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c© Birkhäuser Verlag, Basel, 2008

Aequationes Mathematicae

Research papers

A method of solving functional equations on convex subsets

of linear spaces

Iwona Pawlikowska

Summary. We introduce a method of solving a wide range of functional equations stemming
from Mean Value Theorems. We generalize the results of Z. Daróczy and Gy. Maksa (Corollary 2;
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1. Basic lemmas

Let us recall the definition of a locally polynomial function. Throughout the paper
X and Y will denote linear spaces over a field K ⊂ R.

Definition 1.1. Let K be a non-empty subset of X . A map f : K → Y is called
a locally polynomial function of degree at most n on K, if

∆yn+1,...,y1
f(x) = 0

holds for every x, yi ∈ X such that x+
∑

i∈Z

yi ∈ K, Z ⊂ {1, . . . , n+ 1}.

In the sequel we use the notations

I := {(α, β) ∈ K × K : |α| + |β| ≤ 1},

I0 := {(α, β) ∈ I : β 6= 0}.

We will work on absolutely convex (convex and balanced) sets with non-empty
algebraic interior ([1]). Let us remind the definition of an algebraic interior.



2 I. Pawlikowska AEM

Definition 1.2. Let A ⊂ X . The algebraic interior of the set A is the set

alg intA =
{

y ∈ A :
∧

x∈X

∨

ε>0

∧

α∈(−ε,ε)∩K

αx+ y ∈ A
}

.

Now, let us present a lemma which follows easily from the well known properties
of absolutely convex sets (cf. [5], [13]).

Lemma 1.3. Let ∅ 6= K ⊂ X be absolutely convex and suppose that J ⊂ I is

finite. Further, let (α1, β1), . . . , (αn, βn) ∈ I0 for a fixed n ∈ N. If

r ≥ max

{

n+ 1, max

{

|α| + |β| +
n
∑

i=1

∣

∣

∣

∣

αβi − αiβ

βi

∣

∣

∣

∣

: (α, β) ∈ J

}}

, (1)

then for every x, y, u1, . . . , un ∈ 1
r
K, every (α, β) ∈ J , and S ⊂ {1, . . . , n} we

have

(a) x+
∑

i∈S

ui ∈ K,

(b) αx+ βy +
∑

i∈S

αβi−αiβ
βi

ui ∈ K.

The next lemma is a “convex” version of Lemma 2.1 in [11]. We state it without
a proof.

Lemma 1.4. Fix N ∈ N. Suppose that K is a non-empty convex subset of X

such that 0 ∈ alg intK, and G a group uniquely divisible by N !. Let Bi : K→ G,

i ∈ {0, . . . , N} be functions homogeneous of the i-th order with respect to

{2, . . . , N + 1}, i.e. satisfying for every i ∈ {0, . . . , N}, every k ∈ {2, . . . , N + 1}
and every z ∈ 1

N+1K

Bi(kz) = kiBi(z).

If

BN (z) + · · · +B0(z) = 0 (2)

for every z ∈ K, then BN = · · · = B0 = 0.

Using the above lemma we can compare terms which are homogeneous of the
same order in the functional equations we are interested in.

From now on we follow the notation used in [11]. If r ∈ N, then Ar(X ;Y )
denotes the group of all r-additive functions from Xr into Y . A1(X ;Y ) obviously
denotes the group of all homomorphisms from X into Y . By SAr(X ;Y ) we de-
note the group of all symmetric functions from Ar(X ;Y ). We also admit that
A0(X ;Y ) = SA0(X ;Y ) is the family of all constant mappings from X into Y . If
Φ ∈ Ar(X ;Y ), then Φd will denote the diagonalization of Φ. For such a Φ we
will write Φ(xr), if all the variables are equal to x, and, if Φ ∈ SAr(X ;Y ), then
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Φ(xs, yr−s) will stand for the value of Φ at any r-tuple in which s entries are equal
to x, and the remaining ones to y.

The following lemma is used in the proof of our main result.

Lemma 1.5. Fix n, s ∈ N. Let K ⊂ X be a non-empty and absolutely convex set

and ψ : K→ SAs(X ;Y ). Suppose further that (α, β)∈ I, (α1, β1), . . . , (αn, βn)∈ I0

and a, b ∈ K are arbitrary. Let Ψ : K ×K → Y be defined by

Ψ(x, y) = ψ(αx + βy)((ax+ by)s).

Suppose that

N ∋ r ≥ |α| + |β| +
n
∑

i=1

∣

∣

∣

∣

αβi − αiβ

βi

∣

∣

∣

∣

+ n+ 1, (3)

and let u ∈ 1
r
K be fixed. Then there exist functions ψj : 1

r
K → SAj(X ;Y ),

j ∈ {0, . . . , s− 1}, such that for every x, y ∈ 1
r
K

∆(u,−αn
βn

u),...,(u,−
α1
β1

u)Ψ(x, y) = ∆αβn−αnβ

βn
u,...,

αβ1−α1β

β1
u
ψ(αx+ βy)((ax + by)s)

+
s−1
∑

j=0

ψj(αx + βy)((ax + by)j).
(4)

Proof. We start with the observation that by Lemma 1.3 the expressions on the
left and the first one on the right-hand side of (4) are well defined for all x, y,
u ∈ 1

r
K. We now proceed by induction with respect to n. For n = 1 we get for

every x, y ∈ 1
r
K

∆(u,−
α1
β1

u)Ψ(x, y)

= ψ

(

αx + βy +
αβ1 − α1β

β1
u

)((

ax+ by +
aβ1 − α1b

β1
u

)s)

−ψ(αx+ βy)((ax + by)s)

=

s
∑

j=0

(

s

j

)

ψ

(

αx + βy +
αβ1 − α1β

β1
u

)

(

(ax+ by)j ,

(

aβ1 − α1b

β1
u

)s−j
)

−ψ(αx+ βy)((ax + by)s)

= ∆αβ1−α1β

β1
u
ψ(αx + βy)((ax + by)s) +

s−1
∑

j=0

ψj(αx + βy)((ax + by)j),

where ψj : 1
r
K → SAj(X ;Y ), j ∈ {0, . . . , s− 1} is defined by

ψj(w)(z1, . . . , zj) =

(

s

j

)

ψ

(

w +
αβ1 − α1β

β1
u

)

(

z1, . . . , zj ,

(

aβ1 − α1b

β1
u

)s−j
)

.

Let us note that by (3) the function ψj is well defined. This completes the proof in
the case n=1. Now we assume that the lemma holds true for a fixed n∈N. Suppose
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that (α, β), (αi, βi) ∈ I0, i ∈ {1, . . . , n+ 1}, and r ≥ |α|+ |β|+
∑n+1

i=1 |αβi−αiβ
βi

|+

n + 2 is a positive integer. Let u ∈ 1
r
K be fixed. Suppose further that there

exist functions ψj : 1
r
K → SAj(X ;Y ), j ∈ {0, . . . , s − 1} such that (4) holds.

For simplicity we write vi instead of αβi−αiβ
βi

u, i ∈ {1, . . . , n}, and t instead of
aβn+1−αn+1b

βn+1
u. From the induction hypothesis we get for every x, y ∈ 1

r
K

∆(u,−
αn+1

βn+1
u),...,(u,−

α1
β1

u)Ψ(x, y)

= ∆(u,−
αn+1

βn+1
u)(∆(u,−αn

βn
u),...,(u,−

α1
β1

u))Ψ(x, y)

= ∆vn,...,v1
ψ(αx + βy + vn+1)((ax + by + t)s)

−∆vn,...,v1
ψ(αx + βy)((ax + by)s)

+
s−1
∑

j=0

ψj(αx + βy + vn+1)((ax + by + t)j) −
s−1
∑

j=0

ψj(αx + βy)((ax + by)j)

= ∆vn+1,...,v1
ψ(αx + βy)((ax+ by)s) +

s−1
∑

j=0

ψ̃j(αx + βy)((ax+ by)j),

where ψ̃j : 1
r
K → SAj(X ;Y ), j ∈ {0, . . . , s− 1} is given by the formula

ψ̃j(w)(z1, . . . , zj)

=

(

s

j

)

∆vn,...,v1
ψ(w + vn+1)(z1, . . . , zj, t

s−j)

+∆vn+1
ψj(w)(z1, . . . , zj) +

j−1
∑

i=0

(

j

i

)

ψk(w + vn+1)(z1, . . . , zj, t
k−j).

Now the proof is complete.

It is easy to check that the following remark holds true (by Lemma 1.5).

Remark 1.6. If α = αk, and β = βk for a fixed k ∈ {1, . . . , n}, then the expres-
sion on the right-hand side of (4) is a polynomial function of order at most s− 1
with respect to the variable ax+ by. Moreover, if α = 1, and β = 0, then

∆(u,−αn
βn

u),...,(u,−
α1
β1

u)Ψ(x, y) = ∆n
uψ(x)((ax + by)s) +

s−1
∑

j=0

ψj(x)((ax + by)j).

