°c Birkh¨auser Verlag, Basel, 2005

Aequationes Mathematicae

Neumann boundary value problems with singularities in a phase variable

RAVI P. AGARWAL, DONAL O'REGAN AND SVATOSLAV STANĚK^{*}

Summary. The singular Neumann boundary value problem $(g(x'))' = f(t, x, x')$, $x'(0) =$ $x'(T) = 0$ is considered. Here $f(t, x, y)$ satisfies local Carathéodory conditions on $[0, T] \times \mathbb{R}$ × $(0, \infty)$ and f may be singular at the value 0 of the phase variable y. Conditions guaranteeing the existence of a solution to the above problem with a positive derivative on $(0, T)$ are given. The proofs are based on regularization and sequential techniques and use the topological transversality method.

Mathematics Subject Classification (2000). 34B16.

Keywords. Singular Neumann boundary value problem, g-Laplacian, increasing solutions, topological transversality method.

1. Introduction

Let T be a positive number, $J = [0, T]$. Consider the Neumann boundary value problem (BVP)

$$
(g(x'(t)))' = f(t, x(t), x'(t)),
$$
\n(1.1)

$$
x'(0) = 0, \quad x'(T) = 0,\tag{1.2}
$$

where $g \in C^{0}([0,\infty)), g(0) = 0$ and f satisfies local Carathéodory conditions on $J \times \mathbb{R} \times (0, \infty)$ $(f \in Car(J \times \mathbb{R} \times (0, \infty))$ and f may be singular at the value 0 of its second phase variable in the following sense: $\lim_{y\to 0^+} |f(t,x,y)| = \infty$ for a.e. $t \in J$ and each $x \in \mathbb{R}$, $x \neq \alpha(t)$, where α appears in assumption (H_2) .

A function $x \in C^1(J)$ is said to be a *solution of the BVP* (1.1), (1.2) if $g(x') \in$ $AC(J)$ (absolutely continuous functions on J), x satisfies the Neumann boundary conditions (1.2) and (1.1) holds a.e. on J.

In this paper we are interested in finding conditions guaranteeing the existence of a solution x of the BVP (1.1), (1.2) such that $x'(t) > 0$ for $t \in (0,T)$. We

 $*$ Supported by grant no. 201/04/1077 of the Grant Agency of Czech Republic and by the Council of Czech Government J14/98:153100011.

note that our problem is at resonance since each constant function on J is a solution of the associated homogeneous problem $(g(x'))' = 0$, (1.2) and, in addition, solutions of the BVP (1.1), (1.2) have 'maximal' smoothness (that is $x \in C^1(J)$ and $(g(x'))' \in AC(J)$ although f may be singular at the value 0 of its second phase variable. Also we remark here that the singular Neumann boundary value problem with f singular at the value 0 of its second phase variable has not been considered in the literature.

We note that the regular BVP (1.1), (1.2) with $g(u) \equiv u$ is usually considered by combining the method of lower and upper functions (see, e.g. [5], [6], [8], [9], [11], [12] and references therein) with the Mawhin continuation theorem ([11]) or the topological transversality method ([5], [6], [8]) or Schauder degree theory ([12]) or special procedures ([9]). The nonlinearity f in (1.1) is continuous ([5], [8], [12]) or satisfies local Carathéodory conditions $([6], [9], [11])$. Existence results for the Neumann problem $-x''(t) = f_1(t, x(t)) + p(t), (1.2)$ with $f_1 \in C^0([0, 1] \times \mathbb{R})$ and $p \in L_2([0,1])$ are proved in [13] by variational methods.

The regular BVP (1.1), (1.2) with $g \in C^{0}(\mathbb{R})$, $g(\mathbb{R}) = \mathbb{R}$, g increasing and $f \in$ $Car([a, b] \times \mathbb{R}^2)$ was considered in [2] and [3]. In [2] solutions are obtained as the limit of solutions of different nonhomogeneous mixed problems whereas existence was proved by the method of lower and upper functions in [14]. Combining the method of lower and upper functions in the reverse order together with monotone methods and a iterative technique, the existence of minimal and maximal solutions of the BVP (1.1), (1.2) lying between upper and lower functions is proved in [3]. In [4] the author discuss the existence and nonexistence of solutions to the differential equation $(g(x'))' + p(x') + h(x) = q(t)$ satisfying (1.2). Here g is an increasing homeomorphism on I_1 onto I_2 , where I_1 and I_2 are open intervals containing zero, $g(0) = 0$, $p \in C^{0}(\mathbb{R})$, $q \in C^{0}([0, T])$ with $\int_{0}^{T} q(t) dt = 0$ and $h \in C^{0}(\mathbb{R})$ is bounded, $\lim_{u\to-\infty}h(u) < \lim_{u\to\infty}h(u)$. In [10] the authors stated conditions for the existence of a solution to the BVP $(|x'|^{p-2}x')' + f_1(t,x) + f_2(t,x) = 0$, (1.2) where f_1 is bounded, f_2 satisfies a one-sided growth condition, $f_1 + f_2$ has some sign condition, and the solutions to some associated homogeneous problem are not oscillatory. In [7] the BVP $-(|x'(t)|^{p-2}x'(t))' = h(t, x(t))$, (1.2) $(2 \le p < \infty)$ is considered, where $h: J \times \mathbb{R} \to \mathbb{R}$ is a Borel measurable function satisfying some extra conditions. To guarantee the existence of solutions the authors pass to a multivalued problem which is solved using variational techniques based on nonsmooth critical point theory.

Our existence result for the singular BVP (1.1) , (1.2) is proved by regularization and sequential techniques. We first define a sequence of auxiliary regular BVPs to the BVP (1.1) , (1.2) and give a priori bounds for their solutions (Lemma 2.1). Then we use twice the topological transversality principle (Theorem 1.3) to prove that the sequence of the auxiliary BVPs has a sequence $\{x_n\}$ of solutions (Lemma 2.2 and 2.3). The construction of the sequence of auxiliary BVPs guarantees that $x'_n(t) > 1/n$ for each $t \in J$ and $n \in \mathbb{N}$. In addition, we show that $g(x'_n(t)) \ge \mu t$ and $g(x'_n(t)) \ge \mu(T-t)$ on a neighbourhood of zero for each

 $n \in \mathbb{N}$, where μ is a positive constant (Lemma 2.5). Applying the Arzelà–Ascoli theorem we can select a convergent subsequence of $\{x_n\}$ in $C^1(J)$, and then the Lebesgue dominated convergence theorem shows that its limit x is a solution of the BVP (1.1) , (1.2) with $x' > 0$ on $(0,T)$ (Theorem 3.1). We illustrate our theory with two examples (Example 3.2 and 3.3).

Throughout this paper, the following assumptions are used.

