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Neumann boundary value problems with singularities in a

phase variable
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Summary. The singular Neumann boundary value problem (g(x′))′ = f(t, x, x′), x′(0) =
x′(T ) = 0 is considered. Here f(t, x, y) satisfies local Carathéodory conditions on [0, T ] × R ×

(0,∞) and f may be singular at the value 0 of the phase variable y. Conditions guarantee-
ing the existence of a solution to the above problem with a positive derivative on (0, T ) are
given. The proofs are based on regularization and sequential techniques and use the topological
transversality method.
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1. Introduction

Let T be a positive number, J = [0, T ]. Consider the Neumann boundary value
problem (BVP)

(g(x′(t)))′ = f(t, x(t), x′(t)), (1.1)

x′(0) = 0, x′(T ) = 0, (1.2)

where g ∈ C0([0,∞)), g(0) = 0 and f satisfies local Carathéodory conditions on
J ×R× (0,∞) (f ∈ Car(J ×R× (0,∞)) and f may be singular at the value 0 of
its second phase variable in the following sense: limy→0+ |f(t, x, y)| = ∞ for a.e.
t ∈ J and each x ∈ R, x 6= α(t), where α appears in assumption (H2).

A function x ∈ C1(J) is said to be a solution of the BVP (1.1), (1.2) if g(x′) ∈
AC(J) (absolutely continuous functions on J), x satisfies the Neumann boundary
conditions (1.2) and (1.1) holds a.e. on J .

In this paper we are interested in finding conditions guaranteeing the existence
of a solution x of the BVP (1.1), (1.2) such that x′(t) > 0 for t ∈ (0, T ). We
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note that our problem is at resonance since each constant function on J is a solu-
tion of the associated homogeneous problem (g(x′))′ = 0, (1.2) and, in addition,
solutions of the BVP (1.1), (1.2) have ‘maximal’ smoothness (that is x ∈ C1(J)
and (g(x′))′ ∈ AC(J)) although f may be singular at the value 0 of its second
phase variable. Also we remark here that the singular Neumann boundary value
problem with f singular at the value 0 of its second phase variable has not been
considered in the literature.

We note that the regular BVP (1.1), (1.2) with g(u) ≡ u is usually considered
by combining the method of lower and upper functions (see, e.g. [5], [6], [8], [9],
[11], [12] and references therein) with the Mawhin continuation theorem ([11]) or
the topological transversality method ([5], [6], [8]) or Schauder degree theory ([12])
or special procedures ([9]). The nonlinearity f in (1.1) is continuous ([5], [8], [12])
or satisfies local Carathéodory conditions ([6], [9], [11]). Existence results for the
Neumann problem −x′′(t) = f1(t, x(t)) + p(t), (1.2) with f1 ∈ C0([0, 1] × R) and
p ∈ L2([0, 1]) are proved in [13] by variational methods.

The regular BVP (1.1), (1.2) with g ∈ C0(R), g(R) = R, g increasing and f ∈
Car([a, b] × R

2) was considered in [2] and [3]. In [2] solutions are obtained as the
limit of solutions of different nonhomogeneous mixed problems whereas existence
was proved by the method of lower and upper functions in [14]. Combining the
method of lower and upper functions in the reverse order together with monotone
methods and a iterative technique, the existence of minimal and maximal solutions
of the BVP (1.1), (1.2) lying between upper and lower functions is proved in [3]. In
[4] the author discuss the existence and nonexistence of solutions to the differential
equation (g(x′))′ + p(x′) + h(x) = q(t) satisfying (1.2). Here g is an increasing
homeomorphism on I1 onto I2, where I1 and I2 are open intervals containing

zero, g(0) = 0, p ∈ C0(R), q ∈ C0([0, T ]) with
∫ T

0
q(t) dt = 0 and h ∈ C0(R) is

bounded, limu→−∞ h(u) < limu→∞ h(u). In [10] the authors stated conditions for
the existence of a solution to the BVP (|x′|p−2x′)′ + f1(t, x) + f2(t, x) = 0, (1.2)
where f1 is bounded, f2 satisfies a one-sided growth condition, f1 + f2 has some
sign condition, and the solutions to some associated homogeneous problem are
not oscillatory. In [7] the BVP −(|x′(t)|p−2x′(t))′ = h(t, x(t)), (1.2) (2 ≤ p < ∞)
is considered, where h : J × R → R is a Borel measurable function satisfying
some extra conditions. To guarantee the existence of solutions the authors pass
to a multivalued problem which is solved using variational techniques based on
nonsmooth critical point theory.