2. The main result

Now let us present our main result which is very helpful in solving a wide range
of functional equations.
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Theorem 2.1. Let X, Y be two linear spaces over a field K ⊂ R and let K be

an absolutely convex set with 0 ∈ alg intK. Fix N,M ∈ N ∪ {0} and a, b ∈ K,

b 6= 0. Assume that I0, . . . , IM are finite subsets of I0. If the functions ϕi : K →
SAi(X ;Y ), i ∈ {0, . . . , N}, and ψj,(α,β) : K → SAj(X ;Y ), (α, β) ∈ Ij , j ∈
{0, . . . ,M} satisfy the equation

N
∑

i=0

ϕi(x)((ax + by)i) =

M
∑

i=0

∑

(α,β)∈Ii

ψi,(α,β)(αx+ βy)((ax + by)i) (5)

for every x, y ∈ K, then there exists a positive integer p, such that ϕN is a locally

polynomial function of the order at most equal to

M
∑

i=0

card
(

M
⋃

k=i

Ik

)

− 1

on 1
p
K.

Proof. Let us define the rank of the right-hand side of (5) which we denote by
rR. We set rR = 0 if Ij = ∅ for j ∈ {0, . . . ,M}, and rR = s ∈ {1, . . . ,M + 1} if
Is−1 6= ∅ = Is = · · · = IM . To prove the theorem we proceed by induction with
respect to the rR.

1. For rR = 0 equation (5) gets the form

N
∑

i=0

ϕi(x)((ax + by)i) = 0,

or, by the properties of multiadditive and symmetric functions

ϕN (x)((by)N ) +

N−1
∑

i=0

N
∑

r=i

(

r

i

)

ϕr(x)((ax)
r−i, (by)i) = 0.

If we fix x in the above equation we see that the left-hand side is the sum of
monomials with respect to the variable by. Applying Lemma 1.4 we receive that
ϕN (x) = 0, for all x ∈ K. It means that ϕN is a locally polynomial function of
the degree 0 on the set K. (In this case we set p = 1.)

2. Now we assume that, if rR ≤ s for a fixed s ∈ {0, . . . ,M}, then ϕN is a
locally polynomial function of order at most equal to

s−1
∑

i=0

card
(

s−1
⋃

k=i

Ik

)

− 1

on the set 1
q
K, q ∈ N. We take into account (5) for rR = s+1, i.e. Is 6= ∅ = Is+1 =

· · · = IM . Let Is = {(α1, β1), . . . , (αn, βn)}, n ∈ N. Suppose that r ∈ N satisfies
(1), where J =

⋃s

j=0 Ij . Fix u ∈ 1
r
K. Now we apply the difference operator

∆(u,−αn
βn

u),...,(u,−
α1
β1

u)
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to the right and the left-hand side of (5). Using the linearity of this operator,
Lemma 1.5, and Remark 1.6, and arranging terms according to their degree with
respect to the expression ax+ by we get

∆n
uϕN (x)((ax + by)N ) +

N−1
∑

i=0

ϕ̃i(x)((ax + by)i)

=

s−1
∑

k=0

∑

(α,β)∈Lk

ψ̃k,(α,β)(αx+ βy)((ax + by)k),

where Lk =
⋃s

j=k Ij , k ∈ {0, . . . , s−1}, ϕ̃i : 1
r
K → SAi(X ;Y ), i∈{0, . . . , N−1},

and ψ̃k,(α,β) : 1
r
K → SAk(X ;Y ), (α, β) ∈ Lk, k ∈ {0, . . . , s − 1}, x, y ∈ 1

r
K.

In the above equation we have rR ≤ s. Then we apply the induction hypothesis
to the set 1

r
K, and we get that there exists q ∈ N such that ∆n

uϕN is a locally
polynomial function of order at most equal to

m =

s−1
∑

k=0

cardLk − 1 =

s−1
∑

k=0

card
(

s
⋃

j=k

Ij

)

− 1 ≥ 0

(let us note that Lk ⊂ Lk−1, k ∈ {1, . . . , s − 1}) on 1
qr
K. Equivalently, the

following equation

∆m+1
v ∆n

uϕN (x) = 0 (6)

is satisfied for every (x, v) ∈ X ×X such that

x, x+ v, . . . , x+ (m+ 1)v ∈
1

qr
K,

and every u ∈ 1
r
K. By the absolute convexity of the set K we have the following

property:
If

x, x+ v, . . . , x+ (m+ n+ 1)v ∈
1

qr
K,

then

v ∈
1

m+ n+ 1

(

1

qr
K − x

)

⊂
1

qr
K ⊂

1

r
K.

Setting u = v in (6) we obtain

∆m+n+1
v ϕN (x) = ∆m+1

v ∆n
vϕN (x) = 0.

It follows that ϕN is a locally polynomial function of order at most equal to

m+ n =

s
∑

k=0

card
(

s
⋃

j=k

Ij

)

− 1

on 1
p
K, where p = qr. This completes the inductive proof.
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Let us note that if
⋃M

i=0 Ii ⊂ {(α, β) ∈ I0 : 0 ≤ α ∧ β = 1 − α} (i.e. αx + βy

is a convex combination of x and y, (α, β) ∈
⋃M

i=0 Ii) in (5), then we can weaken
the assumption on the set K by not requiring that 0 ∈ K. This is stated in the
following corollary.

Corollary 2.2. Let X, Y be linear spaces over a field K ⊂ R and let N , M ∈
N ∪ {0} be fixed. Suppose further that J0, . . . , JM are finite subsets of K ∩ [0, 1).
If ∅ 6= K ⊂ X is a convex set such that x0 ∈ alg intK, and if the functions

ϕi : K → SAi(X ;Y ), i ∈ {0, . . . , N}, and ψj,α : K → SAj(X ;Y ), α ∈ Jj,

j ∈ {0, . . . ,M}, satisfy the equation

N
∑

i=0

ϕi(x)((ax + by)i) =

M
∑

i=0

∑

α∈Ii

ψi,α(αx + (1 − α)y)((ax + by)i) (5′)

for every x, y ∈ K, then there exists a convex subset K ′ ⊂ K such that x0 ∈
alg intK ′, and ϕN is a locally polynomial function of degree at most

M
∑

i=0

card
(

M
⋃

k=i

Jk

)

− 1

on K ′.

Proof. Suppose that x0 ∈ alg intK. Then the set K̃ = (K − x0) ∩ (−K + x0) is
absolutely convex. Let us define the functions ϕ̃i, ψ̃i,(α,β) : K̃ → SAi(X ;Y ) by

ϕ̃i(s) = ϕi(s+ x0), i ∈ {0, . . . , N}

ψ̃i,α(s) = ψi,α(s+ x0), α ∈ Ji, i ∈ {0, . . . ,M}.

These functions satisfy for every s, t ∈ K̃ the equation

N
∑

i=0

ϕ̃i(s)((as+bt+(a+b)x0)
i) =

M
∑

i=0

∑

α∈Ji

ψ̃i,α

(

αs+(1−α)t
)(

(as+bt+(a+b)x0)
i
)

.

(7)

Now, we define new functions ˜̃ϕi,
˜̃
ψi,α : K̃ → SAi(X ;Y ) by

˜̃ϕi(s)(u1, . . . , ui) =

N
∑

r=i

(

r

i

)

ϕ̃r(s)
(

u1, . . . , ui, ((a+ b)x0)
r−i
)

, i ∈ {0, . . . , N},

˜̃
ψi,α(s)(u1, . . . , ui) =

M
∑

r=i

(

r

i

)

ψ̃r,α(s)
(

u1, . . . , ui, ((a+ b)x0)
r−i
)

,

α ∈ Ji, i ∈ {0, . . . ,M}. We can rewrite equation (7) in the form

N
∑

i=0

˜̃ϕi(s)((as+ bt)i) =

M
∑

i=0

∑

α∈Ji

˜̃
ψi,α(αs+ (1 − α)t)((as + bt)i). (8)
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It is easily seen that 0 ∈ alg int K̃. Then, applying Lemma 2.1, we get that
˜̃ϕN = ϕ̃N is a locally polynomial function of order at most

m :=

M
∑

i=0

card
(

M
⋃

k=i

Jk

)

− 1

on a convex subset K̃ ′ ⊂ K̃ such that 0 ∈ alg int K̃ ′. Put K ′ = x0 + K̃ ′. We infer
that K ′ ⊂ K is convex and x0 ∈ alg intK ′. Moreover, for every x ∈ K we get

ϕN (x) = ϕ̃N (x− x0) = ˜̃ϕN (x− x0).

But x− x0, x− x0 + u, . . . , x− x0 + (m+ 1)u ∈ K ′ − x0 = K̃ ′, and ˜̃ϕN is a locally
polynomial function of order not greater than m on K̃ ′. Thus, for every x, u ∈ X

such that x, x + u, . . . , x+ (m+ 1)u ∈ K ′ we obtain

∆m+1
u ϕN (x) = ∆m+1

u
˜̃ϕN (x− x0) = 0.

This means that ϕN is a locally polynomial function of order at most equal to m
on the set K ′.

