
Aequationes Math. 73 (2007) 249–259
0001-9054/07/030249-11
DOI 10.1007/s00010-006-2868-0
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Orthogonal stability of additive type equations
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Summary. Suppose that (X ,⊥) is a symmetric orthogonality module and Y a Banach module
over a unital Banach algebra A and f : X → Y is a mapping satisfying

∥

∥f(ax1 + ax2) + (−1)k+1f(ax1 − ax2) − 2af(xk)
∥

∥ ≤ ǫ,

for k = 1 or 2, for some ǫ ≥ 0, for all a in the unit sphere A1 of A and all x1, x2 ∈ X with
x1 ⊥ x2. Assume that the mapping t 7→ f(tx) is continuous for each fixed x ∈ X . Then there
exists a unique A-linear mapping T : X → Y satisfying T (ax) = aT (x), a ∈ A, x ∈ X such that

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤
5

2
ǫ,

for all x ∈ X .
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1. Introduction

There are a number of definitions of orthogonality in vector spaces, in addition to
the usual one for inner product spaces. They have appeared in the literature during
the past century. Many of these are mentioned in the article [8] by H. Drljević.
In giving his axiomatic definition of orthogonality, J. Rätz (cf. [26]) modified the
definition of S. Gudder and D. Strawther from [10] and arrived at the following.

Suppose that X is a real vector space (algebraic module) with dimX ≥ 2 and
⊥ is a binary relation on X with the following properties:

(O1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X ;
(O2) independence: if x, y ∈ X −{0}, x ⊥ y, then x, y are linearly independent;
(O3) homogeneity: if x, y ∈ X , x ⊥ y, then αx ⊥ βy for all α, β in the real

number field R;
(O4) the Thalesian property: Let P be a 2-dimensional subspace of X . If x ∈ P

and λ is in the set of nonnegative real numbers R+, then there exists y0 ∈ P such
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that x ⊥ y0 and x + y0 ⊥ λx − y0.
The pair (X ,⊥) is called an orthogonality space (module). By an orthogonality

normed space (normed module) we mean an orthogonality space (module) having
a normed space (normed module) structure.

J. Rätz pointed out that his definition of orthogonality space is more restrictive
than that given by S. Gudder and D. Strawther, but he showed in [26] that his
definition includes the following basic examples (see also [25]):

(i) The trivial orthogonality on a vector space X defined by (O1), and for
non-zero elements x, y ∈ X , x ⊥ y if and only if x, y are linearly independent.

(ii) The ordinary orthogonality on an inner product space (X , 〈., .〉) given by
x ⊥ y if and only if 〈x, y〉 = 0.

(iii) The Birkhoff–James orthogonality on a normed space (X , ‖.‖) defined by
x ⊥ y if and only if ‖x + λy‖ ≥ ‖x‖ for all λ ∈ R; cf. [13] (see also [7]).

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for all x, y∈X .
Clearly examples (i) and (ii) are symmetric but example (iii) is not. It is remark-
able to note, however, that a real normed space of dimension greater than or equal
to 3 is an inner product space if and only if the Birkhoff–James orthogonality is
symmetric (see [1]).

Let X be a vector space (an orthogonality space) and (Y,+) be an abelian
group. Then a mapping f : X → Y is called

(i) (orthogonally) additive if it satisfies the so-called (orthogonally) additive
functional equation f(x + y) = f(y) + f(x) for all x, y ∈ X (with x ⊥ y);

(ii) (orthogonally) quadratic if it satisfies the so-called (orthogonally) Jordan–
von Neumann quadratic functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y)
for all x, y ∈ X (with x ⊥ y).

