Aequationes Math. 67 (2004) 132–139 0001-9054/04/010132-8 DOI 10.1007/s00010-003-2689-3

© Birkhäuser Verlag, Basel, 2004

Aequationes Mathematicae

Adjacency preserving mappings of symmetric and hermitian matrices

WEN-LING HUANG, ROLAND HÖFER AND ZHE-XIAN WAN

Summary. Let *D* be a division ring with an involution $\bar{}$ and $F = \{a \in D \mid \bar{a} = a\}$. When $\bar{}$ is the identity map then D = F is a field and we assume $\operatorname{char}(F) \neq 2$. When $\bar{}$ is not the identity map we assume that *F* is a subfield of *D* and is contained in the center of *D*. Let *n* be an integer, $n \geq 2$, and $\mathcal{H}_n(D)$ be the space of hermitian matrices which includes the space $S_n(F)$ of symmetric matrices as a particular case. If a bijective map φ of $\mathcal{H}_n(D)$ preserves the adjacency then also φ^{-1} preserves the adjacency.

Mathematics Subject Classification (2000). 15A99, 51D20.

Keywords. Geometry of matrices, symmetric matrices, hermitian matrices, mappings preserving adjacency, distance preserving mappings.

1. Introduction

Let D be a division ring which possesses an involution $\overline{}$. By an *involution* $\overline{}$ of D we mean a bijection $\overline{}: D \to D$ with the properties $\overline{a+b} = \overline{a} + \overline{b}$, $\overline{ab} = \overline{ba}$, and $\overline{\overline{a}} = a$ for all $a, b \in D$. Let $F = \{a \in D \mid \overline{a} = a\}$ be the set of fixed elements of $\overline{}$. If $\overline{}$ is the identity map, then D = F is a field.

Let n be an integer, $n \geq 2$. An $n \times n$ matrix H over D is called hermitian if ${}^{t}\overline{H} = H$. When $\bar{}$ is the identity and D = F is a field, hermitian matrices are merely symmetric matrices. Denote by $\mathcal{H}_n(D)$ the space of $n \times n$ hermitian matrices over D. When $\bar{}$ is the identity and D = F is a field, $\mathcal{H}_n(D)$ is usually denoted by $\mathcal{S}_n(F)$, called the space of $n \times n$ symmetric matrices over F. Let $A, B \in$ $\mathcal{H}_n(D)$. A, B are said to be *adjacent* and we write $A \sim B$ if rank(A - B) = 1. The Fundamental Theorem of the geometry of hermitian matrices (and symmetric matrices) reads as follows.

Theorem 1.1. Let D be a division ring which possesses an involution⁻ and denote the set of fixed elements of ⁻ in D by F. If ⁻ is not the identity map, assume that F is a subfield of D and is contained in the center of D. Let n be an integer, $n \geq 2$. Then any bijective map φ from $\mathcal{H}_n(D)$ to itself for which both the map φ Vol. 67 (2004) Adjacency preserving mappings of symmetric and hermitian matrices 133

and its inverse φ^{-1} preserve the adjacency in $\mathcal{H}_n(D)$ is of the form

$$X^{\varphi} = \alpha P X^{\sigma t} \overline{P} + H_0 \qquad \text{for all } X \in \mathcal{H}_n(D), \tag{1}$$

where $\alpha \in F^* := F \setminus \{0\}, P \in \operatorname{GL}_n(D), H_0 \in \mathcal{H}_n(D), and \sigma \text{ is an automorphism}$ of D which commutes with \neg , i.e., $\overline{a}^{\sigma} = \overline{a^{\sigma}}$ for all $a \in D$, unless n = 3 and $D = \mathbb{F}_2$ and \neg is the identity map of \mathbb{F}_2 . In this latter case, there is an extra bijective map ϵ of $S_3(\mathbb{F}_2)$, and φ might also be the product of a map of the form (1) and ϵ . Conversely, any map of the form (1) or ϵ is bijective, and both the map and its inverse preserve the adjacency.

