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Summary. For a group (G, ·) and a real or complex inner product space (E, 〈·, ·〉) with norm
[].[] we consider the functional inequality

f : G −→ E, []2f(x) + 2f(y)− f(xy−1)[] ≤ []f(xy)[] (∀x, y ∈ G) (I)

and describe situations in which (I) implies the Jordan–von Neumann parallelogram equation

f : G −→ E, 2f(x) + 2f(y) = f(xy) + f(xy−1) (∀x, y ∈ G). (JvN)
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1. Introduction

Throughout the paper, G or (G, ·) or (G, ·, e) will denote a (not necessarily abelian)
group with group operation · and identity element e and E or (E, 〈·, ·〉) an inner
product space over K (= R or C) with inner product 〈·, ·〉 and associated norm [].[].

Starting from the Jordan–von Neumann functional equation (JvN), fourteen
inequalities may be obtained by first transferring at most one summand of either
side of (JvN) to the other, then taking norms, and finally replacing = by ≤ or
≥. Of course, each of these inequalities is a weakening of (JvN). The question is
whether this weakening is always strict. In [4] (p. 304, Satz 1; p. 307, Bemerkungen
1 und 2), A. Gilányi comes to the quite surprising conclusion that exactly one of
these inequalities (namely (I) above) is equivalent to (JvN). The main result of [4]
reads as follows:

Theorem 1.1. (A. Gilányi).
a) If (G, ·, e) is a 2-divisible abelian group and (E, 〈·, ·〉) an inner product space

over K, then (I) implies (JvN), i.e., f is quadratic.
b) In part a), the commutativity of G may be replaced by the condition

f(xyz) = f(xzy) (x, y, z ∈ G). (C)
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It is the purpose of this paper to show that 2-divisibility of G can be deleted
and that (C) can be essentially weakened and to exhibit classes of examples of
groups in which we do not have to care about any commutation condition. The
results were announced in [5] and [12], and variants of Theorem 1.1 were discussed
on the 39th International Symposium on Functional Equations (cf. [6], [12]). The
question as to whether in the general case, some substitute for commutativity is
needed for (I) =⇒ (JvN) remains open.

Further notations. The symbol := means that the right hand side defines the
left hand side. The symbols N, N0, Z, Q, R, C denote the sets of positive integers,
nonnegative integers, integers, rational, real, and complex numbers, respectively;
R+ := {α ∈ R; α ≥ 0}, R∗+ := {α ∈ R; α > 0}. K stands for R or C, and
K∗ := {α ∈ K; α 6= 0}. We denote by c the constant mapping with value c, and by
iB the identity mapping of the set B. For an easy unified treatment of the cases
K = R and K = C, we put for K = R : Re := iR, Im := 0. We use 0 for the
zero vector of E as well as for the number zero and for the identity element of an
additively written abelian group; it will always be clear from the context what is
meant.

2. Substitutes for commutativity of G

Remark 2.1. To the author’s knowledge, the first occurrence of condition (C)
(cf. Theorem 1.1 b) above) is in PL. Kannappan’s Ph.D. Thesis work where it
plays a fundamental role in the theory of d’Alembert’s functional equation (cum
grano salis also called the “cosine equation”, [9], p. 72, Theorem 2).

Remark 2.2. Let for the moment M be a nonempty set and f : G −→ M .

a) (C) turns out to be equivalent to the invariance of f(z1 · . . . · zn) (n ∈ N,
n ≥ 2; z1, . . . , zn ∈ G) under all permutations of the factors z1, . . . , zn.
Therefore (C) implies each of the three conditions

f(xy) = f(yx) (∀x, y ∈ G), (C ′)

f(xyxy−1) = f(x2) (∀x, y ∈ G), (C ′′)

f(y−1x−1yx−1) = f(x−2) (∀x, y ∈ G). (C ′′′)

By the way, (C ′) is equivalent to the invariance of f(z1 · . . . · zn) (n ∈ N,
n ≥ 2; z1, . . . , zn ∈ G) under all circular rearrangements (i.e., under all
powers of the index permutation (1 2 . . . n)) of the factors z1, . . . , zn.

b) It is easily seen that in case of an even mapping f : G −→ M (i.e., f(x−1) =
f(x) (∀x ∈ G)), (C ′′) and (C ′′′) are equivalent.