Our existence result for the singular BVP (1.1), (1.2) is proved by regular-
ization and sequential techniques. We first define a sequence of auxiliary regu-
lar BVPs to the BVP (1.1), (1.2) and give a priori bounds for their solutions
(Lemma 2.1). Then we use twice the topological transversality principle (Theo-
rem 1.3) to prove that the sequence of the auxiliary BVPs has a sequence {xn}
of solutions (Lemma 2.2 and 2.3). The construction of the sequence of auxiliary
BVPs guarantees that x′

n(t) > 1/n for each t ∈ J and n ∈ N. In addition, we show
that g(x′

n(t)) ≥ µt and g(x′
n(t)) ≥ µ(T − t) on a neighbourhood of zero for each
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n ∈ N, where µ is a positive constant (Lemma 2.5). Applying the Arzelà–Ascoli
theorem we can select a convergent subsequence of {xn} in C1(J), and then the
Lebesgue dominated convergence theorem shows that its limit x is a solution of
the BVP (1.1), (1.2) with x′ > 0 on (0, T ) (Theorem 3.1). We illustrate our theory
with two examples (Example 3.2 and 3.3).

Throughout this paper, the following assumptions are used.

(H1) g ∈ C0([0,∞)) is increasing, g(0) = 0 and limu→∞ g(u) = ∞;

(H2) f ∈ Car(J × R × (0,∞)) and

f(t, α(t), y) = 0 for a.e. t ∈ J and each y ∈ (0,∞),

where α ∈ C0(J) is decreasing;

(H3) There exist functions q1 ∈ C0((−∞, α(0)]), q2 ∈ C0([α(T ),∞)) positive,
ω1 ∈ C0([0,∞)) nonnegative and nondecreasing and ω2 ∈ C0((0,∞))

positive and nonincreasing,

∫ 1

0

ω2(g
−1(s)) ds < ∞, such that

0 < f(t, x, y) ≤ q1(x)(ω1(y) + ω2(y))

for a.e. t ∈ J and each x < α(t), y > 0

and
0 > f(t, x, y) ≥ −q2(x)(ω1(y) + ω2(y))

for a.e. t ∈ J and each x > α(t), y > 0;

(H4) limu→∞ H(u) = ∞ and

min

{

lim sup
u→∞

∫ α(0)

α(T )−Tu

q1(s) ds

H(u)
, lim sup

u→∞

∫ α(0)+Tu

α(T )

q2(s) ds

H(u)

}

< 1

where

H(u) =

∫ g(u)

0

g−1(s)

ω1(g−1(s)) + ω2(g−1(s))
ds for u ∈ [0,∞);

(H5) For each ε > 0 there exists δ > 0 such that for a.e. t ∈ J and each a > ε,
y ∈ (0, 1],

f(t, α(t) − a, y) ≥ δ, f(t, α(t) + a, y) ≤ −δ.

Remark 1.1. Since g−1(0) = 0 and g−1 is continuous and increasing on [0,∞)
which follows from (H1) and ω2 is a positive, nonincreasing and continuous func-

tion on (0,∞) by (H3), the condition

∫ 1

0

ω2(g
−1(s)) ds < ∞ implies that

∫ c

0

ω2(g
−1(s)) ds < ∞ for each c > 0.
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Remark 1.2. By (H3), the function p : [0,∞) → [0,∞),

p(u) =







0 for u = 0

g−1(u)

ω1(g−1(u)) + ω2(g−1(u))
for u > 0,

(1.3)

is continuous on [0,∞) and H(u) =
∫ g(u)

0
p(s) ds for u ∈ [0,∞).

Existence results for auxiliary regular BVPs to the BVP (1.1), (1.2) are proved
by the topological transversality method ([1], [5], [6]), which we state here for
the convenience of the reader. Let U be a convex subset of a Banach space X

and let Ω ⊂ U be open in U . Denote by H∂Ω(Ω,U) the set of compact operators
F : Ω → U which are fixed point free on ∂Ω. We say that F ∈ H∂Ω(Ω,U) is
essential if every operator in H∂Ω(Ω,U) which agrees with F on ∂Ω has a fixed
point in Ω

Theorem 1.3. (Topological transversality) Let

(a) F ∈ H∂Ω(Ω,U) be essential,

(b) H : Ω × [0, 1] → U be a compact homotopy, H(·, 0) = F and H(x, λ) 6= x
for x ∈ ∂Ω and λ ∈ [0, 1].

Then H(·, 1) is essential and therefore it has a fixed point in Ω.

If p ∈ Ω and F ∈ H∂Ω(Ω,U) is a constant operator, F(x) = p for x ∈ Ω, then
F is essential (see [1], [5], [6]).

2. Auxiliary regular BVPs

For each n ∈ N, define Sn ∈ C0(R) and f̃n, fn ∈ Car(J × R
2) by

Sn(u) =











1 for u > 1
n

2n(u − 1
2n ) for 1

2n < u ≤ 1
n

0 for u ≤ 1
2n ,

f̃n(t, x, y) =

{

f(t, x, y) for (t, x) ∈ J × R, y > 1
n

f(t, x, 1
n ) for (t, x) ∈ J × R, y ≤ 1

n ,

fn(t, x, y) = Sn(y)f̃n(t, x, y).