This theorem was proved by L. K. Hua, Z.-X. Wan et al., cf. [2, 3, 4, 5, 10, 11]. It should be remarked that in the statement of this theorem in [10, 11], when $\overline{}$ is not the identity map it is further assumed that the trace map $x \mapsto x + \overline{x}$ is surjective. But this assumption was removed in [5].

In [14] the problem was posed whether for each type of geometry of matrices it is sufficient to demand that the map φ from the space of matrices of a certain type to itself is bijective and preserves the adjacency. In the present paper we solve this problem for $S_n(F)$ under the assumption that $\operatorname{char}(F) \neq 2$ and also for $\mathcal{H}_n(D)$ under the assumption that - is not the identity map and that the set F of fixed elements of - in D is a subfield of D and is contained in the center of D.

Theorem 1.2. Let D be a division ring which possesses an involution⁻ and denote the set of fixed elements of ⁻ by F. When ⁻ is the identity map, hence D = F is a field, then assume that $\operatorname{char}(F) \neq 2$. When ⁻ is not the identity map, assume that F is a subfield of D and is contained in the center of D. Let n be an integer, $n \geq 2$. If a bijective map φ from $\mathcal{H}_n(D)$ to itself preserves the adjacency in $\mathcal{H}_n(D)$ then also φ^{-1} preserves the adjacency.

There is a close relation between the projective space $PS_n(F)$ of symmetric matrices and $S_n(F)$ [1, 6, 12]. Theorem 1.2 is also true in the projective space $PS_n(F)$ of symmetric matrices [7, 8], even under milder hypotheses. The result can be extended to the dual polar space [9].

2. Some lemmas

The basic notations and properties of the space of hermitian matrices and that of symmetric matrices are described in the book [12] of Z.-X. Wan, which we will follow.

In the following our discussion on hermitian matrices includes symmetric matrices over fields of characteristic other than two as a particular case.

We call $n \times n$ hermitian matrices over D the points of the space $\mathcal{H}_n(D)$. Let A, B be two points of $\mathcal{H}_n(D)$. The distance d(A, B) between A and B is defined to be the smallest nonnegative integer k with the property that there exists a

sequence of consecutively adjacent points $A = A_0, A_1, \ldots, A_k = B$. The distance satisfies the triangle inequality

$$d(A, B) + d(B, C) \ge d(A, C)$$
 for all $A, B, C \in \mathcal{H}_n(D)$.

From now on when $\overline{}$ is the identity map then D = F is a field and we assume that $\operatorname{char}(F) \neq 2$, and when $\overline{}$ is not the identity map we assume that the set $F = \{a \in D \mid \overline{a} = a\}$ is a subfield of D and is contained in the center of D.

For any two points $A, B \in \mathcal{H}_n(D)$, it was proved in [12] that

$$d(A, B) = \operatorname{rank}(A - B).$$

For any two adjacent points $A, B \in \mathcal{H}_n(D)$ the line l = AB joining A and B is defined to be the set consisting of A, B, and all points X which are adjacent to both A and B. It was also proved in [12] that $l = \{A + \lambda(B - A) \mid \lambda \in F\}$.

Lemma 2.1. Let $P \in \mathcal{H}_n(D)$ be a point and let l be a line of $\mathcal{H}_n(D)$. Then either the distance between P and any point of l is the same, or there is a point $Q \in l$ such that d(P, X) = d(P, Q) + 1 for all $X \in l \setminus \{Q\}$.

Proof. Since the transformations of the form (1) operate transitively on the set of lines, we may assume that $l = \{\lambda t \overline{e_1} e_1 \mid \lambda \in F\}$ where $e_1 = (1, 0, \dots, 0) \in D^n$. We can find a cogredient transformation which leaves $t \overline{e_1} e_1$ fixed and takes P to a matrix of the form

$$P_{1} = \begin{pmatrix} p_{11} & p_{12} \cdots p_{1r} & p_{1,r+1} \cdots & p_{1n} \\ \hline p_{12} & \lambda_{2} & & & \\ \vdots & \ddots & & & \\ \hline p_{1r} & & \lambda_{r} & & \\ \hline p_{1,r+1} & & 0 & & \\ \vdots & & & \ddots & \\ \hline p_{1n} & & & 0 \end{pmatrix}$$

where $\lambda_2, \ldots, \lambda_r \in F^*$ and $p_{11} \in F, p_{12}, \ldots, p_{1n} \in D$.