Vol. 66 (2003) Inequalities associated with the Jordan–von Neumann functional equation 193

3. Variants of Theorem 1.1

A useful tool for later purposes will be

Lemma 3.1. For elements a, b of the inner product space E

[]a[]2 ≤ Re〈a, b〉 (1)

and
[]a[] = []b[] (2)

imply a = b.

Proof. We have []a−b[]2 = []a[]2−2Re〈a, b〉+[]b[]2 =(2)= 2[]a[]2−2Re〈a, b〉 ≤(1)≤ 0,
so a = b.

The next theorem strengthens Theorem 1.1 by deleting the divisibility assump-
tion and by weakening the commutativity requirement for G.

Theorem 3.2. Let (G, ·, e) be an arbitrary group, (E, 〈·, ·〉) an inner product space
over K, and f : G −→ E a solution of (I). Then we have

a) f(e) = 0, f(x−1) = f(x), f(x2) = 4f(x) (∀x ∈ G).
b) If f satisfies (C ′′) (or, equivalently, (C ′′′)), then f is quadratic.

Proof. a) We first follow the proof of ([4], Satz 1) to obtain

f(e) = 0 (3)

and
2f(x) + 2f(x−1) = f(x2) (∀x ∈ G) (4)

and now deviate from it. Taking x ∈ G arbitrarily, putting y := x in (I) and using
(3) we get

[]4f(x)[] ≤ []f(x2)[] (∀x ∈ G). (5)

Again let x ∈ G be arbitrary. Then []4f(x)[] ≤(5)≤ []f(x2)[] =(4)= []2f(x) +

2f(x−1)[] ≤ []2f(x)[] + []2f(x−1)[], so []2f(x)[] ≤ []2f(x−1)[], i.e. []f(x)[] ≤ []f(x−1)[]
(∀x ∈ G), and for x−1 instead of x, we get also the reverse inequality, therefore

[]f(x−1)[] = []f(x)[] (∀x ∈ G). (6)

Furthermore []f(x2)[] =(4)= []2f(x) + 2f(x−1)[] ≤ []2f(x)[] + []2f(x−1)[] =(6)=

4[]f(x)[] ≤(5)≤ []f(x2)[], so

[]f(x2)[] = 4[]f(x)[] (∀x ∈ G). (7)

Using (JvN) for [].[]2, we obtain []f(x)−f(x−1)[]2 = 2[]f(x)[]2+2[]f(x−1)[]2− []f(x)+
f(x−1)[]2 =(6), (4)= 4[]f(x)[]2 − 1

4 []f(x2)[]2 =(7)= 4[]f(x)[]2 − 4[]f(x)[]2 = 0, so
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f(x−1) = f(x) (∀x ∈ G), (8)

and together with (4)
f(x2) = 4f(x) (∀x ∈ G). (9)

b) By (8) and Remark 2.2 b), conditions (C ′′) and (C ′′′) are equivalent. An
inspection of the part of the proof of ([4], Satz 1) following its formula (14) shows
that in fact only condition (C ′′′) is needed for the simplification of its formula
(18), and (C ′′′) is strictly weaker than (C) in our context as we shall see next.

Remark 3.3. a) Every quadratic mapping f : G −→ E satisfies (3) since the
additive group (E,+) of our inner product space does not contain elements of
order 2 ([11], p. 247, Lemma 4.1 a), d), therefore also (8), (C ′), (C ′′) and (C ′′′)
([7], p. 190, (2), (3), (5)). Not every quadratic mapping satisfies (C) of Theorem
1.1 b) (cf. [8], p. 36/37; worked out in [10]). Therefore, for quadratic mappings
f : G −→ E, conditions (C ′), (C ′′), (C ′′′), and, e.g., (C ′) ∧ (C ′′) are strictly
weaker than (C); remember Remark 2.2 a) for (C) =⇒ (C ′) ∧ (C ′′) ∧ (C ′′′) in
general.

b) To use a commutativity substitute logically “below” the target assertion
(JvN) in Theorem 3.2 b) is of course more adequate than (C), which is “beyond”
(JvN).