Now we have got that the map ϕN is a locally polynomial function only on a
subset ofK. However, using the results of Roman Ger from [4], we are able to show
that actually ϕN is the restriction of a polynomial function defined on the whole
space. Taking into account well-known results on representation of polynomial
functions (cf. for example Székelyhidi [12], Theorem 9.1), we get the following

Corollary 2.3. Under the assumptions of Corollary 2.2 there exists a convex

subset K ′ ⊂ K such that x0 ∈ alg intK ′, and functions Ai ∈ SAi(X ;SAN (X ;Y )),
i ∈ {0, . . . ,m}, such that for every x ∈ K ′

ϕN (x) = A0 +A1(x) +Ad
2(x) + · · · +Ad

m(x),

where

m :=
M
∑

i=0

card
(

M
⋃

k=i

Ik

)

− 1.

The functions Ai, i ∈ {0, . . . ,m} are defined uniquely.

3. Applications

Now let us present a method of solving some functional equations stemming from
Mean Value Theorems.

1. We rewrite the equation in order to get a form similar to (5) and from Theo-
rem 2.1 we obtain that one of the unknown mappings is a locally polynomial
function.
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2. Then applying an analogous procedure as above enriched possibly with sub-
stituting new variables or by elementary transformations we get that the
remaining unknown mappings are also locally polynomial functions.

3. After that from Corollary 2.3 we get the representation of the unknown func-
tions on a convex subset K ′ of the domain of the equation. Then, comparing
terms which are homogeneous of the same order on the left- and right-hand
side of the equation, we determine these polynomial functions.

4. The next step is to verify that the forementioned polynomial extensions of
the unknown functions on the whole space satisfy the equation for every
argument from the linear space.

5. On account of the linear character of the equation it remains to show that if
a solution (usually a vector of functions) vanishes on a convex subset of the
domain of the equation with nonempty algebraic interior, then it vanishes
everywhere in the domain.

3.1. Flett’s functional equation

In [10] T. Riedel and P. K. Sahoo proved the following extension of Flett’s Mean
Value Theorem

Theorem 3.1. If f : [a, b] → R is differentiable on [a, b], then there exists a point

c ∈ (a, b) such that

f(c) − f(a) = (c− a)f ′(c) −
1

2

f ′(b) − f ′(a)

b− a
(c− a)2.

T. Riedel and M. Sablik dealt in [9] with the functional equation

f(c) − f(a) = (c− a)h(c) −
1

2

h(b) − h(a)

b− a
(c− a)2 (9)

motivated by Theorem 3.1. They proved that (9) characterizes cubic polynomials
for c = a+3b

4 .

In [6] we gave the following extension of Flett’s Mean Value Theorem.

Theorem 3.2. Let f : [a, b] → R be an n-times differentiable function. Then

there exists a t = t(a, b) ∈ (0, 1) such that

f(a) =

n
∑

k=0

tkf (k)(a+ t(b − a))

k!
(a− b)k

+
tn+1

(n+ 1)!
(f (n)(a) − f (n)(b))(a − b)n.

(10)
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Motivated by the work of T. Riedel and M. Sablik we deal with the functional
equation

f(x) =

n
∑

k=0

gk(x+ t(y − x))
(

(t(x − y))k
)

+ (Φ(x) − Φ(y))
(

(t(x− y))n
)

, (11)

which reduces to (10), if g0 , . . . , gn,Φ : [a, b] → R are defined by

gi(x) =
f (i)(x)

i!
, i ∈ {0, . . . , n}, (12)

Φ(x) =
tf (n)(x)

(n+ 1)!
(13)

for all x, y ∈ [a, b]and for a fixed t ∈ (0, 1).
This equation was solved in [7] on the real line and in [8] on groups. Let us

note that Flett’s Mean Value Theorem concerns the behaviour of functions on a
real interval. So it is interesting to consider functional equations stemming from
Flett’s MVT also in a restricted domain. In the real case it is an interval. Our aim
is to solve (11) in a more abstract case that is in a linear space in which the interval
is replaced by a convex set. First, let us note that equation (11) makes sense in
such domains. We have to explain what the multiplications on the right-hand side
mean. We can think about gk and Φ in terms of linear mappings which act on the
k-tuple or the n-tuple ((t(x− y))k) or ((t(x− y))n). Then we replace these linear
mappings by homomorphisms. Now let us present the solution of equation (11)
for functions defined in a convex set with non-empty algebraic interior. For the
simplicity we assume that 0 is in its algebraic interior. We can do it because the
solution in the general case can be obtained by superposition of a solution in the
special case with a translation. But the solutions are locally polynomial functions
and translations do not change this property and their degree. In the sequel, K
denotes a nonempty convex subset of X with 0 ∈ alg intK. In particular, the
functions in (11) are defined as f : K → Y , gi : K → SAi(X,Y ), i ∈ {0, . . . , n},
Φ : K → SAn(X,Y ). Because of our way of solving (11) we take into account a
subset of K depending on the expression u := 1 − 1

t
such that every substitution

is well defined. If |u| ≥ 1 then we take x, y ∈ 1
8|u|K, and in the opposite case

x, y ∈ |u|
8 K. Without loss of generality, we can assume that x, y ∈ 1

8|u|K. The

case x, y ∈ |u|
8 K is analogous. We show now that the substitutions defined below

are correct. For x, y ∈ 1
8|u|K we have c := x − y ∈ 1

4|u|K, z := tc ∈ 1
4|u|K,

y := a
x
− z ∈ 1

2|u|K and y + z, y + uz ∈ K.

Now we can present the solution of the functional equation (11). Equation (11)
can be written equivalently in the form

Φ(x)
(

(t(x−y))n
)

−f(x) =

n
∑

k=0

−gk((1−t)x+ ty)
(

(t(x−y))k
)

+ Φ(y)
(

(t(x−y))n
)

.

Thus taking N=M=n, a = t, b = −t, ϕN = Φ, ϕ0 = −f , ϕi = 0, i∈{1, ..., N−1},
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Ii = {(1 − t, t)}, i ∈ {0, . . . ,M − 1}, IM = {(1 − t, t); (0, 1)}, ψi,(1−t,t) = −gi,
i ∈ {0, . . . ,M}, ψM,(0,1) = Φ in Theorem 2.1 we get that Φ is a locally polynomial

function on 1
8|u|K

′ = 1
8|u|

1
p
K for a p ∈ N. Applying Corollary 2.3 we obtain that

there exist functions Bi ∈ SAi(X ;SAn(X ;Y )), i ∈ {0, . . . , s}, such that

Φ(z) = B0 + · · · +Bd
s (z), (14)

for every z ∈ 1
8|u|K

′, and any s ∈ N. Suppose that x, y ∈ 1
8|u|K

′ and set c := x−y.

Then equation (11) has the form

f(x) =

n
∑

k=0

gk(x− tc)
(

(tc)k
)

+ (Φ(x) − Φ(x− c))
(

(tc)n
)

. (15)

If we put z = tc, y = x− z in the above equation, we obtain

f(y + z) =
n
∑

k=0

gk(y)(zk) + (Φ(y + z) − Φ(y + uz))(zn). (16)

This equation is well defined for every y ∈ 1
2|u|K

′, z ∈ 1
4|u|K

′. Setting y = 0 in

(16) we get

f(z) =

n
∑

k=0

gk(0)(zk) + (Φ(z) − Φ(uz))(zn).

Taking (14) into account we have

f(z) =
n
∑

k=0

ak(zk) + (A1(z) + · · · +Ad
s(z))(z

n), (17)

where ak := gk(0), k ∈ {0, . . . , n}, Ai ∈ SAi(X ;SAn(X ;Y )) are proportional to
Bi, i ∈ {1, . . . , s}, and z ∈ 1

4|u|K
′. Hence f is a locally polynomial function on

1
4|u|K

′. Let us put z ∈ 1
4|u|K

′ and insert (14) and (17) in (16). This yields

n
∑

l=0

l
∑

i=0

(

l

i

)

al(y
l−i, zi) +

s
∑

l=1

l
∑

j=0

n
∑

i=0

(

l

j

)(

n

i

)

Al(y
l−j , zj)(yn−i, zi)

=

n
∑

k=0

gk(y)(zk) +

[ s
∑

l=0

l
∑

j=0

(

l

j

)

(1 − uj)Bl(y
l−j , zj)

]

(zn).

(18)

We can now proceed analogously to the case of the real line in [7] or groups in [8],
i.e. comparing terms of the same order of the left and the right-hand side of (18).
Consequently, we get that s ≤ 2, and

Ad
s(z)(z

n) =
s(s− 1) · · · · · (s− k + 1)

(n+ s)(n+ s− 1) · · · · · (n+ s− k + 1)
(1 − us−k)Bd

s (z)(zn). (19)
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Thus the functions f and Φ are locally polynomial of order not greater than n+ 2
and 2 on the set 1

8|u|K
′. Then from (14) and (19) we receive

Φ(z) = B0 +B1(z) +Bd
2 (z),

and

f(z) =

n
∑

k=0

ak(zk) + (1 − u)B1(z)(z
n) + (1 − u2)Bd

2 (z)(zn)

for all z ∈ 1
8|u|K

′. Inserting the formulas for the functions f and Φ in (18) we

have that if t = n+2
2(n+1) then for every z ∈ 1

8|u|K
′

B2(y, z)(z
n) = Bd

2 (z)(y, zn−1), (20)

and if t 6= n+2
2(n+1) then B2 = 0. Now we proceed analogously to the case of

solving equation (11) in groups ([8]). We need the definition of the derivative of a
polynomial function.