Case 1. $p_{1,r+1} = \ldots = p_{1n} = 0$. Then there is a point Q in l such that $d(P_1, X) = d(P_1, Q) + 1 = r$ for all $X \in l \setminus \{Q\}$.

Case 2. There is some $s, r+1 \le s \le n$ with $p_{1s} \ne 0$. Then $d(P_1, X) = r+1$ for all $X \in l$.

Corollary 2.1. Let $P \in \mathcal{H}_n(D)$ be a point with $\operatorname{rank}(P) = k$. Then we can find a cogredient transformation which leaves ${}^t\overline{e_1}e_1$ fixed and takes P to a matrix of one of the following forms

Vol. 67 (2004) Adjacency preserving mappings of symmetric and hermitian matrices 135

where $\lambda_1, \ldots, \lambda_k \in F^*$ and $\mu_1 \in F$, $\mu_2 \in D^*$. Let $l := \{\lambda^t \overline{e_1} e_1 \mid \lambda \in F\}$. In the first case, d(P, X) = k for all $X \in l$. In the second case there exists $Q \in l$ such that d(P,Q) = k - 1 and d(P,X) = k for all $X \in l \setminus \{Q\}$. In the third case there exists $Q \in l$ such that d(P,Q) = k and d(P,X) = k and d(P,X) = k + 1 for all $X \in l \setminus \{Q\}$.

Lemma 2.2. Let $A \in \mathcal{H}_n(D)$ be a matrix with $\operatorname{rank}(A) = k + 1$. A matrix $B \in \mathcal{H}_n(D)$ has rank k and $A \sim B$ if and only if there exists an $x \in D^n$ with $xA^t\overline{x} \neq 0$ and

$$B = A - (xA^{t}\overline{x})^{-1} \overline{t}(xA)(xA).$$

Proof. Let there exist $x \in D^n$ with $xA^t\overline{x} \neq 0$. Let $B = A - (xA^t\overline{x})^{-1} t(\overline{xA})(xA)$. Then $A \sim B$. For $y \in D^n$, yA = 0 we have yB = 0 thus $\ker(A) \subset \ker(B)$. $xA^t\overline{x} \neq 0$ implies $xA \neq 0$. But xB = 0, thus $\ker(A) \subsetneq \ker(B)$, and $\operatorname{rank}(B) = \operatorname{rank}(A) - 1 = k$.

Now let $B \in \mathcal{H}_n(D)$ satisfy rank(B) = k and $A \sim B$. Then $B = A - \lambda^t \overline{y}y$ where $\lambda \in F^*$ and $y \in D^n \setminus \{0\}$. There exists $T \in \operatorname{GL}_n(D)$ such that $yT = e_1 = (1, 0, \dots, 0)$. Let $B_1 = {}^t\overline{T}BT$, $A_1 = {}^t\overline{T}AT$, then $B_1 = A_1 - \lambda^t\overline{e_1}e_1$. Since rank(A) = k + 1 and rank(B) = k, by Corollary 2.1, under a cogredient transformation which leaves ${}^t\overline{e_1}e_1$ fixed, we can assume

$$A_{1} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 & 0 \\ 0 & \lambda_{2} & & & \\ \vdots & \ddots & & \vdots \\ 0 & & \lambda_{k+1} \\ 0 & \cdots & & 0 \end{pmatrix}, \qquad a_{11}, \lambda_{2}, \dots, \lambda_{k+1} \in F^{*}.$$

Then $a_{11} = \lambda$. Let $x = e_1 \, {}^t \overline{T}$, then $B = A - (xA \, {}^t \overline{x})^{-1} \, {}^t \overline{(xA)}(xA)$.