Remark 3.4. a) Other functional equations for the solutions of which (C ′) is
strictly weaker that (C) are, e.g., the d’Alembert equation

f : G −→ C, f(e) = 1, f(xy) + f(xy−1) = 2f(x)f(y) (∀x, y ∈ G) (d’A)
([3], p. 339, (3); J. Lawrence, private communication), or
f, g, h : G −→ C, f(xy) + f(xy−1)− 2f(x) = g(x)h(y) (∀x, y ∈ G) (ACN)

([1], p. 20/21, Remark 5).
b) On the other hand, there do exist functional equations for the solutions of

which (C) and (C ′) become equivalent, e.g.,

f : G −→ C, e0 ∈ G, e0 6= e, f(e0) = 1, f(xy) + f(xy)−1 = 2f(x)f(e0y)
(∀x, y ∈ G)

([2]), p. 51, Lemma 2).

At the end of this section, we present another stronger variant of Theorem 1.1
which is weaker than Theorem 3.2 b) but the proof of which reveals a connection
to one of the thirteen inequalities besides (I) associated with (JvN), namely to
(14) below.

Theorem 3.5. If (G, ·, e) is an arbitrary group, (E, 〈·, ·〉) an inner product space
over K, and f : G → E a solution of (I) satisfying (C ′) ∧ (C ′′), then f is
quadratic.



Vol. 66 (2003) Inequalities associated with the Jordan–von Neumann functional equation 195

Proof. By Theorem 3.2 a), f has properties (3), (8), and (9). (I) yields

[]2f(x) + 2f(y)[]2 + []f(xy−1)[]2 − 2Re〈2f(x) + 2f(y), f(xy−1)〉 ≤ []f(xy)[]2

(∀x, y ∈ G).
(10)

Replacing y by y−1 and using (8) gives

[]2f(x)+2f(y)[]2+[]f(xy)[]2−2Re〈2f(x)+2f(y), f(xy)〉 ≤ []f(xy−1)[]2 (∀x, y ∈ G).
(11)

By adding (10) and (11) and dividing by 2 we obtain

[]2f(x) + 2f(y)[]2 ≤ Re〈2f(x) + 2f(y), f(xy) + f(xy−1)〉 (∀x, y ∈ G). (12)

(12) together with Reβ ≤ |Re β| ≤ |β| (∀β ∈ K) and the Cauchy–Schwarz In-
equality (CSI) lead to

[]2f(x) + 2f(y)[]2 ≤ []2f(x) + 2f(y)[] · []f(xy) + f(xy−1)[] (∀x, y ∈ G). (13)

If []2f(x) + 2f(y)[] > 0, we get from (13) []2f(x) + 2f(y)[] ≤ []f(xy) + f(xy−1)[],
which holds also for []2f(x) + 2f(y)[] = 0, so

[]2f(x) + 2f(y)[] ≤ []f(xy) + f(xy−1)[] (∀x, y ∈ G). (14)

Let x, y ∈ G be arbitrary and put u := xy, v := xy−1. Then []2f(xy) +
2f(xy−1)[] = []2f(u)+2f(v)[] ≤(14)≤ []f(uv)+f(uv−1)[] = []f(xyxy−1)+f(xy2x−1[]

=(C ′′), (C ′)= []f(x2)+f(y2)[] =(9)= []4f(x)+4f(y)[], briefly []f(xy)+f(xy−1)[] ≤
[]2f(x) + 2f(y)[] and together with (14)

[]2f(x) + 2f(y)[] = []f(xy) + f(xy−1)[] (∀x, y ∈ G). (15)

Now (12), (15) and Lemma 3.1 with a := 2f(x) + 2f(y), b := f(xy) + f(xy−1)
imply 2f(x) + 2f(y) = f(xy) + f(xy−1). Since x, y ∈ G were arbitrary, this is
(JvN).

4. Homogeneity of degree 2

Remark 4.1. Theorem 3.2 a) guarantees (3), (8), and (9) for every solution
f : G → E of (I). These three properties alone do not imply homogeneity of f of
degree 2, i.e. the validity of

f(xk) = k2f(x) (∀k ∈ Z, ∀x ∈ G) : (16)