- (H_1) $g \in C^0([0,\infty))$ is increasing, $g(0) = 0$ and $\lim_{u \to \infty} g(u) = \infty$;
- (H_2) $f \in Car(J \times \mathbb{R} \times (0, \infty))$ and

 $f(t, \alpha(t), y) = 0$ for a.e. $t \in J$ and each $y \in (0, \infty)$,

where $\alpha \in C^0(J)$ is decreasing;

(H₃) There exist functions $q_1 \in C^0((-\infty, \alpha(0)]), q_2 \in C^0([\alpha(T), \infty))$ positive, $\omega_1 \in C^0([0,\infty))$ nonnegative and nondecreasing and $\omega_2 \in C^0((0,\infty))$ positive and nonincreasing, \int_1^1 $\int_0^{\infty} \omega_2(g^{-1}(s)) ds < \infty$, such that $0 < f(t, x, y) \leq q_1(x)(\omega_1(y) + \omega_2(y))$

for a.e.
$$
t \in J
$$
 and each $x < \alpha(t)$, $y > 0$

and

$$
0 > f(t, x, y) \ge -q_2(x)(\omega_1(y) + \omega_2(y))
$$

for a.e. $t \in J$ and each $x > \alpha(t)$, $y > 0$;

 (H_4) lim $_{u\rightarrow\infty}$ $H(u) = \infty$ and

$$
\min\left\{\limsup_{u\to\infty}\frac{\displaystyle\int_{\alpha(T)-Tu}^{\alpha(0)}q_1(s)\,ds}{H(u)},\ \limsup_{u\to\infty}\frac{\displaystyle\int_{\alpha(T)}^{\alpha(0)+Tu}q_2(s)\,ds}{H(u)}\right\}<1
$$

where

$$
H(u) = \int_0^{g(u)} \frac{g^{-1}(s)}{\omega_1(g^{-1}(s)) + \omega_2(g^{-1}(s))} ds \text{ for } u \in [0, \infty);
$$

(H₅) For each $\varepsilon > 0$ there exists $\delta > 0$ such that for a.e. $t \in J$ and each $a > \varepsilon$, $y \in (0, 1],$

$$
f(t, \alpha(t) - a, y) \ge \delta, \quad f(t, \alpha(t) + a, y) \le -\delta.
$$

Remark 1.1. Since $g^{-1}(0) = 0$ and g^{-1} is continuous and increasing on $[0, \infty)$ which follows from (H_1) and ω_2 is a positive, nonincreasing and continuous function on $(0, \infty)$ by (H_3) , the condition $\int_0^1 \omega_2(g^{-1}(s)) ds < \infty$ implies that \int^c $\int_0^{\infty} \omega_2(g^{-1}(s)) ds < \infty$ for each $c > 0$.

Remark 1.2. By (H_3) , the function $p : [0, \infty) \to [0, \infty)$,

$$
p(u) = \begin{cases} 0 & \text{for } u = 0\\ \frac{g^{-1}(u)}{\omega_1(g^{-1}(u)) + \omega_2(g^{-1}(u))} & \text{for } u > 0, \end{cases}
$$
(1.3)

is continuous on $[0, \infty)$ and $H(u) = \int_0^{g(u)} p(s) ds$ for $u \in [0, \infty)$.

Existence results for auxiliary regular BVPs to the BVP (1.1) , (1.2) are proved by the topological transversality method ([1], [5], [6]), which we state here for the convenience of the reader. Let $\mathcal U$ be a convex subset of a Banach space X and let $\Omega \subset \mathcal{U}$ be open in \mathcal{U} . Denote by $\mathcal{H}_{\partial\Omega}(\overline{\Omega}, \mathcal{U})$ the set of compact operators $\mathcal{F}: \overline{\Omega} \to \mathcal{U}$ which are fixed point free on $\partial\Omega$. We say that $\mathcal{F} \in \mathcal{H}_{\partial\Omega}(\overline{\Omega}, \mathcal{U})$ is essential if every operator in $\mathcal{H}_{\partial\Omega}(\overline{\Omega}, \mathcal{U})$ which agrees with $\mathcal F$ on $\partial\Omega$ has a fixed point in Ω

Theorem 1.3. (Topological transversality) Let

- (a) $\mathcal{F} \in \mathcal{H}_{\partial\Omega}(\overline{\Omega}, \mathcal{U})$ be essential,
- (b) $H : \overline{\Omega} \times [0,1] \to \mathcal{U}$ be a compact homotopy, $H(\cdot,0) = \mathcal{F}$ and $H(x,\lambda) \neq x$ for $x \in \partial \Omega$ and $\lambda \in [0,1]$.

Then $H(\cdot, 1)$ is essential and therefore it has a fixed point in Ω .

If $p \in \Omega$ and $\mathcal{F} \in \mathcal{H}_{\partial\Omega}(\overline{\Omega}, \mathcal{U})$ is a constant operator, $\mathcal{F}(x) = p$ for $x \in \overline{\Omega}$, then $\mathcal F$ is essential (see [1], [5], [6]).

2. Auxiliary regular BVPs

For each $n \in \mathbb{N}$, define $S_n \in C^0(\mathbb{R})$ and \tilde{f}_n , $f_n \in Car(J \times \mathbb{R}^2)$ by

$$
S_n(u) = \begin{cases} 1 & \text{for } u > \frac{1}{n} \\ 2n(u - \frac{1}{2n}) & \text{for } \frac{1}{2n} < u \leq \frac{1}{n} \\ 0 & \text{for } u \leq \frac{1}{2n}, \end{cases}
$$

$$
\tilde{f}_n(t, x, y) = \begin{cases} f(t, x, y) & \text{for } (t, x) \in J \times \mathbb{R}, y > \frac{1}{n} \\ f(t, x, \frac{1}{n}) & \text{for } (t, x) \in J \times \mathbb{R}, y \leq \frac{1}{n}, \\ f_n(t, x, y) = S_n(y) \tilde{f}_n(t, x, y). \end{cases}
$$

Then (H_2) and (H_3) give

$$
f_n(t, \alpha(t), y) = 0 \quad \text{for a.e. } t \in J \text{ and each } y \in \mathbb{R}, \tag{2.1}
$$

$$
0 < f_n(t, x, y) \le q_1(x) \left[\max\{\omega_1(y), \omega_1(\frac{1}{n})\} + \omega_2(y) \right] \}
$$
\nfor a.e. $t \in J$ and each $x < \alpha(t), y > \frac{1}{2n}$,

\n(2.2)

$$
0 > f_n(t, x, y) \ge -q_2(x) \left[\max \left\{ \omega_1(y), \omega_1\left(\frac{1}{n}\right) \right\} + \omega_2(y) \right] \}
$$

for a.e. $t \in J$ and each $x > \alpha(t)$, $y > \frac{1}{2n}$ (2.3)

and

$$
f_n(t, x, y) = 0 \quad \text{for a.e. } t \in J \text{ and each } x \in \mathbb{R}, y \le \frac{1}{2n}.
$$
 (2.4)

Let $g_* \in C^0(\mathbb{R})$ be defined by the formula

$$
g_*(u) = \begin{cases} g(u) & \text{for } u \in [0, \infty) \\ -g(-u) & \text{for } u \in (-\infty, 0). \end{cases}
$$

Consider the family of regular BVPs

$$
(g_*(x'(t)))' = \lambda f_n(t, x(t), x'(t)),
$$
 (E)^λ_n

$$
x'(0) = \frac{1}{n}, \quad x'(T) = \frac{1}{n}
$$
 (B)_n

depending on the parameters $n \in \mathbb{N}$ and $\lambda \in [0, 1]$.

