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Summary. Let D be a division ring with an involution and F = {a ∈ D | a = a}. When
is the identity map then D = F is a field and we assume char(F ) �= 2. When is not the

identity map we assume that F is a subfield of D and is contained in the center of D. Let n
be an integer, n ≥ 2, and Hn(D) be the space of hermitian matrices which includes the space
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1. Introduction

Let D be a division ring which possesses an involution . By an involution of D
we mean a bijection : D → D with the properties a + b = a + b, ab = ba, and
a = a for all a, b ∈ D. Let F = {a ∈ D | a = a} be the set of fixed elements of .
If is the identity map, then D = F is a field.

Let n be an integer, n ≥ 2. An n × n matrix H over D is called hermitian
if tH = H. When is the identity and D = F is a field, hermitian matrices
are merely symmetric matrices. Denote by Hn(D) the space of n × n hermitian
matrices over D. When is the identity and D = F is a field, Hn(D) is usually
denoted by Sn(F ), called the space of n×n symmetric matrices over F . Let A,B ∈
Hn(D). A, B are said to be adjacent and we write A ∼ B if rank(A − B) = 1.
The Fundamental Theorem of the geometry of hermitian matrices (and symmetric
matrices) reads as follows.

Theorem 1.1. Let D be a division ring which possesses an involution and denote
the set of fixed elements of in D by F . If is not the identity map, assume that
F is a subfield of D and is contained in the center of D. Let n be an integer,
n ≥ 2. Then any bijective map ϕ from Hn(D) to itself for which both the map ϕ
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and its inverse ϕ−1 preserve the adjacency in Hn(D) is of the form

Xϕ = αPXσ tP + H0 for all X ∈ Hn(D), (1)

where α ∈ F ∗ := F \ {0}, P ∈ GLn(D), H0 ∈ Hn(D), and σ is an automorphism
of D which commutes with , i.e., aσ = aσ for all a ∈ D, unless n = 3 and D = F2

and is the identity map of F2. In this latter case, there is an extra bijective map
ε of S3(F2), and ϕ might also be the product of a map of the form (1) and ε.
Conversely, any map of the form (1) or ε is bijective, and both the map and its
inverse preserve the adjacency.

This theorem was proved by L. K. Hua, Z.-X. Wan et al., cf. [2, 3, 4, 5, 10, 11].
It should be remarked that in the statement of this theorem in [10, 11], when
is not the identity map it is further assumed that the trace map x �→ x + x is
surjective. But this assumption was removed in [5].

In [14] the problem was posed whether for each type of geometry of matrices
it is sufficient to demand that the map ϕ from the space of matrices of a certain
type to itself is bijective and preserves the adjacency. In the present paper we
solve this problem for Sn(F ) under the assumption that char(F ) �= 2 and also for
Hn(D) under the assumption that is not the identity map and that the set F of
fixed elements of in D is a subfield of D and is contained in the center of D.

Theorem 1.2. Let D be a division ring which possesses an involution and denote
the set of fixed elements of by F . When is the identity map, hence D = F is
a field, then assume that char(F ) �= 2. When is not the identity map, assume
that F is a subfield of D and is contained in the center of D. Let n be an integer,
n ≥ 2. If a bijective map ϕ from Hn(D) to itself preserves the adjacency in Hn(D)
then also ϕ−1 preserves the adjacency.

There is a close relation between the projective space PSn(F ) of symmetric
matrices and Sn(F ) [1, 6, 12]. Theorem 1.2 is also true in the projective space
PSn(F ) of symmetric matrices [7, 8], even under milder hypotheses. The result
can be extended to the dual polar space [9].

2. Some lemmas

The basic notations and properties of the space of hermitian matrices and that
of symmetric matrices are described in the book [12] of Z.-X. Wan, which we will
follow.

In the following our discussion on hermitian matrices includes symmetric ma-
trices over fields of characteristic other than two as a particular case.

We call n × n hermitian matrices over D the points of the space Hn(D). Let
A,B be two points of Hn(D). The distance d(A,B) between A and B is defined
to be the smallest nonnegative integer k with the property that there exists a
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sequence of consecutively adjacent points A = A0, A1, . . . , Ak = B. The distance
satisfies the triangle inequality

d(A,B) + d(B,C) ≥ d(A,C) for all A,B,C ∈ Hn(D).

From now on when is the identity map then D = F is a field and we assume
that char(F ) �= 2, and when is not the identity map we assume that the set
F = {a ∈ D | a = a} is a subfield of D and is contained in the center of D.