Choose (G, ·) := (R,+), E := R, f : R −→ R defined by f(x) := 4nx for 2nx ≤ x <
2nx+1, f(0) := 0, f(x) := f(−x) for x < 0, where nx ∈ Z is uniquely determined
for every x ∈ R∗+. Then f has the three properties above, (9) of course in the form
f(2x) = 4f(x) (∀x ∈ R), but f(3 · 1) = f(3) = 4 while 9f(1) = 9 · 1 = 9. On the
other hand, with the aid of (I), (16) can be established, so that the solutions of
(I) and those of (JvN) share property (16):
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Theorem 4.2. If (G, ·, e) is an arbitrary group, (E, 〈·, ·〉) an inner product space
over K, and f : G → E a solution of (I), then we have for every k ∈ Z

f(xk) = k2f(x) (∀x ∈ G). (16k)

First proof. Let be x ∈ G arbitrary and Cx the subgroup of G generated by x.
Since Cx is abelian, the restriction f |Cx satisfies (I) on Cx and condition (C ′′) and
therefore is quadratic by Theorem 3.2 b). Since (f |Cx)(e) = f(e) = 0 by Theorem
3.2 a), f |Cx is homogeneous of degree 2 ([11], p. 247, Lemma 4.1c). As x ∈ G was
arbitrary, (16) holds.

Second proof. (Induction on k; direct work with (I)). The statements (160), (16−1),
(162) are ensured by Theorem 3.2 a), (3), (8), (9), respectively, and (161) is trivial.
By (8), it is sufficient to consider the case k ∈ N0. So let be k ∈ N, k ≥ 2, and
assume (16`) to hold for ` = 0, 1, . . . , k − 1. For completing the proof, we have
to show (16k) (second principle of induction). Case 1: k is even, say k = 2q with
q ≥ 1. Then (16k) easily follows from (16q) and (9). – Case 2: k is odd, say
k = 2q+1 with q ≥ 1. Then k+1 = 2(q+1), and (16k+1) is obtained as in Case 1.
Let x ∈ G be arbitrary. We first replace the pair (x, y) in (I) by (xk−1, x), and
(16k−1), (16k−2) yield

[]k2f(x)[] ≤ []f(xk)[] (∀x ∈ G). (17)

Now (x, y) is replaced in (I) by (xk, x), and (16k−1), (16k+1) and squaring lead to

[]f(xk)[]2 ≤ ((k − 1)2 − 2)Re〈f(xk), f(x)〉+ k2(2k + 1)[]f(x)[]2 (∀x ∈ G). (18)

Next, (x, y) is substituted in (I) by (xk, x−1), and (8), (16k+1), (16k−1) similarly
imply

[]f(xk)[]2 ≤ ((k + 1)2 − 2)Re〈f(xk), f(x)〉+ k2(1− 2k)[]f(x)[]2 (∀x ∈ G). (19)

The combination (2k − 1) · (18) + (2k + 1) · (19) provides

[]f(xk)[]2 ≤ k2Re〈f(xk), f(x)〉 = Re〈f(xk), k2f(x)〉 (∀x ∈ G). (20)

From (20) and the CSI we get

[]f(xk)[]2 ≤ []f(xk)[] · []k2f(x)[] (∀x ∈ G). (21)

If f(x) = 0, we have equality in (21). If f(x) 6= 0, (17) enforces f(xk) 6= 0, so that
(21) implies []f(xk)[] ≤ []k2f(x)[], and this is now true for all x ∈ G. Together with
(17) we obtain

[]f(xk)[] = []k2f(x)[] (∀x ∈ G). (22)

Finally, (20), (22) and Lemma 3.1 with a := f(xk), b := k2f(x) ensure f(xk) =
k2f(x) (∀x ∈ G), i.e., again (16k), and the second proof is complete.

Corollary 4.3. If f : G → E is a solution of (I) and H a proper subgroup of G
such that f is bounded on G \H, then f = 0, so f is quadratic.
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Proof. Let []f(y)[] < c (∀y ∈ G \ H) for some c ∈ R∗+. Let y ∈ G \ H be
arbitrary and assume f(y) 6= 0. Then there would exist n0 ∈ N with n2

0[]f(y)[] ≥ c,
i.e., by Theorem 4.2, []f(yn0)[] ≥ c, so yn0 ∈ H. yn0+1 ∈ H would imply y =
yn0+1(yn0)−1 ∈ H, contradicting the definition of y. Therefore yn0+1 ∈ G \ H,
hence (n0 + 1)2[]f(y)[] = []f(yn0+1[] < c ≤ n2

0[]f(y)[], which is impossible. So
f(y) = 0. Since y ∈ G \H was arbitrary, we have

f(y) = 0 (∀y ∈ G \H). (23)

Now let x ∈ H be arbitrary and y ∈ G \ H (notice that H 6= G). xy ∈ H
would imply y = x−1xy ∈ H. xy−1 ∈ H would imply y−1 = x−1xy−1 ∈ H,
so y ∈ H. Therefore xy, xy−1 ∈ G \ H, and it follows from (I) and (23) that
[]2f(x) + 0 − 0[] ≤ []0[], i.e. f(x) = 0 (∀x ∈ H), and together with (23) finally
f = 0.