A priori bounds for solutions of the BVPs $(E)_{n}^{\lambda}$, $(B)_{n}$ are presented in the following lemma.

Lemma 2.1. Let assumptions (H_1) – (H_4) be satisfied and $n \in \mathbb{N}$, $\lambda \in (0,1]$. Let x be a solution of the BVP $(E)_{n}^{\lambda}$, $(B)_{n}$. Then there exist positive constants A and Λ independent of n and λ, and a unique ξ ∈ (0,T) (depending on x) such that

$$
||x|| = \max\{|x(t)| : t \in J\} < A,\tag{2.5}
$$

$$
x(\xi) = \alpha(\xi) \tag{2.6}
$$

and

$$
\frac{1}{n} \le x'(t) < \Lambda \quad \text{for } t \in J. \tag{2.7}
$$

Proof. We first prove that

$$
x(0) < \alpha(0). \tag{2.8}
$$

If not, then $x(0) \ge \alpha(0)$ and from $x'(0) = 1/n$ and α being decreasing on J we see that $x(t) > \alpha(t)$ on a right neighbourhood of $t = 0$. If $x(\tau) = \alpha(\tau)$ for a $\tau \in (0, T]$ and $x(t) > \alpha(t)$ for $t \in (0, \tau)$, then $x'(\tau) \leq 0$ and so for a $\nu \in (0, \tau)$ we have $x'(\nu) = 1/(2n)$ and $x' \le 1/(2n)$ on $[\nu, \tau]$. Hence $(g_*(x'))' = 0$ a.e. on $[\nu, \tau]$ by (2.4) and then $x'(t) = 1/(2n)$ on this interval, which contradicts $x'(\tau) \leq 0$. Therefore $x(t) > \alpha(t)$ for $t \in (0, T]$ and then (2.3) and (2.4) yield

$$
(g_*(x'(t)))' = \lambda f_n(t, x(t), x'(t)) \begin{cases} < 0 & \text{if } x'(t) > \frac{1}{2n} \\ = 0 & \text{if } x'(t) \le \frac{1}{2n} .\end{cases}
$$

Then

$$
g_*(x'(T)) = g\left(\frac{1}{n}\right) + \int_0^T (g_*(x'(t))' \, dt = g\left(\frac{1}{n}\right) + \lambda \int_0^T f_n(t, x(t), x'(t)) \, dt < g\left(\frac{1}{n}\right)
$$

which contradicts $x'(T) = 1/n$. We have proved that (2.8) is true.

Since $x(0) < \alpha(0)$, $x(t) < \alpha(t)$ on a right neighbourhood of $t = 0$ and then $x'(0) = 1/n$ and (2.2) show that x' is increasing on any right neighbourhood of $t = 0$ where $x(t) < \alpha(t)$. Now from $x'(T) = 1/n$ we deduce that (2.6) holds with $a \xi \in (0,T)$, $x(t) < \alpha(t)$ for $t \in [0,\xi)$, $x'(t) > 1/n$ for $t \in (0,\xi]$ and $x(t) > \alpha(t)$ on a right neighbourhood of $t = \xi$. Arguing as in the first part of our proof we can verify that $x(t) > \alpha(t)$ for $t \in (\xi, T]$. Hence $(g_*(x'))' \leq 0$ a.e. on $[\xi, T]$ by (2.3) and (2.4), and then $x'(T) = 1/n$ implies $x' \geq 1/n$ on [ξ , T] which together with (2.3) yields $(g_*(x'))' < 0$ a.e. on [ξ, T]. As a result $x'(t) > 1/n$ for $t \in [\xi, T)$, and so

$$
x'(t) > \frac{1}{n} \quad \text{for } t \in (0, T) \tag{2.9}
$$

and (2.6) is satisfied with a unique $\xi \in (0,T)$. In addition, it is clear that

$$
||x'|| = \max\{x'(t) : t \in J\} = x'(\xi)
$$
\n(2.10)

and

$$
||x|| = \max\{|x(0)|, |x(T)|\}.
$$
\n(2.11)

We now give bounds for x on J. Clearly (see (2.9)), $x(0) \leq x(t) \leq x(T)$ for $t \in J$. By (2.2) , (2.3) and (2.9) , we have

$$
(g(x'(t)))' \le q_1(x(t))(\omega_1(x'(t)) + \omega_2(x'(t))) \text{ for a.e. } t \in [0, \xi],
$$

$$
(g(x'(t)))' \ge -q_2(x(t))(\omega_1(x'(t)) + \omega_2(x'(t))) \text{ for a.e. } t \in [\xi, T].
$$

Integrating the inequality

$$
\frac{(g(x'(t)))'x'(t)}{\omega_1(x'(t)) + \omega_2(x'(t))} \le q_1(x(t))x'(t) \text{ for a.e. } t \in [0, \xi]
$$

and

$$
\frac{(g(x'(t)))'x'(t)}{\omega_1(x'(t)) + \omega_2(x'(t))} \ge -q_2(x(t))x'(t) \text{ for a.e. } t \in [\xi, T]
$$

over $[0,t] \subset [0,\xi]$ and $[t,T] \subset [\xi,T]$, we get

$$
\int_{g(1/n)}^{g(x'(t))} \frac{g^{-1}(s)}{\omega_1(g^{-1}(s)) + \omega_2(g^{-1}(s))} ds \le \int_{x(0)}^{x(t)} q_1(s) ds
$$

$$
< \int_{x(0)}^{\alpha(0)} q_1(s) ds, \quad t \in [0, \xi]
$$

and

$$
\int_{g(x'(t))}^{g(1/n)} \frac{g^{-1}(s)}{\omega_1(g^{-1}(s)) + \omega_2(g^{-1}(s))} ds \ge -\int_{x(t)}^{x(T)} q_2(s) ds
$$

>
$$
-\int_{\alpha(T)}^{x(T)} q_2(s) ds, \quad t \in [\xi, T],
$$

respectively. Hence

$$
H(x'(t)) < H\left(\frac{1}{n}\right) + \int_{x(0)}^{\alpha(0)} q_1(s) \, ds, \quad t \in [0, \xi] \tag{2.12}
$$

and

$$
H(x'(t)) < H\left(\frac{1}{n}\right) + \int_{\alpha(T)}^{x(T)} q_2(s) \, ds, \quad t \in [\xi, T]. \tag{2.13}
$$