Then (H2) and (H3) give

fn(t, α(t), y) = 0 for a.e. t ∈ J and each y ∈ R, (2.1)

0 < fn(t, x, y) ≤ q1(x)[max{ω1(y), ω1(
1
n )} + ω2(y)]

for a.e. t ∈ J and each x < α(t), y > 1
2n ,

}

(2.2)
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0 > fn(t, x, y) ≥ −q2(x)
[

max
{

ω1(y), ω1

(

1
n

)}

+ ω2(y)
]

for a.e. t ∈ J and each x > α(t), y > 1
2n

}

(2.3)

and
fn(t, x, y) = 0 for a.e. t ∈ J and each x ∈ R, y ≤ 1

2n . (2.4)

Let g∗ ∈ C0(R) be defined by the formula

g∗(u) =

{

g(u) for u ∈ [0,∞)

−g(−u) for u ∈ (−∞, 0).

Consider the family of regular BVPs

(g∗(x
′(t)))′ = λfn(t, x(t), x′(t)), (E)λ

n

x′(0) =
1

n
, x′(T ) =

1

n
(B)n

depending on the parameters n ∈ N and λ ∈ [0, 1].

A priori bounds for solutions of the BVPs (E)λ
n, (B)n are presented in the

following lemma.

Lemma 2.1. Let assumptions (H1)–(H4) be satisfied and n ∈ N, λ ∈ (0, 1]. Let

x be a solution of the BVP (E)λ
n, (B)n. Then there exist positive constants A and

Λ independent of n and λ, and a unique ξ ∈ (0, T ) (depending on x) such that

‖x‖ = max{|x(t)| : t ∈ J} < A, (2.5)

x(ξ) = α(ξ) (2.6)

and
1

n
≤ x′(t) < Λ for t ∈ J. (2.7)

Proof. We first prove that
x(0) < α(0). (2.8)

If not, then x(0) ≥ α(0) and from x′(0) = 1/n and α being decreasing on J we see
that x(t) > α(t) on a right neighbourhood of t = 0. If x(τ) = α(τ) for a τ ∈ (0, T ]
and x(t) > α(t) for t ∈ (0, τ), then x′(τ) ≤ 0 and so for a ν ∈ (0, τ) we have
x′(ν) = 1/(2n) and x′ ≤ 1/(2n) on [ν, τ ]. Hence (g∗(x

′))′ = 0 a.e. on [ν, τ ] by (2.4)
and then x′(t) = 1/(2n) on this interval, which contradicts x′(τ) ≤ 0. Therefore
x(t) > α(t) for t ∈ (0, T ] and then (2.3) and (2.4) yield

(g∗(x
′(t)))′ = λfn(t, x(t), x′(t))

{

< 0 if x′(t) > 1
2n

= 0 if x′(t) ≤ 1
2n .

Then

g∗(x
′(T )) = g

(

1

n

)

+

∫ T

0

(g∗(x
′(t))′ dt = g

(

1

n

)

+λ

∫ T

0

fn(t, x(t), x′(t)) dt < g

(

1

n

)
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which contradicts x′(T ) = 1/n. We have proved that (2.8) is true.
Since x(0) < α(0), x(t) < α(t) on a right neighbourhood of t = 0 and then

x′(0) = 1/n and (2.2) show that x′ is increasing on any right neighbourhood of
t = 0 where x(t) < α(t). Now from x′(T ) = 1/n we deduce that (2.6) holds with
a ξ ∈ (0, T ), x(t) < α(t) for t ∈ [0, ξ), x′(t) > 1/n for t ∈ (0, ξ] and x(t) > α(t) on
a right neighbourhood of t = ξ. Arguing as in the first part of our proof we can
verify that x(t) > α(t) for t ∈ (ξ, T ]. Hence (g∗(x

′))′ ≤ 0 a.e. on [ξ, T ] by (2.3)
and (2.4), and then x′(T ) = 1/n implies x′ ≥ 1/n on [ξ, T ] which together with
(2.3) yields (g∗(x

′))′ < 0 a.e. on [ξ, T ]. As a result x′(t) > 1/n for t ∈ [ξ, T ), and
so

x′(t) >
1

n
for t ∈ (0, T ) (2.9)

and (2.6) is satisfied with a unique ξ ∈ (0, T ). In addition, it is clear that

‖x′‖ = max{x′(t) : t ∈ J} = x′(ξ) (2.10)

and

‖x‖ = max{|x(0)|, |x(T )|}. (2.11)

We now give bounds for x on J . Clearly (see (2.9)), x(0) ≤ x(t) ≤ x(T ) for
t ∈ J . By (2.2), (2.3) and (2.9), we have

(g(x′(t)))′ ≤ q1(x(t))(ω1(x
′(t)) + ω2(x

′(t))) for a.e. t ∈ [0, ξ],

(g(x′(t)))′ ≥ −q2(x(t))(ω1(x
′(t)) + ω2(x

′(t))) for a.e. t ∈ [ξ, T ].