Lemma 2.3. Let $A, B \in \operatorname{GL}_n(D)$ satisfy $A \neq B$. Then $(B - A)B^{-1}(B - A) \neq B - A$.

Proof. Assume $(B - A)B^{-1}(B - A) = B - A$. Then $(B - A)(I - B^{-1}A) = B - A$ and $(B - A)B^{-1}A = 0$, a contradiction to $A \neq B$.

Lemma 2.4. Let $|F| = \infty$ and $A, B \in \mathcal{H}_n(D)$ with $A \neq B$, rank $(A) = \operatorname{rank}(B) = n$, rank $(B - A) \ge 2$. Then there exists $x \in D^n$ such that

$$x(B-A)^{t}\overline{x} \neq 0$$
 and $x(B-A)^{t}\overline{x} \neq x(B-A)B^{-1}(B-A)^{t}\overline{x}$.

Proof. There exists $T \in \operatorname{GL}_n(D)$ with ${}^t\overline{T}(B-A)T = \operatorname{diag}(\lambda_1, \ldots, \lambda_k, 0, \ldots, 0),$ $\lambda_i \in F^*, \ k \geq 2$. Let $B_1 = {}^t\overline{T}BT, \ A_1 = {}^t\overline{T}AT$. Then $B_1^{-1} = T^{-1}B^{-1}{}^t\overline{T^{-1}},$ $(B_1 - A_1)B_1^{-1}(B_1 - A_1) \neq B_1 - A_1$. It is sufficient to show that there exists $x \in D^n$ such that

$$x(B_1 - A_1)^{t}\overline{x} \neq 0$$
 and $x(B_1 - A_1)B_1^{-1}(B_1 - A_1)^{t}\overline{x} \neq x(B_1 - A_1)^{t}\overline{x}$,

where $B_1 - A_1 = \text{diag}(\lambda_1, \dots, \lambda_k, 0, \dots, 0)$. Let $B_1^{-1} = (\beta_{ij})$. Case 1. $\beta_{ii} \neq \lambda_i^{-1}$ for some $i, 1 \leq i \leq k$. Then

$$e_i(B_1 - A_1)^t \overline{e_i} = \lambda_i \neq 0$$
 and $e_i(B_1 - A_1)B_1^{-1}(B_1 - A_1)^t \overline{e_i} = \lambda_i \beta_{ii} \lambda_i \neq \lambda_i.$

Case 2. $\beta_{ii} = \lambda_i^{-1}$ for all $i, 1 \leq i \leq k$. Since $(B_1 - A_1)B_1^{-1}(B_1 - A_1) \neq B_1 - A_1$, there exist $i, j, 1 \leq i, j \leq k, i \neq j$ such that $\beta_{ij} \neq 0$. Without loss of generality, we assume $\beta_{12} \neq 0$. It is enough to find $x_1, x_2 \in D$ such that

$$\lambda_1 x_1 \overline{x_1} + \lambda_2 x_2 \overline{x_2} \neq 0, \qquad x_1 \lambda_1 \beta_{12} \lambda_2 \overline{x_2} + x_2 \lambda_2 \overline{\beta_{12}} \lambda_1 \overline{x_1} \neq 0.$$

Case 2.1. – is the identity, D = F and $char(F) \neq 2$. If $\lambda_1 + \lambda_2 \neq 0$, then choose $x_1 = x_2 = 1$. If $\lambda_1 + \lambda_2 = 0$, then choose $x_1 = 1$ and $x_2 \in F^*$ with $x_2^2 \neq 1$. Case 2.2. ⁻ is not the identity, $D \neq F$:

Case 2.2.1. When $\beta_{12} + \overline{\beta_{12}} \neq 0$, proceed as in Case 2.1. Case 2.2.2. When $\beta_{12} + \overline{\beta_{12}} = 0$, choose $x_1 = 1$ and $x_2 \in D \setminus F$ with $\lambda_1 + \lambda_2 x_2 \overline{x_2} \neq 0$, $\beta_{12} \overline{x_2} + x_2 \overline{\beta_{12}} \neq 0$.

