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Adjacency preserving mappings of symmetric and hermitian
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Summary. Let D be a division ring with an involution ~and F = {a € D | @ = a}. When
~ is the identity map then D = F is a field and we assume char(F) # 2. When ~ is not the
identity map we assume that F' is a subfield of D and is contained in the center of D. Let n
be an integer, n > 2, and H, (D) be the space of hermitian matrices which includes the space
Sn(F) of symmetric matrices as a particular case. If a bijective map ¢ of Hy (D) preserves the
adjacency then also ¢~1 preserves the adjacency.
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1. Introduction

Let D be a division ring which possesses an involution ~. By an involution ~ of D
we mean a bijection ~: D — D with the properties a +b = @ + b, ab = ba, and
@a=aforalla,be D. Let F ={a € D |a=a} be the set of fixed elements of ~.
If ~ is the identity map, then D = F' is a field.

Let n be an integer, n > 2. An n x n matrix H over D is called hermitian
if tH = H. When ~ is the identity and D = F is a field, hermitian matrices
are merely symmetric matrices. Denote by H, (D) the space of n x n hermitian
matrices over D. When ~ is the identity and D = F' is a field, H,, (D) is usually
denoted by S,,(F), called the space of n x n symmetric matrices over F. Let A, B €
H,(D). A, B are said to be adjacent and we write A ~ B if rank(A — B) = 1.
The Fundamental Theorem of the geometry of hermitian matrices (and symmetric
matrices) reads as follows.

Theorem 1.1. Let D be a division ring which possesses an involution ~ and denote
the set of fived elements of ~ in D by F. If ~ is not the identity map, assume that
F is a subfield of D and is contained in the center of D. Let n be an integer,
n > 2. Then any bijective map ¢ from H, (D) to itself for which both the map ¢
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and its inverse =1 preserve the adjacency in H,, (D) is of the form
X?=aPX°'P+Hy  forall X € H,(D), (1)

where a € F* := F \ {0}, P € GL, (D), Hy € Hn(D), and o is an automorphism
of D which commutes with ~, i.e., @® = a® for alla € D, unlessn = 3 and D = Fy
and ~ is the identity map of Fo. In this latter case, there is an extra bijective map
e of S5(F2), and ¢ might also be the product of a map of the form (1) and e.
Conversely, any map of the form (1) or e is bijective, and both the map and its
inverse preserve the adjacency.

This theorem was proved by L. K. Hua, Z.-X. Wan et al., cf. [2, 3, 4, 5, 10, 11].
It should be remarked that in the statement of this theorem in [10, 11], when ~
is not the identity map it is further assumed that the trace map z — z + T is
surjective. But this assumption was removed in [5].

In [14] the problem was posed whether for each type of geometry of matrices
it is sufficient to demand that the map ¢ from the space of matrices of a certain
type to itself is bijective and preserves the adjacency. In the present paper we
solve this problem for S,,(F') under the assumption that char(F') # 2 and also for
H,,(D) under the assumption that ~ is not the identity map and that the set F' of
fixed elements of ~ in D is a subfield of D and is contained in the center of D.

Theorem 1.2. Let D be a division ring which possesses an involution ~ and denote
the set of fixed elements of — by F'. When ~ is the identity map, hence D = F is
a field, then assume that char(F) # 2. When ~ is not the identity map, assume
that F is a subfield of D and is contained in the center of D. Let n be an integer,
n > 2. If a bijective map  from H, (D) to itself preserves the adjacency in H,, (D)
then also ¢~ ! preserves the adjacency.

There is a close relation between the projective space PS, (F) of symmetric
matrices and S, (F) [1, 6, 12]. Theorem 1.2 is also true in the projective space
PS, (F) of symmetric matrices [7, 8], even under milder hypotheses. The result
can be extended to the dual polar space [9].

2. Some lemmas

The basic notations and properties of the space of hermitian matrices and that
of symmetric matrices are described in the book [12] of Z.-X. Wan, which we will
follow.