Integrating the inequality

(g(x′(t)))′x′(t)

ω1(x′(t)) + ω2(x′(t))
≤ q1(x(t))x′(t) for a.e. t ∈ [0, ξ]

and
(g(x′(t)))′x′(t)

ω1(x′(t)) + ω2(x′(t))
≥ −q2(x(t))x′(t) for a.e. t ∈ [ξ, T ]

over [0, t] ⊂ [0, ξ] and [t, T ] ⊂ [ξ, T ], we get

∫ g(x′(t))

g(1/n)

g−1(s)

ω1(g−1(s)) + ω2(g−1(s))
ds ≤

∫ x(t)

x(0)

q1(s) ds

<

∫ α(0)

x(0)

q1(s) ds, t ∈ [0, ξ]

and
∫ g(1/n)

g(x′(t))

g−1(s)

ω1(g−1(s)) + ω2(g−1(s))
ds ≥ −

∫ x(T )

x(t)

q2(s) ds

> −

∫ x(T )

α(T )

q2(s) ds, t ∈ [ξ, T ],
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respectively. Hence

H(x′(t)) < H

(

1

n

)

+

∫ α(0)

x(0)

q1(s) ds, t ∈ [0, ξ] (2.12)

and

H(x′(t)) < H

(

1

n

)

+

∫ x(T )

α(T )

q2(s) ds, t ∈ [ξ, T ]. (2.13)

Since (see (2.6))

x(0) = x(ξ) −

∫ ξ

0

x′(s) ds > α(ξ) − T‖x′‖ > α(T ) − T‖x′‖, (2.14)

x(T ) = x(ξ) +

∫ T

ξ

x′(s) ds < α(ξ) + T‖x′‖ < α(0) + T‖x′‖, (2.15)

(2.12) and (2.13) with t = ξ and (2.10) show that

H(‖x′‖) < H(1) +

∫ α(0)

α(T )−T‖x′‖

q1(s) ds, (2.16)

H(‖x′‖) < H(1) +

∫ α(0)+T‖x′‖

α(T )

q2(s) ds. (2.17)

From (H4) there exists a positive constant Λ such that

H(1) +

∫ α(0)

α(T )−Tu

q1(s) ds < H(u)

and/or

H(1) +

∫ α(0)+Tu

α(T )

q2(s) ds < H(u)

for u ≥ Λ. Consequently (see (2.16) and (2.17)), ‖x′‖ < Λ. We have proved
that (2.7) is satisfied, and then (see (2.11), (2.14) and (2.15)) (2.5) holds with
A = max{|α(0)|, |α(T )|} + TΛ. 2

The solvability of the BVP (E)1n, (B)n, n ∈ N, will be proved by the topological
transversality method. For this we denote X = C1(J) × R the Banach space
equipped with the norm ‖(x, a)‖∗ = ‖x‖ + ‖x′‖ + |a|. Set

U = {(x, a) : (x, a) ∈ X, x(0) = 0}

and (for n ∈ N)

Ωn =
{

(x, a) : (x, a) ∈ U , ‖x‖ < 2A + T, ‖x′‖ < Λ,

x′(t) >
3

4n
for t ∈ J, |a| < A + |α(0)| + |α(T )| + T

}

,
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where positive constants A and Λ are given in Lemma 2.1, and the function α
appears in (H2). Then U is a closed and convex subset of X and Ωn is an open
subset of U for each n ∈ N.

We now give the lemma which will be used in the proof of Lemma 2.3 which
gives conditions for the solvability to the BVP (E)1n, (B)n.

Lemma 2.2. Let assumptions (H2) and (H3) be satisfied and n ∈ N. Let the

operator Kn : Ωn → U be defined by

Kn(x, a) =
{ t

n
, a +

∫ T

0

fn(t, x(t) + a, x′(t)) dt
}

. (2.18)

Then Kn is essential.

Proof. Let Fn : Ωn × [0, 1] → U be given by

Fn(x, a, λ) =
{ t

n
, a + (1 − λ)(α(0) − a) + λ

∫ T

0

fn(t, x(t) + a, x′(t)) dt
}

.

Then Fn(·, ·, 1) = Kn(·, ·) and Fn(x, a, 0) = p for (x, a) ∈ Ωn where p = (t/n, α(0))
∈ Ωn. If we show that Fn is compact and Fn(x, a, λ) 6= (x, a) for (x, a) ∈ ∂Ωn and
λ ∈ (0, 1], then Lemma 2.2 follows from Theorem 1.3. Since fn ∈ Car(J × R

2),
there exists γ ∈ L1(J) such that

|fn(t, x, y)| ≤ γ(t) (2.19)

for a.e. t ∈ J and each |x| ≤ 3A + |α(0)| + |α(T )| + 2T , |y| ≤ Λ, and so Fn is
continuous on Ωn×[0, 1] by the Lebesgue dominated convergence theorem and also
it is easy to check (use the Arzelà–Ascoli theorem and the compactness criterion
on R) that Fn(Ωn× [0, 1]) is compact in U . Suppose that Fn(x0, a0, λ0) = (x0, a0)
for some (x0, a0) ∈ ∂Ωn and λ0 ∈ (0, 1]. Then x0(t) = t/n and

(1 − λ0)(α(0) − a0) + λ0

∫ T

0

fn(t, x0(t) + a0, x
′
0(t)) dt = 0.

