g : U — Y.
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Proof. Let g : U — Y be a solution to (4.4). Then, in view of (4.3), (3.3) holds.
Hence, by Theorem 3.1, g is a solution to (1.1). This means that G(zq, y0) = 0,
which is a contradiction. 0

Corollary 4.4. Let C,D : X — X be additive, (3.1) and (3.2) be valid, and
G: X% =Y be a symmetric (i.e., G(x,y) = G(y,x) for x,y € X) solution to
the cocycle functional equation

Glz,y) +Gx+y,2)=G,y+2)+Gy,2) z,y,2€X.  (4.5)

Assume that there exist positive reals L and p such that (4.3) and one of con-
ditions (a) and (b) hold. Then G(x,y) =0 for x,y € U with x +y € U.

Proof. Suppose that G(xg,y0) # 0 for some zg,yo € U with 29 +yo € U. Tt
is well known that G is coboundary (see [16] or [25]), i.e., thereis g: X — Y
with G(z,y) = g(z +y) — g(z) — g(y) for =,y € X. Hence g is a solution to
(4.4). This contradicts Corollary 4.3. O

Analogous corollaries follow from Corollaries 3.5 and 3.6 with § = L; =
Ls = 0 and Propositions 2.1-2.3. For the convenience of the readers we end
the paper with two of them, which are derived from Proposition 2.1.

Corollary 4.5. Let (X, (:|-)) be a real inner product space with dim X > 1 and
G : X% =Y. Suppose that there are positive real numbers p and L with

G,y < L|Gly)]” @y € X. (4.6)
Then the following two statements are valid.
(A) If p # 1, then the functional equation

9(x+y) =g(x) +9(y) + G(z,y) (4.7)
has a solution g : X — 'Y if and only if G(x,y) = 0 for every x,y € X.
B) If p=1, then g : X — Y and G satisfy (4.7) if and only if there exist
additive a : X —'Y and a vector zg € Y such that

g9(x) = a(@) + l|z[Pz0,  G(z,y) =2{aly)z0 @,y € X,

Proof. In the case of (A) it is enough to argue analogously as in the proof of
Corollary 4.3, replacing Theorem 3.1 with Proposition 2.1.

So assume that p =1 and g : X — Y and G satisfy (4.7). Then Propo-
sition 2.1 implies that there exist additive a : X — Y and a vector zg € Y
such that g(z) = a(x) + ||2||?20 for # € X. It is easy to check that this yields
G(z,y) = 2(x|y) 2o for x,y € X. The converse is also easy to verify. O

Corollary 4.6. Let (X, (:|-)) be a real inner product space with dim X > 1 and
G : X% =Y be symmetric. Suppose that there are positive real numbers p and
L such that (4.6) holds. Then the following two statements are valid.

1° If p # 1, then G is a solution to the cocycle functional Eq. (4.5) if and
only if G(x,y) =0 for every x,y € X.
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2° If p = 1, then G satisfies Eq. (4.5) if and only if there exists a vector
ug € Y such that G(z,y) = (z|y) up for z,y € X.

Proof. If p # 1, then it is enough to argue analogously as in the proof of
Corollary 4.4, replacing Corollary 4.3 with Corollary 4.5.

It remains to consider the case p = 1. Then there is g : X — Y with
G(z,y) = gx +y) — g(x) — g(y) for x,y € X (see [16] or [25]), whence g is
a solution to (4.7). Hence, by Corollary 4.5, there exist additive a : X — Y
and a vector zg € Y such that g(x) = a(x) + ||z|*20 for z € X, whence
G(z,y) = 2(z|y)zo for z,y € X and we take ug := 2z. The converse is easy
to check. 0

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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