Since (see (2.6))

$$
x(0) = x(\xi) - \int_0^{\xi} x'(s) ds > \alpha(\xi) - T ||x'|| > \alpha(T) - T ||x'||,
$$
\n(2.14)

$$
x(T) = x(\xi) + \int_{\xi}^{T} x'(s) ds < \alpha(\xi) + T ||x'|| < \alpha(0) + T ||x'||,
$$
\n(2.15)

 (2.12) and (2.13) with $t = \xi$ and (2.10) show that

$$
H(\|x'\|) < H(1) + \int_{\alpha(T)-T\|x'\|}^{\alpha(0)} q_1(s) \, ds,\tag{2.16}
$$

$$
H(\|x'\|) < H(1) + \int_{\alpha(T)}^{\alpha(0) + T \|x'\|} q_2(s) \, ds. \tag{2.17}
$$

From (H_4) there exists a positive constant Λ such that

$$
H(1) + \int_{\alpha(T)-Tu}^{\alpha(0)} q_1(s) \, ds < H(u)
$$

and/or

$$
H(1) + \int_{\alpha(T)}^{\alpha(0) + Tu} q_2(s) \, ds < H(u)
$$

for $u \geq \Lambda$. Consequently (see (2.16) and (2.17)), $||x'|| < \Lambda$. We have proved that (2.7) is satisfied, and then (see (2.11) , (2.14) and (2.15)) (2.5) holds with $A = \max\{|\alpha(0)|, |\alpha(T)|\} + T\Lambda.$

The solvability of the BVP $(E)_{n}^{1}$, $(B)_{n}$, $n \in \mathbb{N}$, will be proved by the topological transversality method. For this we denote $\mathbf{X} = C^1(J) \times \mathbb{R}$ the Banach space equipped with the norm $||(x, a)||_* = ||x|| + ||x'|| + |a|$. Set

$$
\mathcal{U} = \{(x, a) : (x, a) \in \mathbf{X}, x(0) = 0\}
$$

and (for $n \in \mathbb{N}$)

$$
\Omega_n = \left\{ (x, a) : (x, a) \in \mathcal{U}, ||x|| < 2A + T, ||x'|| < \Lambda, x'(t) > \frac{3}{4n} \text{ for } t \in J, |a| < A + |\alpha(0)| + |\alpha(T)| + T \right\},\
$$

where positive constants A and Λ are given in Lemma 2.1, and the function α appears in (H_2) . Then U is a closed and convex subset of **X** and Ω_n is an open subset of U for each $n \in \mathbb{N}$.

We now give the lemma which will be used in the proof of Lemma 2.3 which gives conditions for the solvability to the BVP $(E)_{n}^{1}$, $(B)_{n}$.

Lemma 2.2. Let assumptions (H_2) and (H_3) be satisfied and $n \in \mathbb{N}$. Let the operator $\mathcal{K}_n : \overline{\Omega}_n \to \mathcal{U}$ be defined by

$$
\mathcal{K}_n(x, a) = \left\{ \frac{t}{n}, \, a + \int_0^T f_n(t, x(t) + a, x'(t)) \, dt \right\}.
$$
 (2.18)

Then \mathcal{K}_n is essential.

Proof. Let $\mathcal{F}_n : \overline{\Omega}_n \times [0,1] \to \mathcal{U}$ be given by

$$
\mathcal{F}_n(x, a, \lambda) = \left\{ \frac{t}{n}, a + (1 - \lambda)(\alpha(0) - a) + \lambda \int_0^T f_n(t, x(t) + a, x'(t)) dt \right\}.
$$

Then $\mathcal{F}_n(\cdot,\cdot,1) = \mathcal{K}_n(\cdot,\cdot)$ and $\mathcal{F}_n(x,a,0) = p$ for $(x,a) \in \overline{\Omega}_n$ where $p = (t/n,\alpha(0))$ $\in \Omega_n$. If we show that \mathcal{F}_n is compact and $\mathcal{F}_n(x,a,\lambda) \neq (x,a)$ for $(x,a) \in \partial \Omega_n$ and $\lambda \in (0,1],$ then Lemma 2.2 follows from Theorem 1.3. Since $f_n \in Car(J \times \mathbb{R}^2),$ there exists $\gamma \in L_1(J)$ such that

$$
|f_n(t, x, y)| \le \gamma(t) \tag{2.19}
$$

for a.e. $t \in J$ and each $|x| \leq 3A + |\alpha(0)| + |\alpha(T)| + 2T$, $|y| \leq \Lambda$, and so \mathcal{F}_n is continuous on $\Omega_n \times [0, 1]$ by the Lebesgue dominated convergence theorem and also it is easy to check (use the Arzel`a–Ascoli theorem and the compactness criterion on R) that $\mathcal{F}_n(\Omega_n \times [0, 1])$ is compact in U. Suppose that $\mathcal{F}_n(x_0, a_0, \lambda_0) = (x_0, a_0)$ for some $(x_0, a_0) \in \partial \Omega_n$ and $\lambda_0 \in (0, 1]$. Then $x_0(t) = t/n$ and

$$
(1 - \lambda_0)(\alpha(0) - a_0) + \lambda_0 \int_0^T f_n(t, x_0(t) + a_0, x'_0(t)) dt = 0.
$$

Set

$$
r(a) = (1 - \lambda_0)(\alpha(0) - a) + \lambda_0 \int_0^T f_n(t, x_0(t) + a, x'_0(t)) dt
$$

for $a \in \mathbb{R}$. Then $r \in C^0(J)$, $r(a_0) = 0$, and since $f_n(t, x_0(t) + a, x'_0(t)) =$ $f_n(t,(t/n) + a, 1/n) = f(t,(t/n) + a, 1/n)$, we deduce from (H_2) and (H_3) that $r(a) < 0$ for $a \ge \alpha(0)$ and $r(a) > 0$ for $a < \alpha(T) - T/n$. Hence $a_0 \in (\alpha(T) - T/n)$ $T/n, \alpha(0)$) which contradicts $(x_0, a_0) \in \partial \Omega_n$.

Lemma 2.3. Let assumptions (H_1) – (H_4) be satisfied. Then for each $n \in \mathbb{N}$, the $BVP \ (\mathbf{E})^1_n$, $(\mathbf{B})_n$ has a solution x_n and

$$
||x_n|| < A,\t\t(2.20)
$$

Vol. 69 (2005) Neumann boundary value problems 301

$$
x_n(\xi_n) = \alpha(\xi_n) \tag{2.21}
$$

and

$$
\frac{1}{n} \le x'(t) < \Lambda \quad \text{for } t \in J,\tag{2.22}
$$

where the constants A, Λ are given in Lemma 2.1 and $\xi_n \in (0, T)$ is unique.