5. Other situations where (I) does imply (JvN)

Lemma 5.1. Let G be an arbitrary group, (E, 〈·, ·〉) an inner product space over
K, and f : G → E a solution of (I). Then we have:

a) If x ∈ G has finite order, then f(x) = 0.
b) If G is a torsion group, specifically if G is finite, then f = 0, so f is

quadratic.

Proof. a) There exists m ∈ N with xm = e, so by (3) and Theorem 4.2 m2f(x) =
f(xm) = f(e) = 0, and the torsionfreeness of (E,+) implies f(x) = 0.

b) immediately follows from a).

Remark 5.2. Lemma 5.1 is now extended to a special class of possibly mixed
groups G (i.e., G has elements of possibly infinite order). The concept is that of a
special semidirect product of two groups A and B. Since we wish that any two au-
tomorphisms of B be summable in End (B), we require that B be an abelian group
([13], p. 52/53) and then accordingly use the additive notation (B,+, 0) for B. If
in addition (A, ·, eA) is a group and g a given element of Hom((A, ·), (Aut(B), ◦)),
then the semidirect product of A and B with respect to g is the group G = A×g B
with underlying set A×B and the operation

(a, b) · (a′, b′) := (aa′, b + ga(b′)) (∀(a, b), (a′, b′) ∈ A×B), (24)

where ga ∈ Aut(B) denotes the image of a ∈ A under g. (In the literature,
depending on the context, the notation B ×g A is also used instead of A ×g B).
e := (eA, 0) turns out to be the identity element of G. If g is constant, i.e., ga = iB
(∀a ∈ A), then A ×g B coincides with the ordinary direct product of A and B.
If, however, g is not constant, i.e., if there exists a0 ∈ A with ga0 6= iB , then
there exists b0 ∈ B with ga0(b0) 6= b0, and it follows that necessarily cardA ≥ 2,
card B ≥ 3, and that A×g B is certainly non-abelian, even if A is abelian.
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Theorem 5.3. Hypotheses: (i) (A,·, eA) is a torsion group, cardA≥2. (ii) (B,+, 0)
is an abelian group. (iii) g ∈ Hom(A,Aut(B)) is such that card g(A) ≥ 2 and
a ∈ A, ord a = n ≥ 2 =⇒ iB + ga + . . . + gan−1 = 0. (iv) G = A ×g B. (v) E is
an inner product space over K. Assertion: Every solution f : G → E of (I) is 0,
so is quadratic.

Proof. 1) Let be a ∈ A \ {eA}, b ∈ B arbitrary, say ord a = n ≥ 2. Then (a, b)1 =
(a1, iB(b)), and if for a k ∈ N we have (a, b)k = (ak, iB(b)+ ga(b)+ . . .+ gak−1(b)),
then by (24) (a, b)k+1 = (a, b)k · (a, b) = (ak+1, iB(b) + . . . + gak−1(b) + gak(b)), so

(a, b)k = (ak, iB(b) + ga(b) + . . . + gak−1(b)) (∀k ∈ N, k ≥ 2). (25)

By hypothesis (ii) and Remark 5.2, the automorphisms iB , ga, . . . , gak−1 of B are
summable in End(B), so by (25)

(a, b)k = (ak, (iB + ga + . . . + gak−1)(b)) (∀a ∈ A \ {eA}, b ∈ B, k ≥ 2). (26)

ord a = n ≥ 2, hypothesis (iii) and (26) imply (a, b)n = (an, 0(b)) = (eA, 0) = e,
so that (a, b) has order n in G. If f : G → E is a solution of (I), Lemma 5.1a
guarantees that f(a, b) = 0. Let H := {eA, b); b ∈ B}. So we have proved

f(G \H) = {0}. (27)

2) H forms a subgroup of G isomorphic to B under the embedding b 7→ (eA, b)
(b ∈ B). (By the way, this shows that G may very well contain elements of infinite
order, and since also A is embeddable into G, this will then be a mixed group.)
cardA ≥ 2 in hypothesis (i) ensures that H is proper. By (27) and Corollary 4.3,
f = 0, which ends the proof.