In the following our discussion on hermitian matrices includes symmetric ma-
trices over fields of characteristic other than two as a particular case.

We call n x n hermitian matrices over D the points of the space H, (D). Let
A, B be two points of H, (D). The distance d(A, B) between A and B is defined
to be the smallest nonnegative integer k with the property that there exists a
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sequence of consecutively adjacent points A = Ag, A1,..., Ay = B. The distance
satisfies the triangle inequality

d(A,B) +d(B,C) > d(A,C) for all A,B,C € H,(D).

From now on when ~ is the identity map then D = F' is a field and we assume
that char(F) # 2, and when ~ is not the identity map we assume that the set
F={aeD|a=a} is a subfield of D and is contained in the center of D.

For any two points A, B € H,, (D), it was proved in [12] that

d(A, B) =rank(4 — B).

For any two adjacent points A, B € H,,(D) the line [ = AB joining A and B is
defined to be the set consisting of A, B, and all points X which are adjacent to
both A and B. It was also proved in [12] that | = {A+ X(B— A) | A € F}.

Lemma 2.1. Let P € H,,(D) be a point and let | be a line of H, (D). Then either
the distance between P and any point of | is the same, or there is a point QQ € [
such that d(P,X) = d(P,Q) + 1 for all X € 1\ {Q}.

Proof. Since the transformations of the form (1) operate transitively on the set of
lines, we may assume that [ = {\*eje; | A\ € F} where e; = (1,0,...,0) € D"
We can find a cogredient transformation which leaves ‘eje; fixed and takes P to
a matrix of the form

P11 P12 -+ Pir Pigr+1 *°° Pin
Diz A2

Dir Ar ;
D141 0

Py

Din 0

where Ag, ..., A\, € F* and p11 € F, p12,...,p1n € D.
Case 1. piy41 = ... = pin = 0. Then there is a point @ in [ such that

d(P1,X)=d(P1,Q)+1=rforall X €\ {Q}.

Case 2. There is some s, r + 1 < s < n with p;s # 0. Then d(P;,X) =r+1
for all X €. O

Corollary 2.1. Let P € H, (D) be a point with rank(P) = k. Then we can find a
cogredient transformation which leaves ‘ete, fized and takes P to a matriz of one
of the following forms
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H1 H2
2 0
A3 Az A2

- 0 -
where A\1,..., \p € F* and py € F, us € D*. Let | := {\'e1e; | A € F}. In the
first case, d(P,X) =k for all X € 1. In the second case there exists Q € | such
that d(P,Q) =k —1 and d(P,X) =k for all X € I\ {Q}. In the third case there
exists Q € | such that d(P,Q) =k and d(P,X) =k +1 for all X € [\ {Q}.

Lemma 2.2. Let A € H,(D) be a matriz with rank(A) = k+ 1. A matriz B €
H, (D) has rank k and A ~ B if and only if there exists an x € D™ with tA'T # 0

and L

B=A— (zA'Z)" {(zA)(zA).
Proof. Let there exist z € D" with zA'Z # 0. Let B = A — (zA*T)~! t(zA)(zA).
Then A ~ B. For y € D", yA = 0 we have yB = 0 thus ker(4) C ker(B).
TA'T # 0 implies xA # 0. But 2B = 0, thus ker(A4) C ker(B), and rank(B) =
rank(4) — 1 = k.

Now let B € H, (D) satisfy rank(B) = k and A ~ B. Then B = A — \'gy
where A € F* and y € D™\ {0}. There exists T' € GL, (D) such that yT =
e; = (1,0,...,0). Let By = ‘TBT, A; = 'TAT, then B; = A; — \'ere;. Since
rank(A) = k 4+ 1 and rank(B) = k, by Corollary 2.1, under a cogredient transfor-
mation which leaves ‘ete; fixed, we can assume

ail 0 --- 0 0
0 X
A = s (1117>\2,...,>\k-+1€F*.
0 Akt1
0 0
Then a1; = A. Let x = e, T, then B = A — (zA'Z) " t{(xA)(xA). O

Lemma 2.3. Let A, B € GL, (D) satisfy A # B. Then (B — A)B~Y(B — A) #
B—-A.