In 1940, S. M. Ulam posed in [27] the following problem: “Give conditions in
order for a group homomorphism near an approximately homomorphism to exist.”
The Ulam problem was first solved in the context of Banach spaces by D. H. Hyers
(see [11]) in 1941. In 1951, D. G. Bourgin treated the Ulam problem for additive
mappings (cf. [4]). In 1978, Th. M. Rassias in [23] extended the theorem of Hyers
by considering an unbounded Cauchy difference. Beginning around the year 1980
the subject of stability of functional equations has been investigated by a number
of mathematicians. The reader is referred to [5, 6, 12, 15, 24] for a comprehensive
account of the subject.

In [16] S.-M. Jung and P. K. Sahoo proved the stability of the quadratic equa-
tion of Pexider type (see also [14]). As a corollary one can conclude the sta-
bility of the so-called additive type equations f(x + y) + f(x − y) = 2f(x) and
f(x + y) − f(x − y) = 2f(y). R. Ger, J. Sikorska in [9] and the first author in
[18, 19] studied the orthogonal stability of (Pexiderized) Cauchy and quadratic
functional equations.

Our main aim in this paper is to consider the orthogonal stability of additive
type equations in Banach modules in the spirit of Hyers–Ulam stability.
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2. Orthogonal stability in Banach modules

Applying some ideas from [9, 16, 21] and [19], we deal with the conditional stability
problem for

f(ax + ay) + f(ax − ay) = 2af(x) x ⊥ y

and
f(ax + ay) − f(ax − ay) = 2af(y) x ⊥ y

where a ∈ A, x, y ∈ X and ⊥ is a symmetric orthogonality in the sense of J. Rätz.
We will use a sequence of Hyers’ type [11] which is a useful tool in the theory of
stability of equations. In the first two propositions we will describe the solutions
of additive type equations.

Throughout this section, A is a unital real Banach algebra with unit 1 and unit
sphere A1, and (X ,⊥) denotes an orthogonality normed real left A-module with
the property 1x = x and (Y, ‖.‖) is a real Banach left A-module. By definition,
a real left A-module is among other things a real vector space ([2], p. 49, Defini-
tion 11). The reader is referred to [2] for more details on the theory of normed
modules.

Proposition 2.1. If ϕ : X → Y fulfills ϕ(x + y) + ϕ(x − y) = 2ϕ(x) for all
x, y ∈ X with x ⊥ y and if ⊥ is symmetric, then ϕ(x) − ϕ(0) is orthogonally
additive.

Proof. Setting x = 0, we get −ϕ(y) = ϕ(−y) − 2ϕ(0), y ∈ X . Let x ⊥ y. Then
y ⊥ x and so ϕ(y − x) = −ϕ(y + x) + 2ϕ(y). Hence ϕ(x + y) = −ϕ(x − y) +
2ϕ(x) = (ϕ(y − x) − 2ϕ(0)) + 2ϕ(x) = (−ϕ(y + x) + 2ϕ(y)) − 2ϕ(0) + 2ϕ(x).
Thus ϕ(x + y) − ϕ(0) = (ϕ(x) − ϕ(0)) + (ϕ(y) − ϕ(0)), so that ϕ(x) − ϕ(0) is
orthogonally additive. ¤

Proposition 2.2. If ϕ : X → Y fulfills ϕ(x + y) − ϕ(x − y) = 2ϕ(y) for all
x, y ∈ X with x ⊥ y and if ⊥ is symmetric, then ϕ is orthogonally additive.

Proof. Setting x = 0, we obtain ϕ(y) − ϕ(−y) = 2ϕ(y) or ϕ(−y) = −ϕ(y), y ∈ X .
Suppose that x ⊥ y. By the assumption one has

ϕ(x + y) − ϕ(x − y) = 2ϕ(y). (2.1)

Since ⊥ is symmetric, y ⊥ x and so

2ϕ(x) = ϕ(x + y) − ϕ(y − x) = ϕ(x + y) + ϕ(x − y). (2.2)

It follows from (2.1) and (2.2) that ϕ(x) + ϕ(y) = ϕ(x + y) for all x, y ∈ X with
x ⊥ y. ¤