Proof. Fix $n \in \mathbb{N}$ and define the operator $\mathcal{A} : \overline{\Omega}_n \times [0,1] \to \mathcal{U}$ by

$$
\mathcal{A}(x, a, \lambda) = \Big\{ \int_0^t g_*^{-1} \Big(g\Big(\frac{1}{n}\Big) + \lambda \int_0^s f_n(v, x(v) + a, x'(v)) dv \Big) ds,
$$

$$
a + \int_0^T f_n(t, x(t) + a, x'(t)) dt \Big\}.
$$

Suppose that (x_*,a_*) is a fixed point of $\mathcal{A}(\cdot,\cdot,1)$. Then

$$
x_*(t) = \int_0^t g_*^{-1}\Big(g\Big(\frac{1}{n}\Big) + \int_0^s f_n(v, x_*(v) + a_*, x'_*(v)) dv\Big) ds, \quad t \in J
$$

and

$$
\int_0^T f_n(t, x_*(t) + a_*, x'_*(t)) dt = 0.
$$
 (2.23)

It follows that

$$
g_*(x'_*(t)) = g\left(\frac{1}{n}\right) + \int_0^t f_n(s, x_*(s) + a_*, x'_*(s)) ds, \quad t \in J
$$

and (see (2.23)) $x'_{*}(0) = x'_{*}(T) = 1/n$. Setting $x_{n}(t) = x_{*}(t) + a_{*}$ for $t \in J$, we see that x_n is a solution of the BVP $(E)_n^1$, $(B)_n$ and the validity of $(2.20)-(2.22)$ now follows from Lemma 2.1. Therefore to prove the existence of a solution of the BVP $(E)¹_n$, $(B)_n$ satisfying (2.20) – (2.22) , we have to show that the operator $\mathcal{A}(\cdot, \cdot, 1)$ has a fixed point. Since $\mathcal{A}(\cdot,\cdot,0) = \mathcal{K}_n(\cdot,\cdot)$ and \mathcal{K}_n is essential by Lemma 2.2, for the existence of a fixed point of $\mathcal{A}(\cdot, \cdot, 1)$ it is sufficient to verify, by Theorem 1.3, that (i) A is a compact operator, and

(ii) for each $\lambda \in [0,1], \mathcal{A}(\cdot,\cdot,\lambda)$ is fixed point free on $\partial\Omega_n$.

Using (2.19) , $\mathcal A$ is continuous by the Lebesgue dominated convergence theorem and also $\mathcal{A}(\overline{\Omega}_n\times[0,1])$ is compact in U. Thus (i) is satisfied. Let $\mathcal{A}(x_0,a_0,\lambda_0)=(x_0,a_0)$ for some $(x_0, a_0) \in \overline{\Omega}_n$ and $\lambda_0 \in [0, 1]$. If $\lambda_0 = 0$ then $(x_0, a_0) \notin \partial \Omega_n$ which has been proved in the proof of Lemma 2.2. Let $\lambda_0 \in (0,1]$. Then

$$
x_0(t) = \int_0^t g_*^{-1} \left(g\left(\frac{1}{n}\right) + \lambda_0 \int_0^s f_n(v, x_0(v) + a_0, x'_0(v)) dv \right) ds, \quad t \in J
$$

$$
\int_0^T f_n(t, x_0(t) + a_0, x'_0(t)) dt = 0.
$$
 (2.24)

and

$$
\int_0^T f_n(t, x_0(t) + a_0, x'_0(t)) dt = 0.
$$
 (2.24)

Hence

$$
g_*(x'_0(t)) = g\left(\frac{1}{n}\right) + \lambda_0 \int_0^t f_n(s, x_0(s) + a_0, x'_0(s)) ds, \quad t \in J,
$$

and (see (2.24)) $x'_0(0) = x'_0(T) = 1/n$. Setting $x_n(t) = x_0(t) + a_0$ for $t \in J$, we see that x_n is a solution of BVP $(E)_{n}^{\lambda_0}$, $(B)_n$. Consequently,

$$
||x_0 + a_0|| = ||x_n|| < A, \quad \frac{1}{n} \le x'_n(t) = x'_0(t) < \Lambda \quad \text{for } t \in J
$$
 (2.25)

by Lemma 2.1. Since $x_0(0) = 0$, (2.25) yields $|a_0| < A$, and so $||x_0|| < A + |a_0| <$ 2A. Hence $(x_0, a_0) \notin \partial \Omega_n$ and (ii) is verified.

Remark 2.4. Let $n \in \mathbb{N}$. By Lemma 2.3, there exists a solution x_n of the BVP $(E)¹_n$, $(B)_n$ satisfying (2.20) and (2.22). From the definition of the functions f_n and g_* we see that $f_n(t, x_n(t), x'_n(t)) = f(t, x_n(t), x'_n(t)), g_*(x'_n(t)) = g(x'_n(t)),$ and so

$$
(g(x'_n(t)))' = f(t, x_n(t), x'_n(t)) \text{ for a.e. } t \in J.
$$
 (2.26)

Lemma 2.3 guarantees that for each $n \in \mathbb{N}$, there exists a solution x_n of the BVP $(E)_{n}^{1}$, $(B)_{n}$ and that $x'_{n} \geq 1/n$ on J. Since we consider solutions of the BVP $(1.1), (1.2)$ in the class $C¹(J)$ and having positive derivative on $(0, T)$, it is important for limiting processes to know properties of $\{x'_n\}$ on neighbourhoods of the points $t = 0$ and $t = T$. This is done in Lemma 2.5.

Lemma 2.5. Let assumptions (H_1) – (H_5) be satisfied and let x_n be a solution of the BVP $(E)_{n}^{1}$, $(B)_{n}$. Then there exist positive constants Δ and μ such that

$$
g(x'_n(t)) \ge \mu t, \quad g(x'_n(T-t)) \ge \mu(T-t) \quad \text{for } t \in [0, \Delta], n \in \mathbb{N}. \tag{2.27}
$$

Proof. By Lemma 2.3 and Remark 2.4, there exist $\{\xi_n\} \subset (0,T)$ and a positive constant Λ such that

$$
x_n(\xi_n) = \alpha(\xi_n) \tag{2.28}
$$

and

$$
\frac{1}{n} \le x'_n(t) < \Lambda \tag{2.29}
$$

for $t \in J$ and $n \in \mathbb{N}$, and also (2.26) is true. In addition (see (2.10)),

$$
\max\{x'_n(t) : t \in J\} = x'_n(\xi_n) \tag{2.30}
$$

and, by (H_3) and (2.26) , x'_n is increasing on $[0, \xi_n]$ and decreasing on $[\xi_n, T]$.