For any two points A,B ∈ Hn(D), it was proved in [12] that

d(A,B) = rank(A − B).

For any two adjacent points A,B ∈ Hn(D) the line l = AB joining A and B is
defined to be the set consisting of A, B, and all points X which are adjacent to
both A and B. It was also proved in [12] that l = {A + λ(B − A) | λ ∈ F}.

Lemma 2.1. Let P ∈ Hn(D) be a point and let l be a line of Hn(D). Then either
the distance between P and any point of l is the same, or there is a point Q ∈ l
such that d(P,X) = d(P,Q) + 1 for all X ∈ l \ {Q}.

Proof. Since the transformations of the form (1) operate transitively on the set of
lines, we may assume that l = {λ te1e1 | λ ∈ F} where e1 = (1, 0, . . . , 0) ∈ Dn.
We can find a cogredient transformation which leaves te1e1 fixed and takes P to
a matrix of the form

P1 =




p11 p12 · · · p1r p1,r+1 · · · p1n

p12 λ2

...
. . .

p1r λr

p1,r+1 0
...

. . .
p1n 0




,

where λ2, . . . , λr ∈ F ∗ and p11 ∈ F , p12, . . . , p1n ∈ D.
Case 1. p1,r+1 = . . . = p1n = 0. Then there is a point Q in l such that

d(P1,X) = d(P1, Q) + 1 = r for all X ∈ l \ {Q}.
Case 2. There is some s, r + 1 ≤ s ≤ n with p1s �= 0. Then d(P1,X) = r + 1

for all X ∈ l. �

Corollary 2.1. Let P ∈ Hn(D) be a point with rank(P ) = k. Then we can find a
cogredient transformation which leaves te1e1 fixed and takes P to a matrix of one
of the following forms
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


µ1 µ2
µ2 0

λ3
...

λk
0

...
0




,




λ1
λ2

...
λk

0
...

0




,




0
λ1

λ2
...

λk
0

...
0




,

where λ1, . . . , λk ∈ F ∗ and µ1 ∈ F , µ2 ∈ D∗. Let l := {λ te1e1 | λ ∈ F}. In the
first case, d(P,X) = k for all X ∈ l. In the second case there exists Q ∈ l such
that d(P,Q) = k − 1 and d(P,X) = k for all X ∈ l \ {Q}. In the third case there
exists Q ∈ l such that d(P,Q) = k and d(P,X) = k + 1 for all X ∈ l \ {Q}.

Lemma 2.2. Let A ∈ Hn(D) be a matrix with rank(A) = k + 1. A matrix B ∈
Hn(D) has rank k and A ∼ B if and only if there exists an x ∈ Dn with xA tx �= 0
and

B = A − (xA tx)−1 t(xA)(xA).

Proof. Let there exist x ∈ Dn with xA tx �= 0. Let B = A− (xA tx)−1 t(xA)(xA).
Then A ∼ B. For y ∈ Dn, yA = 0 we have yB = 0 thus ker(A) ⊂ ker(B).
xA tx �= 0 implies xA �= 0. But xB = 0, thus ker(A) � ker(B), and rank(B) =
rank(A) − 1 = k.

Now let B ∈ Hn(D) satisfy rank(B) = k and A ∼ B. Then B = A − λ tyy
where λ ∈ F ∗ and y ∈ Dn \ {0}. There exists T ∈ GLn(D) such that yT =
e1 = (1, 0, . . . , 0). Let B1 = tTBT , A1 = tTAT , then B1 = A1 − λ te1e1. Since
rank(A) = k + 1 and rank(B) = k, by Corollary 2.1, under a cogredient transfor-
mation which leaves te1e1 fixed, we can assume

A1 =




a11 0 · · · 0 0
0 λ2

...
. . .

...
0 λk+1

0 · · · 0




, a11, λ2, . . . , λk+1 ∈ F ∗.

Then a11 = λ. Let x = e1
tT , then B = A − (xA tx)−1 t(xA)(xA). �

Lemma 2.3. Let A,B ∈ GLn(D) satisfy A �= B. Then (B − A)B−1(B − A) �=
B − A.