Now we establish the orthogonal stability of the equation f(x+y)+f(x−y) =
2f(x).
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Proposition 2.3. Suppose that ⊥ is symmetric on X and f : X → Y is a map-
ping satisfying

∥

∥f(ax + ay) + f(ax − ay) − 2af(x)
∥

∥ ≤ ǫ, (2.3)

for some ǫ ≥ 0, for all a ∈ A1 and all x, y ∈ X with x ⊥ y. Assume that f is odd.
Then there exists a unique additive mapping T : X → Y satisfying T (ax) = aT (x),
a ∈ A1, x ∈ X such that

∥

∥f(x) − T (x)
∥

∥ ≤ 2ǫ,

for all x ∈ X . Moreover, if the mapping t 7→ f(tx) is continuous for each fixed
x ∈ X , then T is A-linear.

Proof. Fix x ∈ X and a ∈ A1. By (O4), there exists y0 ∈ X such that x ⊥ y0

and x + y0 ⊥ x − y0. Since ⊥ is symmetric one has x − y0 ⊥ x + y0, too. Using
inequality (2.3) and the oddness of f we get

∥

∥f(x + y0) + f(x − y0) − 2f(x)
∥

∥ ≤ ǫ,
∥

∥f(2ax) + f(2ay0) − 2af(x + y0)
∥

∥ ≤ ǫ,
∥

∥f(2ax) − f(2ay0) − 2af(x − y0)
∥

∥ ≤ ǫ.

Thus
∥

∥f(2ax) − 2af(x)
∥

∥ ≤
∥

∥af(x + y0) + af(x − y0) − 2af(x)
∥

∥

+
1

2

∥

∥f(2ax) + f(2ay0) − 2af(x + y0)
∥

∥

+
1

2

∥

∥f(2ax) − f(2ay0) − 2af(x − y0)
∥

∥

≤ 2ǫ,

whence
∥

∥f(2ax) − 2af(x)
∥

∥ ≤ 2ǫ. (2.4)

Using (2.4) with a = 1 and induction on n one can verify that

∥

∥2−nf(2nx) − f(x)
∥

∥ ≤ 2ǫ
n

∑

k=1

(1

2

)k

,

for all n, and

∥

∥2−nf(2nx) − 2−mf(2mx)
∥

∥ ≤ 2ǫ

n
∑

k=m+1

(1

2

)k

for all m < n. Thus {2−nf(2nx)} is a Cauchy sequence in the Banach module Y.
Hence lim

n→∞

2−nf(2nx) exists and the mapping ϕ(x) := lim
n→∞

2−nf(2nx) from X
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into Y satisfies
∥

∥f(x) − ϕ(x)
∥

∥ ≤ 2ǫ,

for all x ∈ X . Let x, y ∈ X with x ⊥ y. Applying inequality (2.3) and (O3) we
obtain

∥

∥2−nf(2n(x + y)) + 2−nf(2n(x − y)) − 2−n+1f(2nx)
∥

∥ ≤ 2−nǫ.

Letting n tend to infinity we deduce that ϕ(x + y) + ϕ(x − y) − 2ϕ(x) = 0.
Moreover, ϕ(0) = lim

n→∞

2−nf(2n.0) = 0. Using Proposition 2.1 we conclude that ϕ

is an orthogonally additive mapping. Given a ∈ A1 and x ∈ X , replace x in (2.4)
by 2nx, where n ∈ N. Then

∥

∥

∥

1

2n+1
f(2n+1ax) −

1

2n
af(2nx)

∥

∥

∥
≤

1

2n
ǫ.

Letting n tend to infinity we conclude that ϕ(ax) = aϕ(x).
Since f is odd, so is ϕ, whence from Corollary 7 of [26], ϕ, denoted there by

T , is additive. Thus
∥

∥T (x) − f(x)
∥

∥ ≤ 2ǫ.