We now show that

$$
\chi \le \xi_n \le T - \chi \quad \text{for } n \in \mathbb{N},\tag{2.31}
$$

where χ is a positive number. First, assume on the contrary that $\lim_{n\to\infty} \xi_{k_n} = 0$ for a subsequence $\{\xi_{k_n}\}\$ of $\{\xi_n\}$. Then from $\lim_{n\to\infty} x_{k_n}(\xi_{k_n}) = \lim_{n\to\infty} \alpha(\xi_{k_n}) =$ $\alpha(0)$ and

$$
0 < x_{k_n}(\xi_{k_n}) - x_{k_n}(0) = x'_{k_n}(\tau_n)\xi_{k_n} < \Lambda \xi_{k_n}
$$

where $\tau_n \in (0, \xi_{k_n})$, we deduce that $\lim_{n \to \infty} x_{k_n}(0) = \alpha(0)$ and then using the inequalities (see (2.12) with x_{k_n} and ξ_{k_n} instead of x and t, respectively)

$$
\frac{1}{k_n} \le x'_{k_n}(\xi_{k_n}) < H^{-1}\Big(H\Big(\frac{1}{k_n}\Big) + \int_{x_{k_n}(0)}^{\alpha(0)} q_1(s) \, ds\Big), \quad n \in \mathbb{N},
$$

we get $\lim_{n \to \infty} x'_{k_n}(\xi_{k_n}) = 0$. Now (2.29) and (2.30) give

$$
\lim_{n \to \infty} x'_{k_n}(t) = 0 \quad \text{uniformly on } J. \tag{2.32}
$$

Since $x_{k_n}(T) > \alpha(\xi_{k_n})$ and α is decreasing on J by (H_2) , we can assume (going if necessary to a subsequence) that

$$
x_{k_n}(t) > \alpha\left(\frac{T}{2}\right) + \varepsilon \ge \alpha(t) + \varepsilon, \ \ 0 < x'_{k_n}(t) \le 1 \quad \text{for } t \in \left[\frac{T}{2}, T\right], \ n \in \mathbb{N}, \ (2.33)
$$

where ε is a positive constant. By (H_5) , there is a $\delta > 0$ such that $f(t, x, y) \leq -\delta$ for a.e. $t \in [T/2, T]$ and each $x \ge \alpha(t) + \varepsilon$, $y \in (0, 1]$. Therefore (see (2.26) and (2.33))

$$
(g(x'_{k_n}(t)))' \leq -\delta
$$
 for a.e. $t \in \left[\frac{T}{2}, T\right]$ and each $n \in \mathbb{N}$,

which implies

$$
g\left(x'_{k_n}\left(\frac{T}{2}\right)\right) - g(x'_{k_n}(T)) = -\int_{T/2}^T (g(x'_{k_n}(t)))' dt \ge \frac{\delta T}{2}, \quad n \in \mathbb{N},
$$

contrary to (2.32). Analogously we can show that $\limsup_{n\to\infty} \xi_n < T$. We have verified that (2.31) is true with a positive constant χ . Then $x_n(0) - \alpha(0)$ < $x_n(\xi_n)-\alpha(0)=\alpha(\xi_n)-\alpha(0)\leq \alpha(\chi)-\alpha(0)$ and $x_n(T)-\alpha(T) > x_n(\xi_n)-\alpha(T) =$ $\alpha(\xi_n) - \alpha(T) \geq \alpha(T - \chi) - \alpha(T)$. Hence

$$
x_n(0) < \alpha(0) - \phi, \quad x_n(T) > \alpha(T) + \phi \quad \text{for } n \in \mathbb{N}.\tag{2.34}
$$

where $\phi = \min{\{\alpha(0) - \alpha(\chi), \alpha(T - \chi) - \alpha(T)\}} > 0$. We now claim that there exists $\Delta_1 > 0$ such that

$$
x_n(t) < \alpha(t) - \frac{\phi}{2} \quad \text{for } t \in [0, \Delta_1], \, n \in \mathbb{N}.\tag{2.35}
$$

If not, there are a subsequence $\{l_n\}$ of $\{n\}$ and a sequence $\{t_n\} \subset (0,T)$, $\lim_{n\to\infty} t_n$ $= 0$, such that

$$
x_{l_n}(t_n) = \alpha(t_n) - \frac{\phi}{2}, \quad n \in \mathbb{N}.
$$

Then (see (2.34))

$$
x_{l_n}(t_n) - x_{l_n}(0) > \alpha(t_n) - \frac{\phi}{2} - \alpha(0) + \phi = \alpha(t_n) - \alpha(0) + \frac{\phi}{2}, \quad n \in \mathbb{N},
$$

contrary to

$$
\lim_{n \to \infty} (x_{l_n}(t_n) - x_{l_n}(0)) = \lim_{n \to \infty} x'_{l_n}(\eta_n) t_n \le \Lambda \lim_{n \to \infty} t_n = 0, \quad \eta_n \in (0, t_n).
$$

Since, by (H_5) , there is a $\delta_1^* > 0$ such that $f(t, x, y) \geq \delta_1^*$ for a.e. t where $x \leq$ $\alpha(t) - \phi/2$ and $y \in (0, 1]$, (2.35) shows that $(g(x'_n))' \geq \delta_1^*$ a.e. on any subinterval of $[0, \Delta_1]$ where $x'_n \leq 1$. Hence (note $x'_n(0) = 1/n$)

$$
g(x'_n(t)) \ge \delta_1 t, \quad t \in [0, \Delta_1], \ n \in \mathbb{N}
$$

with $\delta_1 = \min\{g(1)/\Delta_1, \delta_1^*\}$. Similar arguments show that there exist positive constants δ_2 and Δ_2 such that

$$
g(x'_n(T-t)) \ge \delta_2(T-t), \quad t \in [0, \Delta_2], \ n \in \mathbb{N}.
$$

Therefore (2.27) is true with $\mu = \min{\{\delta_1, \delta_2\}}$ and $\Delta = \min{\{\Delta_1, \Delta_2\}}$.

3. Existence results and examples

Theorem 3.1. Let assumptions (H_1) – (H_5) be satisfied. Then the BVP (1.1), (1.2) has a solution x such that $x'(t) > 0$ for $t \in (0, T)$.