Definition 3.3. Let n, s ∈ N. Suppose further that As ∈ SAs(X ;Y ). Then the
mapping DxA

d
s ∈ SA1(X ;Y ) is called the derivative of the function As at the

point x provided that

DxA
d
s(z) = sAs(x

s−1, z)

for every x, z ∈ X . Further, if As ∈ SAs(X ;SAn(X ;Y )) and the function
B : X → Y is represented in the form

B(x) = Ad
s(x)(x

n),

then for every x ∈ X we define the derivative DxB ∈ SA1(X ;Y ) as

DxB(z) = sAs(x
s−1, z)(xn) + nAd

s(x)(x
n−1, z).

Definition 3.4. Let the function f : X → Y be of the form f(z) = A0(z
n) +

A1(z)(z
n) + · · · + Ad

s(z)(z
n) where Ai ∈ SAs(X ;SAn(X ;Y )). Fix x ∈ X . The

function Dxf : X → SA1(X ;Y ) is said to be the derivative of the polynomial
function f at the point x if and only if for every z ∈ X

Dxf(z) = Dx(B1(z)) + · · · +Dx(Bd
s (z))

where Bd
i (z) = Ad

i (z)(z
n).

The second derivative we define as D2
xf = Dx(Dxf). Analogously Dj

xf =
Dx(Dj−1

x f), j ≤ n+ s. We admit that Dn+s+1
x f = 0 and D0

xf = f .
From investigations analogous to those in [8] we have the following
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Lemma 3.5. Let ∅ 6= K ⊂ X be a convex set such that 0 ∈ alg intK. If the

functions f : K → Y , gi : K → SAi(X,Y ), i ∈ {0, . . . , n}, Φ : K → SAn(X,Y )
satisfy the equation

f(x) =

n
∑

k=0

gk((1 − t)x+ ty)((t(x − y))k) + (Φ(x) − Φ(y))((t(x − y))n), (11)

for every x, y ∈ K, and for a fixed t ∈ Q ∩ (0, 1), then there exist a convex set

K̂ ⊂ K such that 0 ∈ alg int K̂, and functions ak ∈ SAk(X ;Y ), k ∈ {0, . . . , n},
Bi ∈ SAi(X ;SAn(X ;Y )), i ∈ {0, 1, 2}, such that the formula

B2(x, y)(y
n) = Bd

2(y)(x, yn−1) (20)

holds for every x, y ∈ K̂ and for every x ∈ K̂:

f(x) =























n
∑

k=0

ak(xk) +
1

t
B1(x)(x

n) +
1

t

(

2 −
1

t

)

Bd
2 (x)(xn), if t = n+2

2(n+1) ,

n
∑

k=0

ak(xk) +
1

t
B1(x)(x

n), if t 6= n+2
2(n+1) ,

Φ(x) =

{

B0 +B1(x) +Bd
2 (x), if t = n+2

2(n+1) ,

B0 +B1(x), if t 6= n+2
2(n+1) ,

gi(x) =
Di

xf

i!
, i ∈ {0, . . . , n}.

Conversely, if the functions ak∈SAk(X ;Y ), k∈{0, ..., n}, Bi∈SAi(X ;SAn(X ;Y )),
i ∈ {0, 1, 2} satisfy eq. (20), then the functions Pf :X→ Y , Pgi

:X→SAi(X,Y ),
i ∈ {0, . . . , n}, PΦ : X → SAn(X,Y ) defined by

Pf (x) =























n
∑

k=0

ak(xk) +
1

t
B1(x)(x

n) +
1

t

(

2 −
1

t

)

Bd
2 (x)(xn), if t = n+2

2(n+1) ,

n
∑

k=0

ak(xk) +
1

t
B1(x)(x

n), if t 6= n+2
2(n+1) ,

PΦ(x) =

{

B0 +B1(x) +Bd
2 (x), if t = n+2

2(n+1) ,

B0 +B1(x), if t 6= n+2
2(n+1) ,

Pgi
(x) =

Di
xf

i!
i ∈ {0, . . . , n}.

satisfy equation (11) for every x ∈ X.

Now we show that local solutions of equation (11) can be uniquely extended
on the whole set K except maybe for its boundary points.



14 I. Pawlikowska AEM

Let pK denote the Minkowski functional of K (cf. [1]). We will use the fact
that, if pK(x) < 1, then x ∈ K. The set {x ∈ X : pK(x) < 1} we denote by K0;
by the edge of K we understand the set {x ∈ X : pK(x) = 1}. A point x ∈ K we
call an extreme point if x = u+v

2 for any u, v ∈ K implies that u = v = x.

Suppose that K̂ ⊂ K is a convex set such that 0 ∈ alg int K̂, and let Pf : X → Y ,
Pgi

: X → SAi(X,Y ), i ∈ {0, . . . , n}, PΦ : X → SAn(X,Y ) be polynomial func-
tions such that Pf |K̂ = f |

K̂
, Pgi

|
K̂

= gi|K̂ , PΦ|K̂ = Φ|
K̂

. Suppose further that for
every x, y ∈ X

Pf (x) =

n
∑

k=0

Pgk
((1 − t)x+ ty)((t(x − y))k) + (PΦ(x) − PΦ(y))((t(x − y))n).

We take K̂ ⊂ K as in Lemma 3.5.
Let us define

f̂ = f − Pf |K , ĝi = gi − Pgi
|K , Φ̂ = Φ − PΦ|K .

Then (f̂ , ĝ0, . . . , ĝn, Φ̂) is a solution of (11) for every x, y ∈ K and

f̂ |
K̂

= 0 ∈ Y K̂ , ĝi|K̂ = 0 ∈ SAi(X,Y )K̂, i ∈ {0, . . . , n}, Φ̂|
K̂

= 0 ∈ SAn(X,Y )K̂ .

Now we show that the function f̂ vanishes on K. Precisely,

Lemma 3.6. If the functions (f̂ , ĝ0, . . . , ĝn, Φ̂) satisfy the equation

f(x) =

n
∑

k=0

gk((1 − t)x+ ty)((t(x − y))k) + (Φ(x) − Φ(y))((t(x − y))n), (11)

for every x, y ∈ K, and f̂ |
K̂

= 0 ∈ Y K̂ , ĝi|K̂ = 0 ∈ SAi(X,Y )K̂ , i ∈ {0, . . . , n},

Φ̂|
K̂

= 0 ∈ SAn(X,Y )K̂ , then f̂ = ĝ0 = 0 ∈ Y K , Φ̂(x)(xn) = 0, and ĝi(x)(x
n) =

0, i ∈ {1, . . . , n}, x ∈ K0.

Proof. It is obvious that f̂ = ĝ0 (putting y = x w (11)). Let us notice that it

is sufficient to analyze the behaviour of the functions f̂ , ĝ0, . . . , ĝn, Φ̂ on the
intersection of every straight line lz = Kz, z 6= 0 with the set K. Fix z ∈ X \ {0}.

Suppose that Kz = {q ∈ K : qz ∈ K}. Let us define new functions f̂z : Kz → Y ,
ĝi,z : Kz → SAi(lz, Y ), i ∈ {0, . . . , n}, Φ̂z : Kz → SAn(lz, Y ) by

f̂z(q) = f̂(qz), ĝi,z(q)(r
i) = ĝi(qz)((rz)

i), Φ̂z(q)(r
n) = Φ̂(qz)((rz)n).

We see at once that the functions f̂z, ĝ0,z, . . . , ĝn,z, Φ̂z satisfy the equation

f̂z(q) =

n
∑

k=0

(t(q − r))k ĝk,z((1 − t)q + tr)(zk)

+ (t(q − r))n(Φ̂z(q) − Φ̂z(r))(z
n)

(21)
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for every q, r ∈ Kz, and f̂z|K̂z
= 0 ∈ Y K̂z , ĝi,z|K̂z

= 0 ∈ SAi(X,Y )K̂z , i ∈

{0, . . . , n}, Φ̂z|K̂z
= 0 ∈ SAn(X,Y )K̂z , where K̂z = {q ∈ K : qz ∈ K̂}. Without

loss of generality we can assume that K̂z is a maximal interval of numbers from
K such that 0 ∈ alg int K̂z, and the functions f̂z, ĝ0,z, . . . , ĝn,z, Φ̂z vanish on K̂z.

On the contrary, suppose that s1 = sup K̂z < s2 = supKz. Let ε be a positive
number such that s1 + ε < s2 and ε < s1 · t

1−t
. Then (1 − t)q < s1 for every

q ∈ [s1, s1 + ε) ∩ K =: J and for every r ∈ K̂z ∩ (−∞, s1 −
1−t

t
ε), and q ∈ J we

have

(1 − t)q + tr < s1.