Set

r(a) = (1 − λ0)(α(0) − a) + λ0

∫ T

0

fn(t, x0(t) + a, x′
0(t)) dt

for a ∈ R. Then r ∈ C0(J), r(a0) = 0, and since fn(t, x0(t) + a, x′
0(t)) =

fn(t, (t/n) + a, 1/n) = f(t, (t/n) + a, 1/n), we deduce from (H2) and (H3) that
r(a) < 0 for a ≥ α(0) and r(a) > 0 for a < α(T ) − T/n. Hence a0 ∈ (α(T ) −
T/n, α(0)) which contradicts (x0, a0) ∈ ∂Ωn. 2

Lemma 2.3. Let assumptions (H1)–(H4) be satisfied. Then for each n ∈ N, the

BVP (E)1n, (B)n has a solution xn and

‖xn‖ < A, (2.20)
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xn(ξn) = α(ξn) (2.21)

and
1

n
≤ x′(t) < Λ for t ∈ J, (2.22)

where the constants A,Λ are given in Lemma 2.1 and ξn ∈ (0, T ) is unique.

Proof. Fix n ∈ N and define the operator A : Ωn × [0, 1] → U by

A(x, a, λ) =
{

∫ t

0

g−1
∗

(

g
( 1

n

)

+ λ

∫ s

0

fn(v, x(v) + a, x′(v)) dv
)

ds,

a +

∫ T

0

fn(t, x(t) + a, x′(t)) dt
}

.

Suppose that (x∗, a∗) is a fixed point of A(·, ·, 1). Then

x∗(t) =

∫ t

0

g−1
∗

(

g
( 1

n

)

+

∫ s

0

fn(v, x∗(v) + a∗, x
′
∗(v)) dv

)

ds, t ∈ J

and
∫ T

0

fn(t, x∗(t) + a∗, x
′
∗(t)) dt = 0. (2.23)

It follows that

g∗(x
′
∗(t)) = g

(

1

n

)

+

∫ t

0

fn(s, x∗(s) + a∗, x
′
∗(s)) ds, t ∈ J

and (see (2.23)) x′
∗(0) = x′

∗(T ) = 1/n. Setting xn(t) = x∗(t)+ a∗ for t ∈ J , we see
that xn is a solution of the BVP (E)1n, (B)n and the validity of (2.20)–(2.22) now
follows from Lemma 2.1. Therefore to prove the existence of a solution of the BVP
(E)1n, (B)n satisfying (2.20)–(2.22), we have to show that the operator A(·, ·, 1) has
a fixed point. Since A(·, ·, 0) = Kn(·, ·) and Kn is essential by Lemma 2.2, for the
existence of a fixed point of A(·, ·, 1) it is sufficient to verify, by Theorem 1.3, that

(i) A is a compact operator, and
(ii) for each λ ∈ [0, 1], A(·, ·, λ) is fixed point free on ∂Ωn.

Using (2.19), A is continuous by the Lebesgue dominated convergence theorem and
also A(Ωn×[0, 1]) is compact in U . Thus (i) is satisfied. Let A(x0, a0, λ0) = (x0, a0)
for some (x0, a0) ∈ Ωn and λ0 ∈ [0, 1]. If λ0 = 0 then (x0, a0) 6∈ ∂Ωn which has
been proved in the proof of Lemma 2.2. Let λ0 ∈ (0, 1]. Then

x0(t) =

∫ t

0

g−1
∗

(

g
( 1

n

)

+ λ0

∫ s

0

fn(v, x0(v) + a0, x
′
0(v)) dv

)

ds, t ∈ J

and
∫ T

0

fn(t, x0(t) + a0, x
′
0(t)) dt = 0. (2.24)
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Hence

g∗(x
′
0(t)) = g

(

1

n

)

+ λ0

∫ t

0

fn(s, x0(s) + a0, x
′
0(s)) ds, t ∈ J,

and (see (2.24)) x′
0(0) = x′

0(T ) = 1/n. Setting xn(t) = x0(t) + a0 for t ∈ J , we see
that xn is a solution of BVP (E)λ0

n , (B)n. Consequently,

‖x0 + a0‖ = ‖xn‖ < A,
1

n
≤ x′

n(t) = x′
0(t) < Λ for t ∈ J (2.25)

by Lemma 2.1. Since x0(0) = 0, (2.25) yields |a0| < A, and so ‖x0‖ < A + |a0| <
2A. Hence (x0, a0) 6∈ ∂Ωn and (ii) is verified. 2