Lemma 2.5. Let $|F| = \infty$. For all $A, B \in \mathcal{H}_n(D)$ with $A \neq B$ and $\operatorname{rank}(A) =$ $\operatorname{rank}(B) = n$ there exists $C \in \mathcal{H}_n(D)$ with $\operatorname{rank}(C) = n$, $B \sim C$ and d(A, C) =d(A, B) - 1.

Proof. If $A \sim B$ then choose C = A. Assume $d(A, B) = k \geq 2$. By Lemma 2.4, there exists $x \in D^n$ such that

$$x(B-A)^{t}\overline{x} \neq 0$$
 and $x(B-A)^{t}\overline{x} \neq x(B-A)B^{-1}(B-A)^{t}\overline{x}$.

Let

$$C = B - \left(x(B-A)^{t}\overline{x}\right)^{-1} \overline{t}(\overline{x(B-A)})\left(x(B-A)\right)$$

By Lemma 2.2 we have $C \sim B$ and d(A, C) = d(A, B) - 1. Assume rank $(C) \neq n$. Then by Lemma 2.2 there is $y \in D^n$ with

$$C = B - (yB^{t}\overline{y})^{-1} t \overline{yB}(yB).$$

Then $yB = \nu x(B - A)$ for some $\nu \in D^*$ and

$$C = B - \left(x(B-A)B^{-1}(B-A)^{t}\overline{x} \right)^{-1} t \overline{(x(B-A))} (x(B-A)).$$

Thus

$$x(B-A)^{t}\overline{x} = x(B-A)B^{-1}(B-A)^{t}\overline{x},$$

a contradiction.

AEM

Lemma 2.6. Let $|F| = \infty$. Let $A, B \in \mathcal{H}_n(D)$, $A \sim B$, $\operatorname{rank}(A) = \operatorname{rank}(B) = n$. Let $A - B = \lambda_0 \, t \overline{x} x$, $\lambda_0 \in F^*$, and $l = \{A - \lambda \, t \overline{x} x \mid \lambda \in F\}$ be the line containing both A and B. Suppose all points in l are of rank n. Then there are two points $C, D \in \mathcal{H}_n(D)$ with $\operatorname{rank}(C) = \operatorname{rank}(D) = n$, $A \sim C$, $C \sim D$, $D \sim B$, and the line containing A, C contains a point of rank n - 1, so do the line containing C, D and the line containing D, B.

Proof. There exists $T \in \operatorname{GL}_n(D)$ with $xT = (1, 0, \dots, 0) = e_1$. Let $A_1 = {}^t\overline{T}AT$, $B_1 = {}^t\overline{T}BT$, $l_1 = \{A_1 - \lambda {}^t\overline{e_1}e_1 \mid \lambda \in F\}$. It is sufficient to prove the lemma for A_1 , B_1 and l_1 . We drop the subscript, i.e., let $A, B \in l = \{A - \lambda {}^t\overline{e_1}e_1 \mid \lambda \in F\}$, rank $(A) = \operatorname{rank}(B) = n$. Since $\operatorname{rank}(A) = n$, by Corollary 2.1, under a cogredient transformation which leaves ${}^t\overline{e_1}e_1$ fixed we can assume

$$A = \begin{pmatrix} \frac{a_{11}}{a_{12}} & a_{12} & & \\ & \frac{a_{12}}{a_{12}} & 0 & & \\ & & \lambda_3 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}, \qquad B = A - \lambda_0 \,{}^t \overline{e_1} e_1,$$