Proof. Assume (B — A)B™'(B—A)=B—A. Then (B—A)(I-B 'A)=B-A
and (B — A)B7'A = 0, a contradiction to A # B. O

Lemma 2.4. Let |F| =00 and A, B € H,(D) with A # B, rank(A) = rank(B) =
n, rank(B — A) > 2. Then there exists x € D™ such that

x(B-—A)'T#0 and x(B—-A)'T+#2(B—-A)B YB-A)'T
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Proof. There exists T' € GL, (D) with 'T(B — A)T = diag(A1,...,\,0,...,0),
N € F*, k > 2. Let By = 'TBT, A; = 'TAT. Then B;' = T7'B~1'T-1,
(B; — Al)Bfl(Bl — A;) # By — A;. Tt is sufficient to show that there exists
x € D™ such that

SC(Bl—Al)tf#O and .’E(Bl—Al)Bfl(Bl—Al)tf#l‘(Bl—Al)tf,
where By — Ay = diag(\1, ..., M\, 0,...,0). Let B = (8;)).
Case 1. B;; # )\;1 for some ¢, 1 <1i < k. Then
ei(Bl - Al) te_i = )\z 7& 0 and ei(Bl - Al)Bfl(Bl - Al)te_i = )\zﬁu)\z # )\z

Case 2. B;; = )\i_l forall4, 1 <i < k. Since (BlfAl)Bl_l(BlfAl) # B1— Ay,
there exist ¢,7, 1 <4, <k, i # j such that 3;; # 0. Without loss of generality,
we assume (12 # 0. It is enough to find z1,z2 € D such that

AMZ1T1 + AoxaZa # 0, 211 B12A2T2 + T2 A2 B12 A1 TT # 0.

Case 2.1. ~ is the identity, D = F and char(F) # 2. If A\; + Ay # 0, then
choose x1 = w5 = 1. If \; + Ay = 0, then choose z1 = 1 and x5 € F* with 23 # 1.

Case 2.2. ~ is not the identity, D # F":

Case 2.2.1. When (12 + B12 # 0, proceed as in Case 2.1.

Case 2.2.2. When B12 + B12 = 0, choose 1 = 1 and o € D \ F with A\ +
XoxoT3 # 0, f12T2 + 22012 # 0. O

Lemma 2.5. Let |F| = co. For all A,B € H,(D) with A # B and rank(A) =
rank(B) = n there ezists C € H,(D) with rank(C) = n, B ~ C and d(A,C) =
d(A,B) — 1.

Proof. If A ~ B then choose C = A. Assume d(A, B) = k > 2. By Lemma 2.4,
there exists € D™ such that
r(B-—A)'T#0 and 2(B-A)'T#xz(B—-A)B (B-A) 'z

Let
C=B-(z(B-A)'7) " "(x(B - A))(z(B - A)).

By Lemma 2.2 we have C' ~ B and d(A,C) = d(A, B) — 1. Assume rank(C) # n.
Then by Lemma 2.2 there is y € D™ with

C=B-(yB'y)~" "yB(yB).
Then yB = va(B — A) for some v € D* and
C=B- (x(B — A)B~Y(B - A) tf)il {@(B— A))(x(B - A)).

Thus
z(B—A)'z =x(B—-A)B 4B~ A)'z,

a contradiction. O
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Lemma 2.6. Let |F| = o0o. Let A,B € H,(D), A ~ B, rank(A) = rank(B) = n.
Let A— B = X\g'Tx, \g € F*, and | = {A — \'Tx | A € F} be the line containing
both A and B. Suppose all points in | are of rank n. Then there are two points
C,D € H,(D) with rank(C) = rank(D) =n, A~ C, C ~ D, D ~ B, and the
line containing A, C contains a point of rank n— 1, so do the line containing C, D
and the line containing D, B.