Remark 2.4. Let n ∈ N. By Lemma 2.3, there exists a solution xn of the BVP
(E)1n, (B)n satisfying (2.20) and (2.22). From the definition of the functions fn

and g∗ we see that fn(t, xn(t), x′
n(t)) = f(t, xn(t), x′

n(t)), g∗(x
′
n(t)) = g(x′

n(t)),
and so

(g(x′
n(t)))′ = f(t, xn(t), x′

n(t)) for a.e. t ∈ J. (2.26)

Lemma 2.3 guarantees that for each n ∈ N, there exists a solution xn of the
BVP (E)1n, (B)n and that x′

n ≥ 1/n on J . Since we consider solutions of the
BVP (1.1), (1.2) in the class C1(J) and having positive derivative on (0, T ), it is
important for limiting processes to know properties of {x′

n} on neighbourhoods of
the points t = 0 and t = T . This is done in Lemma 2.5.

Lemma 2.5. Let assumptions (H1)–(H5) be satisfied and let xn be a solution of

the BVP (E)1n, (B)n. Then there exist positive constants ∆ and µ such that

g(x′
n(t)) ≥ µt, g(x′

n(T − t)) ≥ µ(T − t) for t ∈ [0,∆], n ∈ N. (2.27)

Proof. By Lemma 2.3 and Remark 2.4, there exist {ξn} ⊂ (0, T ) and a positive
constant Λ such that

xn(ξn) = α(ξn) (2.28)

and
1

n
≤ x′

n(t) < Λ (2.29)

for t ∈ J and n ∈ N, and also (2.26) is true. In addition (see (2.10)),

max{x′
n(t) : t ∈ J} = x′

n(ξn) (2.30)

and, by (H3) and (2.26), x′
n is increasing on [0, ξn] and decreasing on [ξn, T ].

We now show that
χ ≤ ξn ≤ T − χ for n ∈ N, (2.31)

where χ is a positive number. First, assume on the contrary that limn→∞ ξkn
= 0

for a subsequence {ξkn
} of {ξn}. Then from limn→∞ xkn

(ξkn
) = limn→∞ α(ξkn

) =
α(0) and

0 < xkn
(ξkn

) − xkn
(0) = x′

kn
(τn)ξkn

< Λξkn
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where τn ∈ (0, ξkn
), we deduce that limn→∞ xkn

(0) = α(0) and then using the
inequalities (see (2.12) with xkn

and ξkn
instead of x and t, respectively)

1

kn
≤ x′

kn
(ξkn

) < H−1
(

H
( 1

kn

)

+

∫ α(0)

xkn (0)

q1(s) ds
)

, n ∈ N,

we get limn→∞ x′
kn

(ξkn
) = 0. Now (2.29) and (2.30) give

lim
n→∞

x′
kn

(t) = 0 uniformly on J. (2.32)

Since xkn
(T ) > α(ξkn

) and α is decreasing on J by (H2), we can assume (going if
necessary to a subsequence) that

xkn
(t) > α

(

T

2

)

+ ε ≥ α(t) + ε, 0 < x′
kn

(t) ≤ 1 for t ∈

[

T

2
, T

]

, n ∈ N, (2.33)

where ε is a positive constant. By (H5), there is a δ > 0 such that f(t, x, y) ≤ −δ
for a.e. t ∈ [T/2, T ] and each x ≥ α(t) + ε, y ∈ (0, 1]. Therefore (see (2.26) and
(2.33))

(g(x′
kn

(t)))′ ≤ −δ for a.e. t ∈

[

T

2
, T

]

and each n ∈ N,

which implies

g

(

x′
kn

(

T

2

))

− g(x′
kn

(T )) = −

∫ T

T/2

(g(x′
kn

(t)))′ dt ≥
δT

2
, n ∈ N,

contrary to (2.32). Analogously we can show that lim supn→∞ ξn < T . We have
verified that (2.31) is true with a positive constant χ. Then xn(0) − α(0) <
xn(ξn)−α(0) = α(ξn)−α(0) ≤ α(χ)−α(0) and xn(T )−α(T ) > xn(ξn)−α(T ) =
α(ξn) − α(T ) ≥ α(T − χ) − α(T ). Hence

xn(0) < α(0) − φ, xn(T ) > α(T ) + φ for n ∈ N. (2.34)

where φ = min{α(0)−α(χ), α(T −χ)−α(T )} > 0. We now claim that there exists
∆1 > 0 such that

xn(t) < α(t) −
φ

2
for t ∈ [0,∆1], n ∈ N. (2.35)

If not, there are a subsequence {ln} of {n} and a sequence {tn} ⊂ (0, T ), limn→∞ tn
= 0, such that

xln(tn) = α(tn) −
φ

2
, n ∈ N.