where $a_{11} \in F$, $a_{12} \in D^*$, $\lambda_3, \ldots, \lambda_n \in F^*$, because in the case $A = \operatorname{diag}(a_{11}, \lambda_2, \ldots, \lambda_n)$ there would exist one point in l which is of rank n-1. Choose $\mu \in F^*$ such that $a_{11} - \mu \neq 0$ and $a_{11} - \lambda_0 - \mu \neq 0$. Let $\mu_1 = -\overline{a_{12}}(a_{11} - \mu)^{-1}a_{12}, \mu_2 = -\overline{a_{12}}(a_{11} - \lambda_0 - \mu)^{-1}a_{12}$, then $\mu_1, \mu_2 \in F^*, \mu_1 \neq \mu_2$. Let $C = \operatorname{diag}(\mu, \mu_1, \lambda_3, \ldots, \lambda_n)$ and $D = \operatorname{diag}(\mu, \mu_2, \lambda_3, \ldots, \lambda_n)$. It is easy to verify that C, D satisfy the requirements of Lemma 2.6.

3. Proof of Theorem 1.2

Let φ be a bijective map from $\mathcal{H}_n(D)$ to itself which preserves adjacency, i.e. $A \sim B$ implies $A^{\varphi} \sim B^{\varphi}$ for all $A, B \in \mathcal{H}_n(D)$. Clearly, for all $A, B \in \mathcal{H}_n(D)$, $d(A^{\varphi}, B^{\varphi}) \leq d(A, B)$, and l^{φ} is contained in a line for all lines l. If $\bar{}$ is the identity map then D = F. If $\bar{}$ is not the identity map, then D is either a separable quadratic extension of F or a division ring of generalized quaternions over F (cf. Theorem 1.1 in [5]). Thus if F is finite, D is finite and the geometry of $\mathcal{H}_n(D)$ contains only finitely many points and lines. Then l^{φ} is a line for all lines l, and $A^{\varphi} \sim B^{\varphi}$ implies $A \sim B$ for all $A, B \in \mathcal{H}_n(D)$.

Now let F be infinite.

Lemma 3.1. Let φ be a bijective map which preserves adjacency and assume that $0^{\varphi} = 0$. Then for any $B \in \mathcal{H}_n(D)$ with d(0, B) = n we have $d(0, B^{\varphi}) = n$.

Proof. Suppose $d(0, B^{\varphi}) \neq n$, then $d(0, B^{\varphi}) \leq n-1$. Let $C \in \mathcal{H}_n(D)$, d(0, C) = n. Then rank $(B) = \operatorname{rank}(C) = n$. By Lemma 2.5 and Lemma 2.6 there is a sequence of points $B_0 = B, B_1, \ldots, B_k = C$ such that $\operatorname{rank}(B_i) = n \forall i = 1, \ldots, k, B_i \sim B_{i+1}$ $\forall i = 0, \ldots, k-1$, and each line $l_i = B_i B_{i+1}$ contains a point Q_i of rank n-1. Then $d(0, Q_i) = n-1$. It follows that $d(0, Q_i^{\varphi}) \leq d(0, Q_i) = n-1$. But $d(0, B^{\varphi}) \leq n-1$, and by Lemma 2.1, $d(0, B_1^{\varphi}) \leq n-1$. Analogously, $d(0, B_2^{\varphi}) \leq n-1, \ldots, d(0, B_k^{\varphi}) \leq n-1$, i.e. $d(0, C^{\varphi}) \leq n-1$. This contradicts the surjectivity of φ . \Box

Proof of Theorem 1.2. Let φ be a bijective map from $\mathcal{H}_n(D)$ to itself which preserves adjacency. First we prove that for $A, B \in \mathcal{H}_n(D), d(A, B) = n$ implies $d(A^{\varphi}, B^{\varphi}) = n$. Let σ be the map $X \mapsto X^{\sigma} = X + A$ for all $X \in \mathcal{H}_n(D)$ and let σ' be the map $X \mapsto X^{\sigma'} = X - A^{\varphi}$ for all $X \in \mathcal{H}_n(D)$. Let $\varphi' = \sigma' \circ \varphi \circ \sigma$, then φ' is bijective and preserves adjacency, $0^{\varphi'} = 0$. d(0, B - A) = d(A, B) = n, by Lemma 3.1 we have $n = d(0, (B - A)^{\varphi'}) = d(A^{\varphi}, B^{\varphi})$.