Proof. There exists T € GL, (D) with 2T = (1,0,...,0) = e;. Let A; = ‘TAT,
By ='TBT, |, = {A; — \eje; | A € F}. It is sufficient to prove the lemma for
Ay, By and l;. We drop the subscript, i.e., let A,B €l = {A— \eje; | A € F},
rank(A) = rank(B) = n. Since rank(A) = n, by Corollary 2.1, under a cogredient
transformation which leaves tete; fixed we can assume

a1 a12
a2 0
A= >\3 ) B:A_Aotaela
)\n
where a11 € F, a12 € D*, As3,..., A, € F*, because in the case A = diag(a1,
A2,..., An) there would exist one point in [ which is of rank n — 1. Choose p € F*

such that a;; — p#0 and a;; — Ao — p#0. Let uy = —aia(a11 — p) taiz, g2 =
—aia(a11—No—p) " taie, then uy, s € F*, g # po. Let C = diag(p, i1, Az, ..., An)
and D = diag(u, p2, Az, ..., An). It is easy to verify that C, D satisfy the require-
ments of Lemma 2.6. O

3. Proof of Theorem 1.2

Let ¢ be a bijective map from H, (D) to itself which preserves adjacency, i.e.
A ~ B implies A¥ ~ B¥ for all A,B € H,(D). Clearly, for all A,B € H,(D),
d(A¥,B¥) < d(A, B), and [” is contained in a line for all lines [. If ~ is the identity
map then D = F. If ~ is not the identity map, then D is either a separable
quadratic extension of F' or a division ring of generalized quaternions over F' (cf.
Theorem 1.1 in [5]). Thus if F is finite, D is finite and the geometry of H, (D)
contains only finitely many points and lines. Then [¥ is a line for all lines [, and
A¥ ~ B? implies A ~ B for all A, B € H,,(D).
Now let F' be infinite.

Lemma 3.1. Let ¢ be a bijective map which preserves adjacency and assume that
0¥ = 0. Then for any B € H, (D) with d(0, B) = n we have d(0, B¥) = n.

Proof. Suppose d(0, B¥) # n, then d(0, B¥) <n—1. Let C € H,(D), d(0,C) = n.
Then rank(B) = rank(C') = n. By Lemma 2.5 and Lemma 2.6 there is a sequence
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of points By = B, By, ..., By = C' such that rank(B;) =nVi=1,...,k, B; ~ B;11
Vi =0,...,k — 1, and each line l; = B;B; 1 contains a point @; of rank n — 1.
Then d(0,Q;) = n—1. It follows that d(0,QY) < d(0,Q;) = n—1. But d(0, B¥) <
n — 1, and by Lemma 2.1, d(0, Bf) < n — 1. Analogously, d(0,B3) <n—1, ...,
d(0,Bf) <n—1,1ie. d(0,C?) <n— 1. This contradicts the surjectivity of ¢. O

Proof of Theorem 1.2. Let ¢ be a bijective map from H,, (D) to itself which pre-
serves adjacency. First we prove that for A, B € H, (D), d(A,B) = n implies
d(A?,B?) = n. Let o be the map X — X7 = X + A for all X € H, (D) and let
o’ be the map X — X = X — A® for all X € H,(D). Let ¢' = ¢’ 0 p oo, then
¢ is bijective and preserves adjacency, 09 = 0. d(0,B — A) = d(A,B) = n, by
Lemma 3.1 we have n = d(0, (B — A)¥") = d(A¥, B¥).

Then we prove that d(A, B) = d(A¥, B?) for all A, B € H,(D). If d(A, B) = n,
then d(A¥, B?) = n from above. Suppose d(A, B) < n. Then there is a point C
such that d(A, B)+d(B,C) = d(A,C) = n. This implies n = d(A,C) = d(A, B) +
d(B,C) > d(A¥,B¥®) + d(B¥,C?) > d(A%,C¥) = n. Hence d(A, B) = d(A¥, B¥).
In particular, d(A, B) = 1 if, and only if, d(A%, B¥) = 1. Therefore also ¢!
preserves adjacency. O
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