Then (see (2.34))

xln(tn) − xln(0) > α(tn) −
φ

2
− α(0) + φ = α(tn) − α(0) +

φ

2
, n ∈ N,

contrary to

lim
n→∞

(xln(tn) − xln(0)) = lim
n→∞

x′
ln(ηn)tn ≤ Λ lim

n→∞
tn = 0, ηn ∈ (0, tn).
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Since, by (H5), there is a δ∗1 > 0 such that f(t, x, y) ≥ δ∗1 for a.e. t where x ≤
α(t) − φ/2 and y ∈ (0, 1], (2.35) shows that (g(x′

n))′ ≥ δ∗1 a.e. on any subinterval
of [0,∆1] where x′

n ≤ 1. Hence (note x′
n(0) = 1/n)

g(x′
n(t)) ≥ δ1t, t ∈ [0,∆1], n ∈ N

with δ1 = min{g(1)/∆1, δ
∗
1}. Similar arguments show that there exist positive

constants δ2 and ∆2 such that

g(x′
n(T − t)) ≥ δ2(T − t), t ∈ [0,∆2], n ∈ N.

Therefore (2.27) is true with µ = min{δ1, δ2} and ∆ = min{∆1,∆2}. 2

3. Existence results and examples

Theorem 3.1. Let assumptions (H1)–(H5) be satisfied. Then the BVP (1.1), (1.2)
has a solution x such that x′(t) > 0 for t ∈ (0, T ).

Proof. From Lemma 2.3 it follows that the BVP (E)1n, (B)n has a solution xn for
each n ∈ N,

‖xn‖ < A, (3.1)

1

n
≤ x′

n(t) < Λ (3.2)

for t ∈ J , where A and Λ are positive constants and, by Remark 2.4, (2.26) is
satisfied. In addition, by Lemma 2.5, there exist positive constants ∆ and µ such
that (2.27) is true. From (2.27) and the properties of xn we deduce that

x′
n(t) ≥ η(t) for t ∈ J , n ∈ N (3.3)

where

η(t) =











g−1(µt) for t ∈ [0,∆]

g−1(µ∆) for t ∈ (∆, T − ∆)

g−1(µ(T − t)) for t ∈ [T − ∆, T ].

Now (H3), (3.1) and (3.2) yield

|f(t, xn(t), x′
n(t))| ≤ γ(t) for a.e. t ∈ J and each n ∈ N (3.4)

with

γ(t) = (ω1(Λ) + ω2(η(t)))max
{

max
−A≤u≤α(0)

q1(u), max
α(T )≤u≤A

q2(u)
}

.

Since
∫ 1

0
ω2(g

−1(s)) ds < ∞ in (H3) and Remark 1.1 imply ω2(η(t)) ∈ L1(J), we
have γ ∈ L1(J).

Now {g(x′
n(t))} is equicontinuous on J which follows from

|g(x′
n(t2)) − g(x′

n(t1))| =
∣

∣

∣

∫ t2

t1

f(t, xn(t), x′
n(t)) dt

∣

∣

∣
≤

∣

∣

∣

∫ t2

t1

γ(t) dt
∣

∣

∣
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for t1, t2 ∈ J and n ∈ N. The equalities

|x′
n(t2) − x′

n(t1)| = |g−1(g(x′
n(t2))) − g−1(g(x′

n(t1)))|, t1, t2 ∈ J, n ∈ N

and g−1 being continuous and increasing on [0,∞) imply that also {x′
n(t)} is

equicontinuous on J . From (3.1) and (3.2), {xn} is bounded in C1(J), and there-
fore the Arzelà–Ascoli theorem guarantees that without loss of generality we can
assume that {xn} is convergent in C1(J). Let limn→∞ xn = x. Then x ∈ C1(J),
x′(0) = x′(T ) = 0 and (see (3.3)) x′(t) ≥ η(t) for t ∈ J . Therefore x′(t) > 0 for
t ∈ (0, T ),

lim
n→∞

f(t, xn(t), x′
n(t)) = f(t, x(t), x′(t)) for a.e. t ∈ J

and letting n → ∞ in

g(x′
n(t)) = g

(

1

n

)

+

∫ t

0

fn(s, xn(s), x′
n(s)) ds, t ∈ J, n ∈ N,

we have (see (3.4))

g(x′(t)) =

∫ t

0

f(s, x(s), x′(s)) ds, t ∈ J,

by the Lebesgue dominated convergence theorem. Hence g(x′) ∈ AC(J) and x
satisfies (1.1) a.e. on J . We have proved that x is a solution of the BVP (1.1),
(1.2) and x′(t) > 0 for t ∈ (0, T ). 2

Example 3.2. Consider the differential equation

((x′)p)′ = r(t)(α(t) − x)2n−1
(

(x′)γ +
m

(x′)̺

)