If T ′ : X → Y is another additive mapping satisfying
∥

∥T ′(x) − f(x)
∥

∥ ≤ 2ǫ, then
∥

∥T (x)− T ′(x)
∥

∥ ≤ 1

n

(∥

∥T (nx)− f(nx)
∥

∥ +
∥

∥T ′(nx)− f(nx)
∥

∥

)

≤ 4ǫ
n

. Letting n tend
to infinity we infer that T = T ′ which proves the uniqueness assertion.

Now assume that for each fixed x ∈ X the mapping t 7→ f(tx) is continuous.
By the same argument as in the proof of the theorem of [23], we can deduce that
T is R-linear.

Now for all a ∈ A and x ∈ X we have

T (ax) = T

(

‖a‖
a

‖a‖
x

)

= ‖a‖T

(

a

‖a‖
x

)

= ‖a‖
a

‖a‖
T (x) = aT (x). ¤

Proposition 2.4. Suppose that f : X → Y is a mapping satisfying (2.3) for some
ǫ ≥ 0, for a = 1 and all x, y ∈ X with x ⊥ y. Assume that f is even and f(0) = 0.
Then ‖f(x)‖ ≤ ǫ

2
for all x ∈ X .

Proof. Setting x = 0 in (2.3) we get
∥

∥f(y)+f(−y)−2f(0)
∥

∥ ≤ ǫ and so ‖f(y)‖ ≤ ǫ
2

for all y ∈ X . ¤

Theorem 2.5. Suppose that ⊥ is symmetric on X and f : X → Y is a mapping
satisfying (2.3) for some ǫ ≥ 0, for all a ∈ A1 and all x, y ∈ X with x ⊥ y. Then
there exists a unique additive mapping T : X → Y satisfying T (ax) = aT (x),
a ∈ A1, x ∈ X such that

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤
5

2
ǫ,

for all x ∈ X . Moreover, if the mapping t 7→ f(tx) is continuous for each fixed
x ∈ X , then T is A-linear.
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Proof. Define F (x) = f(x) − f(0) and denote the even and odd parts of F by
F e, F o, respectively. Clearly F e(0) = F o(0) = F (0) = 0.

Setting x = y = 0 in (2.3) and subtracting the argument of the norm of the
resulting inequality from that of inequality (2.3) we get

∥

∥F (ax + ay) + F (ax − ay) − 2aF (x)
∥

∥ ≤ 2ǫ. (2.5)

If x ⊥ y then, by (O3), −x ⊥ −y. Hence we can replace x by −x and y by −y in
(2.5) to obtain

∥

∥F (−ax − ay) + F (−ax + ay) − 2aF (−x)
∥

∥ ≤ 2ǫ. (2.6)

By virtue of the triangle inequality and (2.5) and (2.6) we obtain
∥

∥F e(ax + ay) + F e(ax − ay) − 2aF e(x)
∥

∥ ≤ 2ǫ,
∥

∥F o(ax + ay) + F o(ax − ay) − 2aF o(x)
∥

∥ ≤ 2ǫ,

for all a ∈ A1 and x, y ∈ X .
In light of Proposition 2.3 there exists an additive mapping T : X → Y sat-

isfying T (ax) = aT (x), a ∈ A1, x ∈ X such that
∥

∥F o(x) − T (x)
∥

∥ ≤ 2ǫ. By

Proposition 2.4,
∥

∥F e(x)
∥

∥ ≤ ǫ
2
. Hence

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤
∥

∥F e(x)
∥

∥ +
∥

∥F o(x) − T (x)
∥

∥ ≤
ǫ

2
+ 2ǫ =

5

2
ǫ,

for all x ∈ X . The uniqueness and A-linearity of T are obtained from Proposi-
tion 2.3. ¤

Corollary 2.6. Suppose that (X ,⊥) is an orthogonality complex normed space,
(Y, ‖.‖) is a complex Banach space, ⊥ is symmetric on X and f : X → Y is a
mapping satisfying

∥

∥f(λx + λy) + f(λx − λy) − 2λf(x)
∥

∥ ≤ ǫ

for some ǫ ≥ 0, for all λ ∈ T = {z ∈ C : |z| = 1} and all x, y ∈ X with x ⊥ y.
If the mapping t 7→ f(tx) is continuous for each fixed x ∈ X , then there exists a
unique C-linear mapping T : X → Y such that

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤
5

2
ǫ

for all x ∈ X .