Of course, examples for the situation of Theorem 5.3 are of interest.

Example 5.4. The general dihedral group. Let B be an abelian group of expo-
nent > 2 (i.e., there exists b0 ∈ B with ord b0 > 2), and A := Z2 = {1,−1}, the
cyclic group in multiplicative notation. If χB is the mapping b 7→ b−1 (b ∈ B),
then χB 6= iB , ordχB = 2 in Aut(B). g ∈ Hom(A,Aut(B)) is defined by g1 := iB ,
g−1 := χB . Now the dihedral group associated to B is DihB := Z2 ×g B. In
our situation, DihB is always non-abelian. For B = Z3 we get DihB = S3, the
smallest non-abelian group. For B = Zn (n ≥ 3) we obtain as DihB the finite
dihedral groups, for B = Z the infinite dihedral group, and for B = R the group of
rigid motions of R1. Hypotheses (i), (ii), (iv) of Theorem 5.3 clearly are satisfied,
but also (iii): a = −1 ∈ Z2, ord a = 2, iB + ga = iB + g−1 = iB + χB = 0 since
(iB + χB)(x) = x + (−x) = 0 (∀x ∈ B). So the assertion of Theorem 5.3 holds in
all these cases.

Example 5.5. Let (B,+, ·) be a ring with 1 6= 0, not necessarily commutative,
having no zero divisors, and let A be a torsion subgroup of the group U(B) of
units of B, card A ≥ 2. g ∈ Hom(A,Aut(B,+)) is defined by ga(b) := ab (∀b ∈ B,
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a ∈ A) and G := A ×g B. Now the hypotheses (i), (ii), (iv) of Theorem 5.3 are
fulfilled, but also (iii): If a0 ∈ A\{1}, then ga0(1) = a0 6= 1 = g1(1), so ga0 6= g1, so
card g(A) ≥ 2. Let a ∈ A, ord a = n ≥ 2. Then 0 = an−1 = (a−1)(1+. . .+an−1),
and a − 1 6= 0 implies 1 + a + . . . + an−1 = 0, so (1 + a + . . . + an−1)b = 0, i.e.,
(iB +ga + . . .+gan−1)(b) = 0 (∀b ∈ B), i.e., iB +ga + . . .+gan−1 = 0. So Theorem
5.3 is applicable.

a) If our ring B has characteristic 6= 2, then A = {1,−1} becomes possible,
and we return to Example 5.4; notice that b 7→ (−1)b (b ∈ B) is nothing
else than χB.

b) If B = C, then A may be the locally cyclic group Q/Z of all roots of unity
of all orders or a subgroup thereof.

Example 5.6 (modification of Example 5.5). For the ring (B,+, ·) we now allow
the existence of zero divisors, leave everything else unchanged, choose A, g, and G
as before but require now the condition

a ∈ A, a 6= 1 =⇒ (a− 1) ∈ U(B). (28)

The only crucial point is again hypothesis (iii) of Theorem 5.3: Let a ∈ A, ord a =
n ≥ 2. We have again 0 = an − 1 = (a − 1)(1 + . . . + an−1). This and (28)
imply 1 + . . . + an−1 = (a − 1)−1(an − 1) = 0 and then, as in Example 5.5
iB + . . . + gan−1 = 0, and Theorem 5.3 can be applied in this situation. An
illustration: n ∈ N, B := Fn×n, the ring of all n × n matrices over the field F,
A a torsion subgroup of U(B) = GL(n, F) satisfying (28). Specifically, if n = 2,

F = R, ar :=
(

cos(2πr) − sin(2πr)
sin(2πr) cos(2πr)

)
(∀r ∈ Q), A := {ar; r ∈ Q} is the image of

ϕ ∈ Hom((Q,+), (A, ·)) given by ϕ(r) := ar (∀r ∈ Q). A is a torsion group and
satisfies (28) since (cos(2πr)−1)2 +(sin(2πr))2 = 2−2 cos(2πr) 6= 0 for r ∈ Q\Z.
Of course, A is isomorphic to Q/Z.
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