Proof. Assume (B −A)B−1(B −A) = B −A. Then (B −A)(I −B−1A) = B −A
and (B − A)B−1A = 0, a contradiction to A �= B. �

Lemma 2.4. Let |F | = ∞ and A,B ∈ Hn(D) with A �= B, rank(A) = rank(B) =
n, rank(B − A) ≥ 2. Then there exists x ∈ Dn such that

x(B − A) tx �= 0 and x(B − A) tx �= x(B − A)B−1(B − A) tx.
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Proof. There exists T ∈ GLn(D) with tT (B − A)T = diag(λ1, . . . , λk, 0, . . . , 0),
λi ∈ F ∗, k ≥ 2. Let B1 = tTBT , A1 = tTAT . Then B−1

1 = T−1B−1 tT−1,
(B1 − A1)B−1

1 (B1 − A1) �= B1 − A1. It is sufficient to show that there exists
x ∈ Dn such that

x(B1 − A1) tx �= 0 and x(B1 − A1)B−1
1 (B1 − A1) tx �= x(B1 − A1) tx,

where B1 − A1 = diag(λ1, . . . , λk, 0, . . . , 0). Let B−1
1 = (βij).

Case 1. βii �= λ−1
i for some i, 1 ≤ i ≤ k. Then

ei(B1 − A1) tei = λi �= 0 and ei(B1 − A1)B−1
1 (B1 − A1) tei = λiβiiλi �= λi.

Case 2. βii = λ−1
i for all i, 1 ≤ i ≤ k. Since (B1−A1)B−1

1 (B1−A1) �= B1−A1,
there exist i, j, 1 ≤ i, j ≤ k, i �= j such that βij �= 0. Without loss of generality,
we assume β12 �= 0. It is enough to find x1, x2 ∈ D such that

λ1x1x1 + λ2x2x2 �= 0, x1λ1β12λ2x2 + x2λ2β12λ1x1 �= 0.

Case 2.1. is the identity, D = F and char(F ) �= 2. If λ1 + λ2 �= 0, then
choose x1 = x2 = 1. If λ1 + λ2 = 0, then choose x1 = 1 and x2 ∈ F ∗ with x2

2 �= 1.
Case 2.2. is not the identity, D �= F :
Case 2.2.1. When β12 + β12 �= 0, proceed as in Case 2.1.
Case 2.2.2. When β12 + β12 = 0, choose x1 = 1 and x2 ∈ D \ F with λ1 +

λ2x2x2 �= 0, β12x2 + x2β12 �= 0. �

Lemma 2.5. Let |F | = ∞. For all A,B ∈ Hn(D) with A �= B and rank(A) =
rank(B) = n there exists C ∈ Hn(D) with rank(C) = n, B ∼ C and d(A,C) =
d(A,B) − 1.

Proof. If A ∼ B then choose C = A. Assume d(A,B) = k ≥ 2. By Lemma 2.4,
there exists x ∈ Dn such that

x(B − A) tx �= 0 and x(B − A) tx �= x(B − A)B−1(B − A) tx.

Let
C = B − (x(B − A) tx)−1 t(x(B − A))

(
x(B − A)

)
.

By Lemma 2.2 we have C ∼ B and d(A,C) = d(A,B) − 1. Assume rank(C) �= n.
Then by Lemma 2.2 there is y ∈ Dn with

C = B − (yB ty)−1 tyB(yB).

Then yB = νx(B − A) for some ν ∈ D∗ and

C = B −
(
x(B − A)B−1(B − A) tx

)−1
t(x(B − A))

(
x(B − A)

)
.

Thus
x(B − A) tx = x(B − A)B−1(B − A) tx,

a contradiction. �
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Lemma 2.6. Let |F | = ∞. Let A,B ∈ Hn(D), A ∼ B, rank(A) = rank(B) = n.
Let A − B = λ0

txx, λ0 ∈ F ∗, and l = {A − λ txx | λ ∈ F} be the line containing
both A and B. Suppose all points in l are of rank n. Then there are two points
C,D ∈ Hn(D) with rank(C) = rank(D) = n, A ∼ C, C ∼ D, D ∼ B, and the
line containing A,C contains a point of rank n− 1, so do the line containing C,D
and the line containing D,B.