Proof. Consider A to be C in Theorem 2.5. ¤

The following corollary gives the stability of orthogonally additive type equa-
tion f(x + y) + f(x − y) = 2f(x), x ⊥ y.
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Corollary 2.7. Suppose that (X ,⊥) is an orthogonality complex normed space,
(Y, ‖.‖) is a complex Banach space, ⊥ is symmetric on X and f : X → Y is a
mapping satisfying

∥

∥f(x + y) + f(x − y) − 2f(x)
∥

∥ ≤ ǫ

for some ǫ ≥ 0 and for all x, y ∈ X with x ⊥ y. Then there exists a unique additive
mapping T : X → Y such that

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤
5

2
ǫ

for all x ∈ X .

Proof. Use the same reasoning as in the proof of Theorem 2.5 with a = 1. ¤

Now we are going to establish the orthogonal stability of f(ax + ay)−
f(ax − ay) = 2af(y).

Proposition 2.8. Suppose that ⊥ is symmetric on X and f : X → Y is a map-
ping satisfying

∥

∥f(ax + ay) − f(ax − ay) − 2af(y)
∥

∥ ≤ ǫ

for some ǫ ≥ 0, for all a ∈ A1 and all x, y ∈ X with x ⊥ y. Assume that
f is odd. Then there exists a unique additive mapping T : X → Y satisfying
T (ax) = aT (x), a ∈ A1, x ∈ X such that

∥

∥f(x) − T (x)
∥

∥ ≤ 2ǫ

for all x ∈ X .

Proof. Let x ⊥ y. Since ⊥ is symmetric, y ⊥ x and so
∥

∥f(ay + ax) − f(ay − ax) − 2af(x)
∥

∥ ≤ ǫ.

Due to the fact that f is odd we conclude that
∥

∥f(ax + ay) + f(ax − ay) − 2af(x)
∥

∥ ≤ ǫ.

Therefore we can apply Proposition 2.3 to get the required mapping. ¤

Proposition 2.9. Suppose that f : X → Y is a mapping satisfying
∥

∥f(x + y) − f(x − y) − 2f(y)
∥

∥ ≤ ǫ (2.7)

for some ǫ ≥ 0 and all x, y ∈ X with x ⊥ y. Assume that f is even and f(0) = 0.
Then

∥

∥f(x)
∥

∥ ≤
1

2
ǫ

for all x ∈ X .
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Proof. Setting x = 0 in (2.7) we get
∥

∥f(y)−f(−y)−2f(y)
∥

∥ ≤ ǫ and so
∥

∥f(y)
∥

∥ ≤ 1

2
ǫ

for all y ∈ X . ¤

Theorem 2.10. Suppose that ⊥ is symmetric on X and f : X → Y is a mapping
satisfying

∥

∥f(ax + ay) − f(ax − ay) − 2af(y)
∥

∥ ≤ ǫ

for some ǫ ≥ 0, for all a ∈ A1 and all x, y ∈ X with x ⊥ y. Then there exists
a unique additive mapping T : X → Y satisfying T (ax) = aT (x), a ∈ A1, x ∈ X
such that

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤
5

2
ǫ

for all x ∈ X . Moreover, if the mapping t 7→ f(tx) is continuous for each fixed
x ∈ X , then T is A-linear.

Proof. One can use the same reasoning as the proof of Theroem 2.5. ¤

Remark 2.11. One can state and prove the results analogue to Corollaries 2.6
and 2.7 in a similar manner.