Then we prove that $d(A, B) = d(A^{\varphi}, B^{\varphi})$ for all $A, B \in \mathcal{H}_n(D)$. If d(A, B) = n, then $d(A^{\varphi}, B^{\varphi}) = n$ from above. Suppose d(A, B) < n. Then there is a point Csuch that d(A, B) + d(B, C) = d(A, C) = n. This implies $n = d(A, C) = d(A, B) + d(B, C) \ge d(A^{\varphi}, B^{\varphi}) + d(B^{\varphi}, C^{\varphi}) \ge d(A^{\varphi}, C^{\varphi}) = n$. Hence $d(A, B) = d(A^{\varphi}, B^{\varphi})$. In particular, d(A, B) = 1 if, and only if, $d(A^{\varphi}, B^{\varphi}) = 1$. Therefore also φ^{-1} preserves adjacency.

References

- W.-L. CHOW, On the geometry of algebraic homogeneous spaces, Ann. of Math. (2) 50 (1949), 32–67.
- [2] J.-F. GAO, Z.-X. WAN, R.-Q. FENQ AND D.-J. WANG, Geometry of symmetric matrices and its applications III, Algebra Colloq. 3 (1996), 135–146.
- [3] L. K. HUA, Geometries of matrices I, I₁, II, III, Trans. Amer. Math. Soc. 57 (1945), 441–481; 57 (1945), 482–490; 61 (1947), 193–228; 61 (1947), 229–255.
- [4] L. K. HUA, Geometries of symmetric matrices over any field with characteristic other than two, Ann. of Math. (2) 50 (1949), 8–31.
- [5] L.-P. HUANG AND Z.-X. WAN, Geometry of 2 × 2 hermitian matrices, Sci. China, Ser. A 45 No. 8 (2002), 1025–1037.
- [6] W.-L. HUANG, On the Fundamental Theorems of the Geometries of Symmetric Matrices, Geom. Dedicata 78 (1999), 315–325.
- W.-L. HUANG, Adjacency Preserving Mappings of Invariant Subspaces of a Null System, Proc. Amer. Math. Soc. 128 No. 8 (1999), 2451–2455.
- [8] W.-L. HUANG, Characterization of the Transformation Group of the space of a Null System, Results Math. 40 (2001), 226–232.
- [9] W.-L. HUANG AND A. E. SCHROTH, Adjacency Preserving Mappings, Adv. Geom. 3 (2003), 53–59.
- [10] Z.-X. WAN, Geometry of symmetric matrices and its applications I, II, Algebra Colloq. 1 (1994), 97–120; 1 (1994), 201–224.
- [11] Z.-X. WAN, Geometry of Hamiltonian matrices and its applications I, II, Algebra Colloq. 2 (1995), 167–192; 3 (1996), 107–116.
- [12] Z.-X. WAN, Geometry of Matrices, World Scientific, Singapore, 1996.
- [13] Z.-X. WAN, Geometry of matrices, Adv. Stud. Pure Math. 24 (1996), 443–453.
- [14] Z.-X. WAN, Geometry of matrices revisited, in: Shum, K.-P., Taft, E., and Wan, Z.-X. (ed.), Algebra and Combinatorics. An International Congress, ICAC '97, Hong Kong, 477–486, Springer, 1999.

Vol. 67 (2004) Adjacency preserving mappings of symmetric and hermitian matrices 139

Wen-ling Huang and Roland Höfer Fachbereich Mathematik Schwerpunkt GD Universität Hamburg Bundesstr. 55D-20146 Hamburg Germany

Zhe-Xian Wan Academy of Mathematics and System Sciences Chinese Academy of Sciences 100080 Beijing and Center for Combinatorics Nankai University 300071 Tienjin China

Manuscript received: February 19, 2002 and, in final form, November 4, 2002.

To access this journal online: http://www.birkhauser.ch