Proof. There exists T ∈ GLn(D) with xT = (1, 0, . . . , 0) = e1. Let A1 = tTAT ,
B1 = tTBT , l1 = {A1 − λ te1e1 | λ ∈ F}. It is sufficient to prove the lemma for
A1, B1 and l1. We drop the subscript, i.e., let A,B ∈ l = {A − λ te1e1 | λ ∈ F},
rank(A) = rank(B) = n. Since rank(A) = n, by Corollary 2.1, under a cogredient
transformation which leaves te1e1 fixed we can assume

A =




a11 a12

a12 0
λ3

. . .
λn




, B = A − λ0
te1e1,

where a11 ∈ F , a12 ∈ D∗, λ3, . . . , λn ∈ F ∗, because in the case A = diag(a11,
λ2, . . . , λn) there would exist one point in l which is of rank n− 1. Choose µ ∈ F ∗

such that a11 − µ �= 0 and a11 − λ0 − µ �= 0. Let µ1 = −a12(a11 − µ)−1a12, µ2 =
−a12(a11−λ0−µ)−1a12, then µ1, µ2 ∈ F ∗, µ1 �= µ2. Let C = diag(µ, µ1, λ3, . . . , λn)
and D = diag(µ, µ2, λ3, . . . , λn). It is easy to verify that C,D satisfy the require-
ments of Lemma 2.6. �

3. Proof of Theorem 1.2

Let ϕ be a bijective map from Hn(D) to itself which preserves adjacency, i.e.
A ∼ B implies Aϕ ∼ Bϕ for all A,B ∈ Hn(D). Clearly, for all A,B ∈ Hn(D),
d(Aϕ, Bϕ) ≤ d(A,B), and lϕ is contained in a line for all lines l. If is the identity
map then D = F . If is not the identity map, then D is either a separable
quadratic extension of F or a division ring of generalized quaternions over F (cf.
Theorem 1.1 in [5]). Thus if F is finite, D is finite and the geometry of Hn(D)
contains only finitely many points and lines. Then lϕ is a line for all lines l, and
Aϕ ∼ Bϕ implies A ∼ B for all A,B ∈ Hn(D).

Now let F be infinite.

Lemma 3.1. Let ϕ be a bijective map which preserves adjacency and assume that
0ϕ = 0. Then for any B ∈ Hn(D) with d(0, B) = n we have d(0, Bϕ) = n.

Proof. Suppose d(0, Bϕ) �= n, then d(0, Bϕ) ≤ n−1. Let C ∈ Hn(D), d(0, C) = n.
Then rank(B) = rank(C) = n. By Lemma 2.5 and Lemma 2.6 there is a sequence
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of points B0 = B,B1, . . . , Bk = C such that rank(Bi) = n ∀i = 1, . . . , k, Bi ∼ Bi+1

∀i = 0, . . . , k − 1, and each line li = BiBi+1 contains a point Qi of rank n − 1.
Then d(0, Qi) = n−1. It follows that d(0, Qϕ

i ) ≤ d(0, Qi) = n−1. But d(0, Bϕ) ≤
n − 1, and by Lemma 2.1, d(0, Bϕ

1 ) ≤ n − 1. Analogously, d(0, Bϕ
2 ) ≤ n − 1, . . .,

d(0, Bϕ
k ) ≤ n − 1, i.e. d(0, Cϕ) ≤ n − 1. This contradicts the surjectivity of ϕ. �

Proof of Theorem 1.2. Let ϕ be a bijective map from Hn(D) to itself which pre-
serves adjacency. First we prove that for A,B ∈ Hn(D), d(A,B) = n implies
d(Aϕ, Bϕ) = n. Let σ be the map X �→ Xσ = X + A for all X ∈ Hn(D) and let
σ′ be the map X �→ Xσ′

= X − Aϕ for all X ∈ Hn(D). Let ϕ′ = σ′ ◦ ϕ ◦ σ, then
ϕ′ is bijective and preserves adjacency, 0ϕ′

= 0. d(0, B − A) = d(A,B) = n, by
Lemma 3.1 we have n = d(0, (B − A)ϕ′

) = d(Aϕ, Bϕ).
Then we prove that d(A,B) = d(Aϕ, Bϕ) for all A,B ∈ Hn(D). If d(A,B) = n,

then d(Aϕ, Bϕ) = n from above. Suppose d(A,B) < n. Then there is a point C
such that d(A,B)+d(B,C) = d(A,C) = n. This implies n = d(A,C) = d(A,B)+
d(B,C) ≥ d(Aϕ, Bϕ) + d(Bϕ, Cϕ) ≥ d(Aϕ, Cϕ) = n. Hence d(A,B) = d(Aϕ, Bϕ).
In particular, d(A,B) = 1 if, and only if, d(Aϕ, Bϕ) = 1. Therefore also ϕ−1

preserves adjacency. �
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