3. Orthogonal stability in Banach modules over Banach ∗-algebras

Applying some ideas from [3] and [22], we deal with the orthogonal stability prob-
lem for the additive type equations in Banach modules over Banach ∗-algebras.

Let A be a unital Banach ∗-algebra with unit 1, unit sphere A1, the unital group
U(A), and the positive cone A+. Let (X ,⊥) denote an orthogonality normed left
A-module with the property 1x = x and (Y, ‖.‖) be a Banach left A-module.

Theorem 3.1. Suppose that ⊥ is symmetric on X and f : X → Y is a mapping
satisfying

∥

∥f(ax1 + ax2) + (−1)k+1f(ax1 − ax2) − 2af(xk)
∥

∥ ≤ ǫ

for k = 1 or 2, for some ǫ ≥ 0, for all a ∈ (A1 ∩ A+) ∪ {i} and all x1, x2 ∈ X
with x1 ⊥ x2. Assume that the mapping t 7→ f(tx) is continuous for each fixed
x ∈ X . Then there exists a unique A-linear mapping T : X → Y satisfying
T (ax) = aT (x), a ∈ A, x ∈ X such that

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤
5

2
ǫ

for all x ∈ X .

Proof. By the same reasoning as the proof of Theorem 2.5 and Theorem 2.10,
there is a unique R-linear mapping T : X → Y satisfying T (ax) = aT (x),
a ∈ A+ ∪ {i}, x ∈ X such that

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤ 5

2
ǫ.
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Each element of A can be represented as a = (a1 − a2) + i(a3 − a4) where
aj ∈ A+, 1 ≤ j ≤ 4 (see [20]). Hence T (ax) = aT (x), a ∈ A, x ∈ X . ¤

The following lemma is very useful when one deals with the unitaries of a
C∗-algebra; cf. Theorem 1 of [17]:

Lemma 3.2. Let a be an element of a C∗-algebra A and ‖a‖ < 1 − (2/m) for
some integer m > 2. Then there exist m elements u1, · · · , um ∈ U(A) such that
a = (u1 + · · · + um)/m.

Now we are ready to end our work.

Theorem 3.3. Suppose that A is a C∗-algebra, ⊥ is symmetric on X and
f : X → Y is a mapping satisfying

∥

∥f(ax1 + ax2) + (−1)k+1f(ax1 − ax2) − 2af(xk)
∥

∥ ≤ ǫ

for k = 1 or 2, for some ǫ ≥ 0, for all a ∈ U(A) and all x1, x2 ∈ X with x1 ⊥ x2.
Assume that the mapping t 7→ f(tx) is continuous for each fixed x ∈ X . Then
there exists a unique A-linear mapping T : X → Y satisfying T (ax) = aT (x),
a ∈ A, x ∈ X such that

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤
5

2
ǫ

for all x ∈ X .

Proof. By the same reasoning as the proof of Theorem 2.5 and Theorem 2.10, there
is a unique R-linear mapping T : X → Y satisfying T (ax) = aT (x), a ∈ U(A),
x ∈ X such that

∥

∥f(x) − f(0) − T (x)
∥

∥ ≤ 5

2
ǫ for all x ∈ X .

Assume that a ∈ A(a 6= 0) and N is an integer greater than 4‖a‖. Then

‖a‖

N
<

‖a‖

4‖a‖
< 1/3 = 1 −

2

3
.

By Lemma 3.2, there exist three unitaries u1, u2, u3 such that 3 a
N

= u1 + u2 + u3.
By the additivity of T we get T

(

1

3
x
)

= 1

3
T (x) for all x ∈ A. Therefore,

T (ax) = T
(N

3
· 3 ·

a

N
x
)

= NT
(1

3
· 3 ·

a

N
x
)

=
N

3
T

(

3 ·
a

N
x
)

=
N

3
T (u1x + u2x + u3x) =

N

3

(

T (u1x) + T (u2x) + T (u3x)
)

=
N

3
(u1 + u2 + u3)T (x) =

N

3
· 3 ·

a

N
= aT (x)

for all x ∈ A. In addition, T (0x) = 0T (x) for all x ∈ A. Hence T is A-linear. ¤

Acknowledgment. The authors would like to sincerely thank the referees for
their valuable comments.