We can rewrite equation (21) in the form

f̂z(q)−t(q−r))
nΦ̂z(q)(z

n)=

n
∑

k=0

(t(q−r))k ĝk,z((1−t)q+ tr)(zk)−(t(q−r))nΦ̂z(r)(z
n).

By our assumptions, the right-hand side of the above equation vanishes for every
q ∈ J , and r ∈ K̂z ∩ (−∞, s1 −

1−t
t
ε). Thus we get

f̂z(q) − (t(q − r))nΦ̂z(q)(z
n) = 0. (22)

Taking r = 0 in (22) we obtain

f̂z(q) − (tq)nΦ̂z(q)(z
n) = 0.

If we subtract side by side the above equations, we receive Φ̂z(q)(z
n) = 0 for every

q ∈ J . Hence Φ̂z(q) = 0 ∈ SAn(lz;Y ), q ∈ J . From (22) it follows that f̂z(q) = 0,

q ∈ J , whence Φ̂z|K̂z∪J = 0 and f̂z|K̂z∪J = 0.
Fix p ∈ J . Then we have p < s1 + ε. It is easy to check that

p− t(s1 + ε)

1 − t
< p.

Let q ∈ (K̂z ∪ J) ∩
(

p−t(s1+ε)
1−t

, p
)

=: Ip. We have, therefore,

r :=
1

t
p−

1 − t

t
q <

1

t
p−

1 − t

t

p− t(s1 + ε)

1 − t
= s1 + ε

and r > p. Thus we get r ∈ J , and

p = tr + (1 − t)q.

Let us notice that, if q goes across the set Ip, then t(q − r) = q − p goes across
Ip − p (it is an interval in K). Substituting q ∈ Ip, and r = 1

t
p− 1−t

t
q in (21), and

applying Φ̂z|K̂z∪J
= 0, f̂z|K̂z∪J

= 0, we get

n
∑

k=0

(q − p)kĝk,z(p)(z
k) = 0.
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Taking into account our earlier investigations, we showed that the polynomial

s 7−→ w(s) =

n
∑

k=0

skĝk,z(p)(z
k) = 0

vanishes on Ip−p. It follows that its coefficients are ĝk,z(p)(z
k) = 0, k ∈ {0, . . . , n}.

Thus ĝk,z(p) = 0 ∈ SAk(lz;Y ). Since p ∈ J is arbitrary we state that ĝk,z|J = 0,
k ∈ {0, . . . , n}. This implies ĝk,z |K̂z∪J

= 0, k ∈ {0, . . . , n}, and with the equalities

Φ̂z|K̂z∪J = 0, and f̂z|K̂z∪J = 0 this contradicts the definition of s1. Therefore

sup K̂z = supKz. Applying similar considerations, we get inf K̂z = inf Kz.
We showed that for every z 6= 0 the functions f̂z, Φ̂z, and ĝk,z, k ∈ {0, . . . , n}

vanish on [(inf K̂z, sup K̂z) ∩ K]z. Fix z 6= 0. Suppose that q = supKz ∈ Kz,
i.e. qz ∈ K. Thus, for every r ∈ (inf K̂z, sup K̂z) ∩ K we get (1 − t)q + tr ∈
(inf K̂z, sup K̂z) ∩ K. According to the first part of the proof and (21), we have
that (22) holds for every r ∈ (inf K̂z, sup K̂z)∩K. Therefore (as above) we obtain

Φ̂z(q) = 0 ∈ SAn(lz, Y ), and f̂z(q) = 0 ∈ Y . We proceed analogously in the case

q = inf Kz ∈ Kz, so we get that Φ̂z(q) and f̂z(q) vanish. Since z is arbitrary we

conclude that f̂z = 0 ∈ Y K and Φ̂z(z)(z
n) = 0, z ∈ K.

To prove the last part it is sufficient to see that if z ∈ K0 then z ∈ K, and
supKz = sup{q ∈ K : qz ∈ K} > 1 > inf Kz, hence ĝi,z(1) = 0, thus ĝi(z)(z

i) = 0,
i ∈ {0, . . . , n}.

Let us notice that, taking X = R and multiplication by (x−y)k, k ∈ {0, . . . , n},
on the right-hand side of (11), and dividing Φ(z)(zn) by zn, and gi(z)(z

i) by zi,
i ∈ {0, . . . , n}, the above lemma implies that gi, i ∈ {0, . . . , n}, vanish on K0 (in
particular, gi, i ∈ {0, . . . , n}, vanish everywhere possibly except at the boundary
points of K). Similar results can be obtained in an arbitrary space X but the
proof is not so immediate.

Applying Lemma 3.6 we get that (21) is reduced to

0 =

n
∑

k=0

ĝk((1 − t)x+ ty)((t(x − y))k) + (Φ̂(x) − Φ̂(y))((t(x − y))n) (23)

for every x, y ∈ K. Suppose again that K̂ is a convex subset of K such that 0 ∈

alg int K̂ and ĝi|K̂ = 0 ∈ SAi(X ;Y )K̂ , i ∈ {0, . . . , n}, Φ̂|
K̂

= 0 ∈ SAn(X ;Y )K̂ .

Let K1 = {x ∈ K : p
K̂

(x) < 1 + t}. It follows that for every y ∈ tK̂ ⊂ K̂ we get

p
K̂

((1 − t)x+ ty) ≤ (1 − t)p
K̂

(x) + tp
K̂

(y) < (1 − t)(1 + t) + t2 = 1,

hence (1 − t)x+ ty ∈ K̂, x ∈ K1, y ∈ tK̂. Consequently (see (23))

Φ̂(x)((x − y)n) = 0

for all x ∈ K1 and y ∈ tK̂. Fix x ∈ K1. From this we conclude that
n
∑

k=0

(

n

k

)

(−1)kΦ̂(x)(xn−k, yk) = 0
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for every y ∈ tK̂. The set tK̂ is Q-convex, and 0 ∈ alg int tK̂. Applying Theo-
rem 2.1 (for N = n), we get Φ̂(x) = 0. In other words, this means that for every
x, y ∈ K1 equation (23) is reduced to

0 =

n
∑

k=0

ĝk((1 − t)x+ ty)((t(x − y))k). (24)

Let us define a mapping L : K1 ×K1 → X ×X by

L(x, y) = ((1 − t)x + ty, t(x− y)) = (x − t(x− y), t(x− y)) =: (u, v).

It is a one-to-one function, and u = u(x, y) ∈ K1 for all x, y ∈ K1. Fix an arbitrary
u ∈ K1 such that pK1

(u) < 1. We take into account the set

U := [L(K1 ×K1)]u = {v ∈ X : (u, v) ∈ L(K1 ×K1)}.

Obviously we have 0 ∈ U ((u, 0) = L(u, u)). Suppose further that v1, v2 ∈ U , and
λ ∈ [0, 1]∩K. Thus (u, vi) = L(xi, yi) for any xi, yi ∈ K1, i ∈ {1, 2}. Consequently,

(u, λv1 + (1 − λ)v2)

= λ(u, v1) + (1 − λ)(u, v2)

= λL(x1, y1) + (1 − λ)L(x2, y2)

= λ(x1 − t(x1 − y1), t(x1 − y1)) + (1 − λ)(x2 − t(x2 − y2), t(x2 − y2))

= (λx1 + (1 − λ)x2 − t(λx1 + (1 − λ)x2 − λy1 − (1 − λ)y2),

t(λx1 + (1 − λ)x2 − λy1 − (1 − λ)y2))

= L(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2),

hence λv1 + (1 − λ)v2 ∈ U . This gives convexity of U . Let 0 6= z ∈ X . For every
λ ∈ K we get

pK1
(u+ λz) ≤ pK1

(u) + |λ|pK1
(z),

whence pK1
(u) < 1 implies that for any ε > 0, if |λ| < ε then pK1

(u + λz) < 1.
Thus u+ λz ∈ K1, |λ| < ε. Taking ε small enough we get

pK1

(

u+

(

1 −
1

t

)

λz

)

< 1

for |λ| < ε. Put x = u+λz, and y = u+(1− 1
t
)|λ|z. Therefore x, y ∈ K1 provided

that |λ| < ε, and

L(x, y) = (u+ λz − t(u+ λz − u−

(

1 −
1

t

)

λz), t(u+ λz

−u−

(

1 −
1

t

)

λz)) = (u, λz).

It follows that λz ∈ U , |λ| < ε. This gives 0 ∈ alg intU . Equation (24) implies
that

0 =
n
∑

k=0

ĝk(u)(vn)



18 I. Pawlikowska AEM

for v ∈ U . Applying Theorem 2.1 we have ĝk(u) = 0, k ∈ {0, . . . , n}. Since u is
arbitrary we obtain ĝk|K0

1
= 0.