(3.5)

where r ∈ L1(J), 0 < a ≤ r(t) ≤ b for a.e. t ∈ J , α ∈ C0(J) is decreasing, p, γ, ̺
and m are positive constants, ̺ < p, 1 + p − γ > 0, and n ∈ N. Set

f(t, x, y) = r(t)(α(t) − x)2n−1
(

yγ +
m

y̺

)

for (t, x, y) ∈ J ×R× (0,∞). Then (H1) is satisfied with g(u) = up and f satisfies
(H2). (H3) is satisfied with q1(x) = b(α(0) − x)2n−1, q2(x) = b(x − α(T ))2n−1,
ω1(y) = yγ , ω2(y) = m/y̺ and (H5) with δ = amε2n−1. It remains to look at
(H4). For that purpose define h ∈ C0([0,∞)) by h(u) = u/(m + u) for u ∈ [0,∞).
Then h is increasing, h(0) = 0 and limu→∞ h(u) = 1. Thus for 0 < v < u we have

H(u) =

∫ g(u)

0

g−1(s)

ω1(g−1(s)) + ω2(g−1(s))
ds =

∫ up

0

s1/p

sγ/p + ms−̺/p
ds

= H(v) +

∫ up

vp

h(s(γ+̺)/p)s(1−γ)/p ds ≥ H(v) + h(vγ+̺)

∫ up

vp

s(1−γ)/p ds

= H(v) +
ph(vγ+̺)

1 + p − γ
(u1+p−γ − v1+p−γ).
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Since
∫ α(0)

α(T )−Tu

q1(s) ds = b

∫ α(0)

α(T )−Tu

(α(0) − s)2n−1 =
b

2n
(Tu + α(0) − α(T ))2n

and
∫ α(0)+Tu

α(T )

q2(s) ds = b

∫ α(0)+Tu

α(T )

(s − α(T ))2n−1 =
b

2n
(Tu + α(0) − α(T ))2n,

we get

S := min

{

lim sup
u→∞

∫ α(0)

α(T )−Tu

q1(s) ds

H(u)
, lim sup

u→∞

∫ α(0)+Tu

α(T )

q2(s) ds

H(u)

}

≤ lim sup
u→∞

b(Tu + α(0) − α(T ))2n

2n
(

H(v) +
ph(vγ+̺)

1 + p − γ
(u1+p−γ − v1+p−γ)

)

for 0 < v < u. Hence

S ≤







0 if 2n + γ − 1 < p

bT 2n

ph(vγ+̺)
if 2n + γ − 1 = p

for v ∈ (0,∞), and consequently (letting v → ∞)

S ≤







0 if 2n + γ − 1 < p

bT 2n

p
if 2n + γ − 1 = p.

We see that f satisfies (H4) if either 2n + γ − 1 < p or 2n + γ − 1 = p and
bT 2n < p. Summarizing, by Theorem 3.1, the BVP (3.5), (1.2) with positive
constants p, γ, ̺,m and n ∈ N in (3.5) satisfying ̺ < p has a solution x with
x′ > 0 on (0, T ) if either 2n + γ − 1 < p or 2n + γ − 1 = p and bT 2n > p.

Example 3.3. Consider the differential equation

((x′)p)′ =
eα(t)−x − 1

h(xx′)(x′)γ
(3.6)

where p and γ are positive constants, h ∈ C0(R), 1 ≤ h(u) ≤ M for u ∈ R and
α ∈ C0(J) is decreasing. Set

f(t, x, y) =
eα(t)−x − 1

h(xy)yγ

for (t, x, y) ∈ J×R×(0,∞). Then f satisfies (H2) and (H1) is true with g(u) = up.
(H3) is satisfied with q1(x) = eα(0)−x − 1, q2(x) = 1 − eα(T )−x, ω1(y) ≡ 0 and
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ω2(y) = y−γ , and (H5) with δ = (1 − e−ε)/M . Since

∫ α(0)+Tu

α(T )

q2(s) ds =

∫ α(0)+Tu

α(T )

(1 − eα(T )−s) ds

= Tu + eα(T )−α(0)−Tu + α(0) − α(T ) − 1

and

H(u) =

∫ g(u)

0

g−1(s)

ω1(g−1(s)) + ω2(g−1(s))
ds =

∫ up

0

s(γ+1)/p ds =
pup+γ+1

p + γ + 1

for u ∈ [0,∞), we have limu→∞ H(u) = ∞,

lim
u→∞

∫ α(0)+Tu

α(T )

q2(s) ds

H(u)

= lim
u→∞

(p + γ + 1)(Tu + eα(T )−α(0)−Tu + α(0) − α(T ) − 1)

pup+γ+1

= 0,

and therefore (H4) is satisfied. Hence Theorem 3.1 guarantees the existence of a
solution x of BVP (3.6), (1.2) with x′ > 0 on (0, T ).
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