258 M. S. Moslehian and Th. M. Rassias AEM

References

[1] J. Alonso, Some properties of Birkhoff and isosceles orthogonality in normed linear spaces,
in: Rassias, Th. M. (ed.), Inner Product Spaces and Applications, 1–11, Pitman Res. Notes
Math. Ser. 376, Longman, Harlow, 1997.

[2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York,
1973.

[3] C. Baak and M. S. Moslehian, Stability of J∗-homomorphisms. Nonlinear Anal.–TMA
63 (2005), 42–48.

[4] D. G. Bourgin, Classes of transformations and bordering transformations. Bull. Amer.
Math. Soc. 57 (1951), 223–237.

[5] S. Czerwik (ed.), Stability of Functional Equations of Ulam–Hyers–Rassias Type,
Hadronic Press Inc., Palm Harbor, Florida, 2003.

[6] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific
Publishing Co., New Jersey, London, Singaporem, Hong Kong, 2002.

[7] M. M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62

(1947), 320–337.
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Variables, Birkhäuser, Boston, Basel, Berlin, 1998.
[13] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer.

Math. Soc. 61 (1947), 265–292.
[14] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ.

Hamburg 70 (2000), 175–190.
[15] S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Anal-

ysis, Hadronic Press lnc. Palm Harbor, Florida, 2001.
[16] S.-M. Jung and P. Sahoo, Hyers–Ulam stability of the quadratic equation of Pexider type,

J. Korean Math. Soc. 38, no. 3 (2001), 645–656.
[17] R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators,

Math. Scand. 57 (1985), 249–266.
[18] M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math.

Anal. Appl. 318, no. 1 (2006), 211–223.
[19] M. S. Moslehian, Orthogonal stability of the Pexiderized quadratic equation, J. Differ.

Equations. Appl. 11, no. 11 (2005), 999–1004.
[20] J. G. Murphy, Operator Theory and C∗-algebras, Academic Press, San Diego, 1990.
[21] C.-G. Park, Functional equations in Banach modules, Indian J. Pure Appl. Math. 33, no.

7 (2002), 1077–1086.
[22] C.-G. Park, Multilinear mappings in Banach modules over C∗-algebra, Indian J. pure

Appl. Math. 35 (2004), 183–192.
[23] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.

Math. Soc. 72 (1978), 297–300.
[24] Th. M. Rassias (ed.), Functional Equations, Inequalities and Applications, Kluwer Aca-

demic Publishers, Dordrecht, 2003.
[25] Th. M. Rassias, Stability of the generalized orthogonality functional equation, in: Rassias,

Th. M. (ed.), Inner product spaces and applications, 219–240, Pitman Res. Notes Math.
Ser., 376, Longman, Harlow, 1997.

[26] J. Rätz, On orthogonally additive mappings, Aequations Math. 28 (1985), 35–49.



Vol. 73 (2007) Orthogonal stability of additive type equations 259

[27] S. M. Ulam, Problems in Modern Mathematics. Chapter VI, Science Editions, Wiley, New
York, 1964.

M. S. Moslehian
Department of Mathematics
Ferdowsi University
P. O. Box 1159
Mashhad 91775
Iran
and
Centre of Excellence in Analysis
on Algebraic Structures (CEAAS)
Ferdowsi University
Iran
e-mail: moslehian@ferdowsi.um.ac.ir

Th. M. Rassias
National Technical University of Athens
Department of Mathematics
Zografou Campus
15780 Athens
Greece
e-mail: trassias@math.ntua.gr

Manuscript received: August 18, 2005 and, in final form, May 3, 2006.