Proof. From Lemma 2.3 it follows that the BVP $(E)_{n}^{1}$, $(B)_{n}$ has a solution x_{n} for each $n \in \mathbb{N}$,

$$
||x_n|| < A,\t\t(3.1)
$$

$$
\frac{1}{n} \le x'_n(t) < \Lambda \tag{3.2}
$$

for $t \in J$, where A and Λ are positive constants and, by Remark 2.4, (2.26) is satisfied. In addition, by Lemma 2.5, there exist positive constants Δ and μ such that (2.27) is true. From (2.27) and the properties of x_n we deduce that

$$
x_n'(t) \ge \eta(t) \quad \text{for } t \in J, n \in \mathbb{N} \tag{3.3}
$$

where

$$
\eta(t) = \begin{cases} g^{-1}(\mu t) & \text{for } t \in [0, \Delta] \\ g^{-1}(\mu \Delta) & \text{for } t \in (\Delta, T - \Delta) \\ g^{-1}(\mu (T - t)) & \text{for } t \in [T - \Delta, T]. \end{cases}
$$

Now (H_3) , (3.1) and (3.2) yield

$$
|f(t, x_n(t), x'_n(t))| \le \gamma(t) \quad \text{for a.e. } t \in J \text{ and each } n \in \mathbb{N}
$$
 (3.4)

with

$$
\gamma(t) = (\omega_1(\Lambda) + \omega_2(\eta(t))) \max \Big\{ \max_{-A \le u \le \alpha(0)} q_1(u), \max_{\alpha(T) \le u \le A} q_2(u) \Big\}.
$$

Since $\int_0^1 \omega_2(g^{-1}(s)) ds < \infty$ in (H_3) and Remark 1.1 imply $\omega_2(\eta(t)) \in L_1(J)$, we have $\gamma \in L_1(J)$.

Now $\{g(x'_n(t))\}$ is equicontinuous on J which follows from

$$
|g(x'_n(t_2)) - g(x'_n(t_1))| = \Big| \int_{t_1}^{t_2} f(t, x_n(t), x'_n(t)) dt \Big| \le \Big| \int_{t_1}^{t_2} \gamma(t) dt \Big|
$$

for $t_1, t_2 \in J$ and $n \in \mathbb{N}$. The equalities

$$
|x'_n(t_2) - x'_n(t_1)| = |g^{-1}(g(x'_n(t_2))) - g^{-1}(g(x'_n(t_1)))|, \quad t_1, t_2 \in J, \ n \in \mathbb{N}
$$

and g^{-1} being continuous and increasing on $[0, \infty)$ imply that also $\{x'_n(t)\}\$ is equicontinuous on J. From (3.1) and (3.2), $\{x_n\}$ is bounded in $C^1(J)$, and therefore the Arzelà–Ascoli theorem guarantees that without loss of generality we can assume that $\{x_n\}$ is convergent in $C^1(J)$. Let $\lim_{n\to\infty} x_n = x$. Then $x \in C^1(J)$, $x'(0) = x'(T) = 0$ and (see (3.3)) $x'(t) \geq \eta(t)$ for $t \in J$. Therefore $x'(t) > 0$ for $t \in (0,T)$,

$$
\lim_{n \to \infty} f(t, x_n(t), x'_n(t)) = f(t, x(t), x'(t)) \text{ for a.e. } t \in J
$$

and letting $n \to \infty$ in

$$
g(x'_n(t)) = g\left(\frac{1}{n}\right) + \int_0^t f_n(s, x_n(s), x'_n(s)) ds, \quad t \in J, \ n \in \mathbb{N},
$$

we have (see (3.4))

$$
g(x'(t)) = \int_0^t f(s, x(s), x'(s)) ds, \quad t \in J,
$$

by the Lebesgue dominated convergence theorem. Hence $g(x') \in AC(J)$ and x satisfies (1.1) a.e. on J. We have proved that x is a solution of the BVP (1.1), (1.2) and $x'(t) > 0$ for $t \in (0, T)$.

Example 3.2. Consider the differential equation

$$
((x')^{p})' = r(t)(\alpha(t) - x)^{2n-1} \left((x')^{\gamma} + \frac{m}{(x')^{\varrho}} \right)
$$
\n(3.5)

where $r \in L_1(J)$, $0 < a \leq r(t) \leq b$ for a.e. $t \in J$, $\alpha \in C^0(J)$ is decreasing, p, γ, ϱ and m are positive constants, $\varrho < p$, $1 + p - \gamma > 0$, and $n \in \mathbb{N}$. Set

$$
f(t, x, y) = r(t)(\alpha(t) - x)^{2n-1} \left(y^{\gamma} + \frac{m}{y^{\varrho}}\right)
$$

for $(t, x, y) \in J \times \mathbb{R} \times (0, \infty)$. Then (H_1) is satisfied with $g(u) = u^p$ and f satisfies (H₂). (H₃) is satisfied with $q_1(x) = b(\alpha(0) - x)^{2n-1}$, $q_2(x) = b(x - \alpha(T))^{2n-1}$, $\omega_1(y) = y^{\gamma}, \omega_2(y) = m/y^{\varrho}$ and (H_5) with $\delta = am\varepsilon^{2n-1}$. It remains to look at (*H*₄). For that purpose define $h \in C^0([0,\infty))$ by $h(u) = u/(m+u)$ for $u \in [0,\infty)$. Then h is increasing, $h(0) = 0$ and $\lim_{u \to \infty} h(u) = 1$. Thus for $0 < v < u$ we have

$$
H(u) = \int_0^{g(u)} \frac{g^{-1}(s)}{\omega_1(g^{-1}(s)) + \omega_2(g^{-1}(s))} ds = \int_0^{u^p} \frac{s^{1/p}}{s^{\gamma/p} + ms^{-\varrho/p}} ds
$$

= $H(v) + \int_{v^p}^{u^p} h(s^{(\gamma+\varrho)/p}) s^{(1-\gamma)/p} ds \ge H(v) + h(v^{\gamma+\varrho}) \int_{v^p}^{u^p} s^{(1-\gamma)/p} ds$
= $H(v) + \frac{ph(v^{\gamma+\varrho})}{1+p-\gamma} (u^{1+p-\gamma} - v^{1+p-\gamma}).$

Since

$$
\int_{\alpha(T)-Tu}^{\alpha(0)} q_1(s) ds = b \int_{\alpha(T)-Tu}^{\alpha(0)} (\alpha(0) - s)^{2n-1} = \frac{b}{2n} (Tu + \alpha(0) - \alpha(T))^{2n}
$$

and

$$
\int_{\alpha(T)}^{\alpha(0)+Tu} q_2(s) ds = b \int_{\alpha(T)}^{\alpha(0)+Tu} (s - \alpha(T))^{2n-1} = \frac{b}{2n} (Tu + \alpha(0) - \alpha(T))^{2n},
$$

we get

$$
S := \min\left\{\limsup_{u\to\infty}\frac{\int_{\alpha(T)-Tu}^{\alpha(0)}q_1(s)\,ds}{H(u)}, \limsup_{u\to\infty}\frac{\int_{\alpha(T)}^{\alpha(0)+Tu}q_2(s)\,ds}{H(u)}\right\}
$$

$$
\leq \limsup_{u\to\infty}\frac{b(Tu+\alpha(0)-\alpha(T))^{2n}}{2n\Big(H(v)+\frac{ph(v^{\gamma+\varrho})}{1+p-\gamma}(u^{1+p-\gamma}-v^{1+p-\gamma})\Big)}
$$

for $0 < v < u$. Hence

$$
S \le \begin{cases} 0 & \text{if } 2n + \gamma - 1 < p \\ \frac{bT^{2n}}{ph(v^{\gamma + \varrho})} & \text{if } 2n + \gamma - 1 = p \end{cases}
$$

for $v \in (0, \infty)$, and consequently (letting $v \to \infty$)

$$
S \le \begin{cases} 0 & \text{if } 2n + \gamma - 1 < p \\ \frac{bT^{2n}}{p} & \text{if } 2n + \gamma - 1 = p. \end{cases}
$$