Summarizing we proved the following:

If 0 ∈ alg int K̂, K̂ ⊂ K, Φ̂|
K̂

= 0 ∈ SAn(X ;Y )K̂ , and ĝi|K̂ = 0 ∈ SAi(X ;Y )K̂ ,

i ∈ {0, . . . , n}, then Φ̂ vanishes on K1 = K ∩ {x ∈ X : p
K̂

(x) < 1 + t}, and ĝi

vanish on K0
1 . We can continue in this fashion and taking into account that K̂ is

absorbing to obtain Φ̂ = 0 ∈ SAn(X ;Y )K and ĝi(x) = 0 ∈ SAn(X ;Y )K0 .
We have proved

Theorem 3.7. Fix t ∈ (0, 1) ∩ Q. Let K ⊂ X be a convex set such that 0 ∈
alg intK. If the functions f : K → Y , gi : K → SAi(X,Y ), i ∈ {0, . . . , n},
Φ : K → SAn(X,Y ) satisfy for every x, y ∈ K the equation

f(x) =

n
∑

k=0

gk((1 − t)x+ ty)((t(x − y))k) + (Φ(x) − Φ(y))((t(x − y))n), (11)

then there exist functions Bi ∈ SAi(X ;SAn(X ;Y )), i ∈ {0, 1, 2}, such that for

every x, y ∈ X

B2(x, y)(y
n) = Bd

2 (y)(x, yn−1), (20)

and for every x ∈ K

g0(x) = f(x)

=























n
∑

k=0

ak(xk) +
1

t
B1(x)(x

n) +
1

t

(

2 −
1

t

)

Bd
2 (x)(xn), if t = n+2

2(n+1) ,

n
∑

k=0

ak(xk) +
1

t
B1(x)(x

n), if t 6= n+2
2(n+1) ,

Φ(x) =

{

B0 +B1(x) +Bd
2 (x), if t = n+2

2(n+1) ,

B0 +B1(x), if t 6= n+2
2(n+1) ,

and for every x ∈ K0

gi(x) =
Di

xf

i!
, i ∈ {1, . . . , n}.

Remark 3.8. The above theorem is stated as a necessary condition. It can be
reversed provided that every point on the edge C of K is an extreme point of
K, because it is easily seen that the functions gi, i ≥ 1, can then be defined
arbitrarily at every point of C. Indeed, if u ∈ C is an extreme point of K, then
u = (1 − t)x+ ty for any x, y ∈ K if and only if x = y = u. Thus the right-hand
side of (11) is reduced to g0(u) = f(u).
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3.2. Simpson’s functional equation

Now we consider the equation derived from Simpson’s rule. Simpson’s rule is
an elementary numerical method for evaluating definite integrals. The functional
equation derived from this rule is

f(x) − g(y) =

[

h

(

x+ y

2

)

+ Φ(x) + Ψ(y)

]

(x− y). (25)

J. Ger in [3] deals with equation (25) on the real interval. In [8] we solved a
generalized version of (25) for functions defined in an abelian group. Let f , g :
K → Y , h, Φ, Ψ : K → SA1(X,Y ). Equation (25) can be written equivalently in
the form

f(x) − Φ(x)(x − y) = g(y) + h

(

x+ y

2

)

(x − y) + Ψ(y)(x− y). (26)

The above equation is the special case of equation (5) from Theorem 2.1 for N =
M = 1, a = 1, b = −1, ϕ0 = f , ϕ1 = −Φ, I0 = {(0, 1)}, I1 = {(1

2 ,
1
2 ); (0, 1)},

ψ0,(0,1) = g, ψ1,( 1
2
, 1
2
) = h and ψ1,(0,1) = Ψ. Applying Theorem 2.1 we get that Φ

is a locally polynomial function of order at most equal to

1
∑

i=0

card
(

1
⋃

k=i

Ik

)

− 1 = card (I0 ∪ I1) + card I1 − 1 = 3

on 1
p1
K for a p1 ∈ N. Thus we have

∆4
uΦ(x) = 0

for every (x, u) ∈ X×X such that x, x+u, . . . , x+4u ∈ 1
p1
K. From Corollary 2.3

it follows that
Φ(x) = A0 +A1(x) +Ad

2(x) +Ad
3(x), (27)

where Ai ∈ SAi(X ;SA1(X,Y )), i ∈ {0, . . . , 3}, x ∈ 1
p1
K.

We rephrase (26) as

g(y) + Ψ(y)(x− y) = f(x) − h

(

x+ y

2

)

(x− y) − Φ(x)(x − y).

Interchanging x and y we get

g(x) + Ψ(x)(y − x) = f(y) − h

(

x+ y

2

)

(y − x) − Φ(y)(y − x).

Repeated application of Lemma 2.1 yields that Ψ is a locally polynomial function of
the order not greater than 3 on 1

p2
K for a p2 ∈ N. Analogously, from Corollary 2.3

we obtain
Ψ(x) = B0 +B1(x) +Bd

2 (x) +Bd
3 (x), (28)

where Bi ∈ SAi(X ;SA1(X,Y )), i ∈ {0, . . . , 3}, x ∈ 1
p2
K.
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Let us note that the transformation L : K ×K → X ×X defined by L(x, y) =
(x+ y, x− y) has the property

K ×K ⊂ L(K ×K)

(indeed, if (u, v) ∈ K×K then it is sufficient to put x = u+v
2 ∈ K, and y = u−v

2 ∈
K, then (u, v) = L(x, y)). Thus, substituting the new variables u := x + y and
v := x− y in (26) it follows that

h̃(u)(v) = f

(

u+ v

2

)

− g

(

u− v

2

)

− Φ

(

u+ v

2

)

(v) − Ψ

(

u− v

2

)

(v),

holds for every u, v ∈ K, where h̃ : K → SA1(X ;Y ) is defined by h̃(u) = h(u
2 ).

We now apply Lemma 2.1 and Corollary 2.3 again, to obtain that

h̃(x) = C̃0 + C̃1(x) + C̃d
2 (x) + C̃d

3 (x),

where C̃i ∈ SAi(X,SA1(X,Y )), i ∈ {0, . . . , 3}, x ∈ 1
p3
K, p3 ∈ N. Therefore h is

also a locally polynomial function and can be written in the form

h(x) = C0 + C1(x) + Cd
2 (x) + Cd

3 (x), (29)

x ∈ 1
2p3

K, Cd
i (x) = C̃d

i (2x), Ci ∈ SAi(X,SA1(X,Y )), i ∈ {0, . . . , 3}.

Let p = max{p1, p2, 2p3}. Hence equalities (27), (28), and (29) hold for every
x ∈ K ′ := 1

p
K . Put y = 0 in (26)

f(x) = [h̃(x) + Φ(x) + Ψ(0)](x) + g(0).

Taking into account (27), (28), and (29) the above equation can be rephrased as

f(x) = A0(x) +B0(x) + C̃0(x) +A1(x)(x) + C̃1(x)(x)

+Ad
2(x)(x) + C̃d

2 (x)(x) +Ad
3(x)(x) + C̃d

3 (x)(x) + α,
(30)

where α := g(0). If we set x = y in (26) we get that f = g. Putting x = 0 in (26)
we obtain

g(y) = [h̃(y) + Φ(0) + Ψ(y)](y) + α.

Now we substitute (27), (28), and (29) in the above equation, replace y by x and
get

g(x) = A0(x) +B0(x) + C̃0(x) +B1(x)(x) + C̃1(x)(x)

+Bd
2(x)(x) + C̃d

2 (x)(x) +Bd
3 (x)(x) + C̃d

3 (x)(x) + α.

The equality f = g implies that

Ad
i (x)(x) = Bd

i (x)(x), (31)

i ∈ {1, 2, 3}, x ∈ K ′. Putting the formulas for f , g, h̃, Φ, Ψ in (26) and taking
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into account (31) we obtain

−A1(x)(y) +B1(y)(x) − C̃1(x)(y) + C̃1(y)(x) −Ad
2(x)(y) +Bd

2 (y)(x)

− C̃d
2 (x)(y) + 2C̃2(x, y)(x) − 2C̃2(x, y)(y) + C̃d

2 (y)(x)

−Ad
3(x)(y) +Bd

3 (y)(x) − C̃d
3 (x)(y) + 3C̃3(x

2, y)(x)

− 3C̃3(x
2, y)(y) + 3C̃3(x, y

2)(x) − 3C̃3(x, y
2)(y) + C̃d

3 (y)(x) = 0.

(32)

The left-hand side of this equation is the sum of functions homogeneous of i-th
order with respect to the variables x and y, i ∈ {1, 2, 3}. Considering terms with
third order homogeneity with respect to x we have

−Ad
3(x)(y) − C̃d

3 (x)(y) + 3C̃3(x
2, y)(x) = 0. (33)

Interchanging x and y we obtain

−Ad
3(y)(x) − C̃d

3 (y)(x) + 3C̃3(x, y
2)(y) = 0. (34)

Considering functions homogeneous of third degree with respect to y on both sides
of (32), we find

Bd
3 (y)(x) − 3C̃3(x, y

2)(y) + C̃d
3 (y)(x) = 0. (35)

Adding (34) to (35) we get

Ad
3(y)(x) = Bd

3 (y)(x), (36)

x, y ∈ K ′. Hence by absorption of K ′, and by the properties of multiadditive and
symmetric functions we get

A3 = B3.

Now we consider functions homogeneous of the second degree with respect to x in
(32), and get

−Ad
2(x)(y)−C̃

d
2 (x)(y) + 2C̃2(x, y)(x)−3C̃3(x

2, y)(y) + 3C̃3(x, y
2)(x) = 0. (37)

Analogously we obtain

Ad
2(y)(x) = Bd

2 (y)(x), (38)

x, y ∈ K ′, and the repeated reasoning give us A2 = B2. We look at terms which
are homogeneous of i-th degree with respect to y in (37), i ∈ {1, 2}. For i = 2 we
get

−3C̃3(x
2, y)(y) + 3C̃3(x, y

2)(x) = 0, (39)

and for i = 1

−Ad
2(x)(y) − C̃d

2 (x)(y) + 2C̃2(x, y)(x) = 0. (40)

At the end, we consider homogeneous functions with respect to x in (32) which
yields
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−A1(x)(y) +B1(y)(x) − C̃1(x)(y) + C̃1(y)(x)

+Ad
2(y)(x) + C̃d

2 (y)(x) − 2C̃2(x, y)(y)

+Ad
3(y)(x) + C̃d

3 (y)(x) − 3C̃3(x, y
2)(y) = 0,

hence we get the equality of homogeneous terms with respect to y

−A1(x)(y) +B1(y)(x) − C̃1(x)(y) + C̃1(y)(x) = 0. (41)

Replacing C̃d
i (x) by Cd

i (x
2 ), i ∈ {0, . . . , 3}, our result is the following. (The proof

of the second part is immediate; it is sufficient to show that Pf , Pg, Ph, PΦ and
PΨ satisfy (25).)

Lemma 3.9. Let ∅ 6= K ⊂ X be convex and symmetric by 0 ∈ alg intK. If the

functions f , g : K → Y , h, Φ, Ψ : K → SA1(X,Y ) satisfy the equation

f(x) − g(y) =

[

h

(

x+ y

2

)

+ Φ(x) + Ψ(y)

]

(x− y) (25)

for every x, y ∈ K, then there exist a set K̂ ⊂ K such that 0 ∈ alg int K̂ and func-

tions Ak, Ck ∈ SAk(X ;SA1(X ;Y )), k ∈ {0, . . . , 3}, Bi ∈ SAi(X ;SA1(X ;Y )),
i ∈ {0, 1}, such that the conditions

Ad
i (x)(y) + 2−iCd

i (x)(y) = i2−iCi(x
i−1, y)(x), i ∈ {2, 3} (w 1)

C3(x
2, y)(y) = C3(x, y

2)(x), (w 2)

B1(y)(x) −A1(x)(y) = 2−1C1(x)(y) − 2−1C1(y)(x) (w 3)

hold for every x, y ∈ X and a constant α ∈ Y such that for every x ∈ K̂

Φ(x) = A0 +A1(x) +Ad
2(x) +Ad

3(x),

Ψ(x) = B0 +B1(x) +Ad
2(x) + Ad

3(x),

h(x) = C0 + C1(x) + Cd
2 (x) + Cd

3 (x),

f(x) = g(x) = A0(x) +B0(x) + C0(x) +A1(x)(x) + 2−1C1(x)(x)

+Ad
2(x)(x) + 2−2Cd

2 (x)(x) +Ad
3(x)(x) + 2−3Cd

3 (x)(x) + α.

Conversely, if the functions Ak, Ck ∈ SAk(X ;SA1(X ;Y )), k ∈ {0, . . . , 3}, Bi ∈
SAi(X ;SA1(X ;Y )), i ∈ {0, 1}, satisfy the conditions (w 1)–(w 3), and α ∈ Y is

a constant, then the functions Pf , Pg : X → Y , Ph, PΦ, PΨ : X → SA1(X,Y )
defined by

PΦ(x) = A0 +A1(x) +Ad
2(x) +Ad

3(x),

PΨ(x) = B0 +B1(x) +Ad
2(x) +Ad

3(x),

Ph(x) = C0 + C1(x) + Cd
2 (x) + Cd

3 (x),
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Pf (x) = Pg(x) = A0(x) +B0(x) +C0(x) +A1(x)(x) + 2−1C1(x)(x)

+Ad
2(x)(x) + 2−2Cd

2 (x)(x) +Ad
3(x)(x) + 2−3Cd

3 (x)(x) + α,

satisfy the equation

Pf (x) − Pg(y) =

[

Ph

(

x+ y

2

)

+ PΦ(x) + PΨ(y)

]

(x− y) (25)

for every x, y ∈ X.

Now we show that the assumption of symmetry of K with 0 can be omitted.
Precisely, we want to prove that, if K is a convex set with 0 ∈ alg intK, and
equation (25) holds for every x, y ∈ K, then the solutions have the properties
defined in Lemma 3.9. Let K̂ ⊂ K be a convex set such that 0 ∈ alg int K̂, and
the polynomial functions Pf , Pg : X → Y , Ph, PΦ, PΨ : X → SA1(X,Y ) satisfy
Pf |K̂ = f |

K̂
, Pg|K̂ = g|

K̂
, Ph|K̂ = h|

K̂
, PΦ|K̂ = Φ|

K̂
, PΨ|K̂ = Ψ|

K̂
. Suppose

further that

Pf (x) − Pg(y) =

[

Ph

(

x+ y

2

)

+ PΦ(x) + PΨ(y)

]

(x− y) (25)

holds for every x, y ∈ X . We take K̂ ⊂ K as in Lemma 3.9.
Let

f̂ = f − Pf |K , ĝ = g − Pg|K , ĥ = h− Ph|K , Φ̂ = Φ − PΦ|K Ψ̂ = Ψ − PΨ|K .

Then (f̂ , ĝ, ĥ, Φ̂, Ψ̂) is a solution of (25) for every x, y ∈ K, and

f̂ |
K̂

= ĝ|
K̂

= 0 ∈ Y K̂ , ĥ|
K̂

= Φ̂|
K̂

= Ψ̂|
K̂

= 0 ∈ SA1(X,Y )K̂ .

We are going to show that f̂ , ĝ, Φ̂, Ψ̂ vanish on K and ĥ vanishes, except maybe
at the boundary points of K.

Lemma 3.10. Let K be a convex subset of X such that 0 ∈ alg intK and K̂ be

a convex subset of K such that 0 ∈ alg int K̂. If (f̂ , ĝ, ĥ, Φ̂, Ψ̂) is a solution of

f̂(x) − ĝ(y) =

[

ĥ

(

x+ y

2

)

+ Φ̂(x) + Ψ̂(y)

]

(x− y)

for every x, y ∈ K and

f̂ |
K̂

= ĝ|
K̂

= 0 ∈ Y K̂ , ĥ|
K̂

= Φ̂|
K̂

= Ψ̂|
K̂

= 0 ∈ SA1(X,Y )K̂ ,

then f̂ = ĝ = 0 ∈ Y K , Φ̂ = Ψ̂ = 0 ∈ SA1(X,Y )K and ĥ(x) = 0 for every x ∈ K0.

Proof. We proceed analogously to the proof of Lemma 3.6. First, we analyze the
behaviour of the functions f̂ , ĝ, ĥ, Φ̂, and Ψ̂ on the straight lines lz = Kz, z 6= 0,
intersected with K. Fix z ∈ X \ {0}. Let Kz = {q ∈ K : qz ∈ K}. We define new

functions f̂z, ĝz : Kz → Y , ĥz, Φ̂z, Ψ̂z : Kz → SA1(lz, Y ) by

f̂z(q) = f̂(qz), ĥz(q)(rz) = ĥ(qz)(rz), Φ̂z(q)(rz) = Φ̂(qz)(rz),
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Ψ̂z(q)(rz) = Ψ̂(qz)(rz).

It is easy to see that (f̂z, ĝz, ĥz, Φ̂z, Ψ̂z) satisfies the equation

f̂z(q) − ĝz(r) = (q − r)

[

ĥz

(

q + r

2

)

+ Φ̂z(q) + Ψ̂z(r)

]

(z) (42)

for every q, r ∈ Kz, and f̂z|K̂z
= ĝz|K̂z

= 0 ∈ Y K̂z , ĥz|K̂z
= Φ̂z|K̂z

= Ψ̂z|K̂z
=

0 ∈ SA1(X,Y )K̂z , where K̂z = {q ∈ K : qz ∈ K̂}. Without loss of generality we
can assume that K̂z is a maximal interval of elements of K such that 0 ∈ alg int K̂z,
and the functions f̂z, ĝz, ĥz, Φ̂z, Ψ̂z vanish on K̂z.

On the contrary, we assume that s1 = sup K̂z < s2 = supKz. Let ε ∈ (0, s1)
be chosen such that s1 + ε < s2. Thus we get q

2 < s1, q ∈ [s1, s1 + ε) ∩ Q =: J .

We consider a r ∈ K̂z such that

r <
s1

2
,
q + r

2
< s1 (43)

for all q ∈ J . Let us note that (43) is satisfied by r ∈ (0, δ)∩ Q for any δ > 0. We
can rewrite (42) in the form

(r − q)Φ̂z(q)(z) + f̂z(q) = (q − r)

[

ĥz

(

q + r

2

)

+ Ψ̂z(r)

]

(z) + ĝz(r)

for every q ∈ J , and r ∈ K̂z such that (43) hold. By our assumptions we get that
the right-hand side of the above equation vanishes for every q ∈ J . It follows that

rΦ̂z(q)(z) − qΦ̂z(q)(z) + f̂z(q) = 0. (44)

Taking r = 0 in (42) we obtain

−qΦ̂z(q)(z) + f̂z(q) = 0.