We see that f satisfies (H_4) if either $2n + \gamma - 1 < p$ or $2n + \gamma - 1 = p$ and $bT^{2n} < p$. Summarizing, by Theorem 3.1, the BVP (3.5), (1.2) with positive constants p, γ, ϱ, m and $n \in \mathbb{N}$ in (3.5) satisfying $\varrho < p$ has a solution x with $x' > 0$ on $(0, T)$ if either $2n + \gamma - 1 < p$ or $2n + \gamma - 1 = p$ and $bT^{2n} > p$.

Example 3.3. Consider the differential equation

$$
((x')^{p})' = \frac{e^{\alpha(t) - x} - 1}{h(xx')(x')^{\gamma}}
$$
\n(3.6)

where p and γ are positive constants, $h \in C^0(\mathbb{R})$, $1 \leq h(u) \leq M$ for $u \in \mathbb{R}$ and $\alpha \in C^0(J)$ is decreasing. Set

$$
f(t, x, y) = \frac{e^{\alpha(t) - x} - 1}{h(xy)y^{\gamma}}
$$

for $(t, x, y) \in J \times \mathbb{R} \times (0, \infty)$. Then f satisfies (H_2) and (H_1) is true with $g(u) = u^p$. (H_3) is satisfied with $q_1(x) = e^{\alpha(0)-x} - 1$, $q_2(x) = 1 - e^{\alpha(T)-x}$, $\omega_1(y) \equiv 0$ and

$$
(y) = y^{-\gamma}, \text{ and } (H_5) \text{ with } \delta = (1 - e^{-\varepsilon})/M. \text{ Since}
$$

$$
\int_{\alpha(T)}^{\alpha(0) + Tu} q_2(s) ds = \int_{\alpha(T)}^{\alpha(0) + Tu} (1 - e^{\alpha(T) - s}) ds
$$

$$
= Tu + e^{\alpha(T) - \alpha(0) - Tu} + \alpha(0) - \alpha(T) - 1
$$

and

 ω_2

$$
H(u) = \int_0^{g(u)} \frac{g^{-1}(s)}{\omega_1(g^{-1}(s)) + \omega_2(g^{-1}(s))} ds = \int_0^{u^p} s^{(\gamma+1)/p} ds = \frac{p u^{p+\gamma+1}}{p+\gamma+1}
$$

for $u \in [0, \infty)$, we have $\lim_{u \to \infty} H(u) = \infty$,

$$
\lim_{u \to \infty} \frac{\int_{\alpha(T)}^{\alpha(0) + Tu} q_2(s) ds}{H(u)}
$$
\n
$$
= \lim_{u \to \infty} \frac{(p + \gamma + 1)(Tu + e^{\alpha(T) - \alpha(0) - Tu} + \alpha(0) - \alpha(T) - 1)}{pu^{p + \gamma + 1}}
$$
\n= 0,

and therefore (H_4) is satisfied. Hence Theorem 3.1 guarantees the existence of a solution x of BVP (3.6) , (1.2) with $x' > 0$ on $(0, T)$.

References

- [1] R. P. Agarwal, M. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge Univ. Press, Cambridge, 2001.
- [2] A. CABADA AND R. L. POUSO, *Existence result for the problem* $(\phi(u'))' = f(t, u, u')$ with periodic and Neumann boundary conditions, Nonlinear Anal. 30 (1997), 1733–1742.
- [3] A. CABADA, P. HABETS AND R. L. POUSO, Optimal existence conditions for ϕ -Laplacian equations with upper and lower solutions in reversed order, J. Differential Equations 166 (2000), 385–401.
- [4] P. GIRG, Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative, Electron. J. Differential Equations 2000, Paper no. 63, 28 p.
- [5] A. Granas, R. B. Guenther and J. W. Lee, Nonlinear Boundary Value Problems for Ordinary Differential Equations, Dissertationes Math. (Rozprawy Mat.) 244, Warsaw, 1985.
- [6] A. Granas, R. B. Guenther and J. W. Lee, Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl. (9) 70 (1991), 153–196.
- [7] D. A. KANDILAKIS AND N. S. PAPAGEORGIOU, Neumann problem for a class of quasilinear ordinary differential equations, Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 163–177.
- [8] P. KELEVEDJIEV, Existence of solutions for two-point boundary value problems, Nonlinear Anal. 22 (1994), 217–224.
- [9] I. T. Kiguradze, Boundary Value Problems for Systems of Ordinary Differential Equations, in: Current Problems in Mathematics: Newest Results, Vol. 30, pp. 3–103, Vses. Inst. Nauchn. i Tekh. Inform. (VINITI), Moscow, 1987 (in Russian); J. Soviet Math. 43 (1988), 2259–2339 (English translation).
- [10] J. Mawhin and D. Ruiz, A strongly nonlinear Neumann problem at resonance with restrictions on the nonlinearity just in one direction, Topol. Methods Nonlinear Anal. 20 (2002), 1–14.
- [11] I. RACHŮNKOVÁ AND S. STANĚK, Topological degree method in functional boundary value problems at resonance, Nonlinear Anal. 27 (1996), 271–285.
- [12] H. B. Thompson, Second order ordinary differential equations with fully nonlinear two point boundary conditions, Pacific J. Math. 172 (1996), 255–277.
- [13] S. VILLEGAS, A Neumann problem with asymmetric nonlinearity and related minimizing $problem,$ J. Differential Equations $\emph{145}$ (1998), 145–155.
- [14] J. WANG AND W. GAO, Existence of solutions to boundary value problems for a nonlinear second order differential equation with weak Carathéodory functions, Differential Equations Dynam. Systems 5 (1997), 175–185.

Ravi P. Agarwal Department of Mathematical Sciences Florida Institute of Technology Melbourne Florida 32901-6975 USA e-mail: agarwal@fit.edu

Donal O'Regan Department of Mathematics National University of Ireland Galway Ireland e-mail: donal.oregan@nuigalway.ie

Svatoslav Staněk Department of Mathematical Analysis Faculty of Science Palacký University Tomkova 40 779 00 Olomouc Czech Republic e-mail: stanek@risc.upol.cz

Manuscript received: February 24, 2004 and, in final form, July 23, 2004.

To access this journal online: http://www.birkhauser.ch