Subtracting the above equations side by side we have Φ̂z(q)(z) = 0, q ∈ J , hence

Φ̂z(q) = 0 ∈ SA1(lz ;Y ), q ∈ J . (44) implies that f̂z(q) = 0, q ∈ J , whence

Φ̂z|K̂z∪J = 0, and f̂z|K̂z∪J = 0.
Repeated analysis of the equation (derived from (42))

(r − q)Ψ̂z(r)(z) − ĝz(q) = (q − r)

[

ĥz

(

q + r

2

)

+ Φ̂z(q)

]

(z) − f̂z(q)

gives us Ψ̂z|K̂z∪J
= 0, and ĝz|K̂z∪J

= 0. Fix a p ∈ J , and let 0 < q < p < r < s1+ε

be rational numbers such that p = q+r
2 . By the above reasoning we have (since q,

r ∈ K̂z ∪ J)

(q − r)ĥz(p)(z) = 0,

hence ĥz(p)(z) = 0. Since p is arbitrary it follows that ĥz(p) = 0 ∈ SA1(lz;Y ),

p ∈ J and consequently ĥz|K̂z∪J = 0, k ∈ {0, . . . , n}. This contradicts the formula
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for s1, so we get s1 = s2. An analogous procedure can be applied in the case
inf K̂z = infKz.

We can now proceed similarly to the proof of Lemma 3.6 by showing that if
q = supKz ∈ Kz (q = inf Kz ∈ Kz), then f̂z(q) = ĝz(q) = Φ̂z(q) = Ψ̂z(q) = 0,

whence f̂(z) = 0 = ĝ(z), z ∈ K.
An argument analogous to that one following Lemma 3.6 gives us Φ̂(z) =

Ψ̂(z) = 0 ∈ SA1(X ;Y ), and h(z) = 0 ∈ SA1(X ;Y ) for every z ∈ K0.
We can now summarize our results in the following

Theorem 3.11. Let K ⊂ X be a convex and absorbing set. If the functions f ,

g, h, Φ, Ψ : K → SA1(X,Y ) satisfy for every x, y ∈ K the equation

f(x) − g(y) =

[

h

(

x+ y

2

)

+ Φ(x) + Ψ(y)

]

(x− y), (25)

then there exist functions Ai, Ci ∈ SAi(X ;SA1(X ;Y )), i ∈ {0, . . . , 3}, Bk ∈
SAk(X ;SA1(X ;Y )), k ∈ {0, 1}, such that the conditions

Ad
i (x)(y) + 2−iCd

i (x)(y) = i2−iCi(x
i−1, y)(x), i ∈ {2, 3} (w 1)

C3(x
2, y)(y) = C3(x, y

2)(x), (w 2)

B1(y)(x) −A1(x)(y) = 2−1C1(x)(y) − 2−1C1(y)(x) (w 3)

hold for every x, y ∈ X, and a constant α ∈ Y such that for every x ∈ K

Φ(x) = A0 +A1(x) +Ad
2(x) +Ad

3(x),

Ψ(x) = B0 +B1(x) +Ad
2(x) + Ad

3(x),

f(x) = g(x) = A0(x) +B0(x) + C0(x) +A1(x)(x) + 2−1C1(x)(x)

+Ad
2(x)(x) + 2−2Cd

2 (x)(x) +Ad
3(x)(x) + 2−3Cd

3 (x)(x) + α,

and if x ∈ K0 then

h(x) = C0 + C1(x) + Cd
2 (x) + Cd

3 (x).

Remark 3.12. Analogously to Theorem 3.7 this result can be conversed under
the additional assumption that the edge of K consists only of the extreme points.
Therefore, if h is defined arbitrarily on its extreme points, and the functions f , g,
h, Φ, Ψ are defined by the formulas from Theorem 3.11, and the conditions (w 1)–
(w 3) are satisfied, then it is easy to compute that (f, g, h,Φ,Ψ) satisfies (25).

It can be seen that, taking X = R, K = Q, and K = I as a nonempty interval
we have the same solutions as in [3] (obviously we replace a homomorphism by
multiplication). Analogously to the first part of this section, let us assume that
0 ∈ alg int I, whence 0 ∈ int I. This can be done since without the loss of generality
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a solution in the general case can be obtained by the composition of the solution in
the special case with the translation by a point x0 ∈ int I. In this case the edge of
I consists of the endpoints of the interval I and these points are extreme whenever
they belong to I. Moreover I0 = int I. It is obvious that the solutions have the
forms as in Lemma 3.9, and they satisfy the conditions (w 1)–(w 3), where instead
of D(x)(y) we have D(x)y for all D ∈ {Ad

i , C
d
i , B

d
k}, i ∈ {0, . . . , 3}, k ∈ {0, 1}, x,

y ∈ X .
Taking x = y in (w 3) we obtain

A1 = B1. (45)

Hence and from (w 3) again we get for x, y 6= 0

A1(y)

y
+

2−1C1(y)

y
=
A1(x)

x
+

2−1C1(x)

x
,

whence there exists a constant c ∈ R such that

A1(x) = cx− 2−1C1(x), (46)

x ∈ I. Setting y = x in (w 1) we obtain

Ad
i (x) = (i− 1)2−iCd

i (x), (47)

x ∈ I, i ∈ {2, 3}. Now we substitute this equality in (w 1) again. So we have for
all x, y 6= 0

Ci(x
i−1, y)

xi−1y
=
Cd

i (x)

xi
(48)

and interchanging x and y we get

Ci(x, y
i−1)

xyi−1
=
Cd

i (y)

yi
, (49)

x, y 6= 0. The comparison of the above equations and the application of the
symmetry of C2 give us for i = 2

Cd
2 (x)

x2
=
Cd

2 (y)

y2
,

therefore there exists a real constant b such that

Cd
2 (x) := 4bx2,

and from (47) we get

Ad
2(x) = bx2.

Following (w 2) for x, y 6= 0 we get

C3(x, y
2)

xy2
=
C3(x

2, y)

x2y
,
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and taking into account (48), and (49) for i = 3 we have

Cd
3 (x)

x3
=
Cd

3 (y)

y3
.

Consequently there exists an a ∈ R such that

Cd
3 (x) := 8ax3

for all x ∈ I. From (47) it follows that

Ad
3(x) = 2ax3.

We can now write the functions f , g, Φ, Ψ in the following for every x ∈ I as

f(x) = g(x) = 3ax4 + 2bx3 + cx2 + (A0 +B0 + C0)x+ α,

Φ(x) = 2ax3 + bx2 + cx−
1

2
C1(x) +A0,

Ψ(x) = 2ax3 + bx2 + cx−
1

2
C1(x) +B0,

and for every x ∈ int I

h(x) = 8ax3 + 4bx2 + C1(x) + C0.

Interchanging x and y in (25) we get

f(y) − g(x) =

[

h

(

x+ y

2

)

+ Φ(y) + Ψ(x)

]

(y − x). (50)

Adding side by side equations (25), and (50), and applying the equality f = g we
have

Ψ(x) − Φ(x) = Ψ(y) − Φ(y),

x, y ∈ I, hence
Ψ(x) = Φ(x) − 2γ (51)

for a constant γ ∈ R. Let us define constants d := A0 +B0 + C0 and β := A0+B0

2
and an additive function A : R → R by A := 1

2C1. Then applying (51) we finally
obtain for all x ∈ I

f(x) = g(x) = 3ax4 + 2bx3 + cx2 + dx+ α,

Φ(x) = 2ax3 + bx2 + cx−A(x) + β + γ,

Ψ(x) = 2ax3 + bx2 + cx−A(x) + β − γ

and for all x ∈ int I

h(x) = 8ax3 + 4bx2 + 2A(x) + d− 2β

for constants a, b, c, α, β, γ ∈ R, and an additive function A : R → R. The above
results are stated in the following theorem (cf. [3; Theorem 1]):
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Theorem 3.13. Let I ⊂ R be a nonempty interval. The functions f , g, h, Φ,

Ψ : I → R satisfy the equation for every x, y ∈ I

f(x) − g(y) =

[

h

(

x+ y

2

)

+ Φ(x) + Ψ(y)

]

(x− y), (25)

if and only if

f(x) = g(x) = 3ax4 + 2bx3 + cx2 + dx+ α, x ∈ I,

h(x) = 8ax3 + 4bx2 + 2A(x) + d− 2β, x ∈ int I,

Φ(x) = 2ax3 + bx2 + cx−A(x) + β + γ, x ∈ I,

Ψ(x) = 2ax3 + bx2 + cx−A(x) + β − γ, x ∈ I,

where a, b, c, α, β, γ ∈ R and A : R → R is an additive function. If one of the

endpoints of I belongs to I, then h can be defined arbitrarily in it.
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