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Abstract. In this article, we focus on the formulation of dissipative me-
chanical systems through contact Hamiltonian systems. Different forms
of symmetry of a contact dynamical system (geometric, dynamic, and
gage) are defined to, in the realm of Noether, find their corresponding
dissipated quantities. We also address the existence of dissipated quan-
tities associated with a general vector field X on TQ × R, focusing on
the case where its contact Hamiltonian function is dissipative.
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1. Introduction

Physical systems are inevitably subjected to external influences, dissipation,
damping, as well as a wide range of irreversible phenomenological aspects.

A model description of dissipative systems is crucial, given the wide
range of contexts in which this feature determines the system evolution, such
as quantum mechanics [30], general relativity [15], etc.

In this sense, the Hamiltonian principle is crucial in a Lagrangian or
Hamiltonian description of a system with conservative dynamics, but it can-
not address the various aspects that arise in dissipative dynamics: dispersive
forces linked to linear or nonlinear velocity dependencies, history-dependence,
coupling with the environment, etc. In this regard, new formulations of the
Hamiltonian principle have been developed to allow for the inclusion of dissi-
pative effects in Lagrangian and Hamiltonian dynamics (consult, for example,
Galley [21]).

However, the Lagrangian approach to dissipatory processes is by no
means straightforward, with multiple approaches (one may consult [17] for a
survey, which aiming to be exhaustive at the time of its publication, collects
hundreds of references), such as the consideration of additional variables [47],
the time-dependent Lagrangian [27], or complex actions [8].
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151 Page 2 of 24 J. P. Álvarez MJOM

Understanding dissipative processes through a geometric framework has
been a relatively recent endeavor [42]. Contact geometry, which had already
been employed to describe a wide range of physical systems [32], emerged
naturally in mechanics when attempting to characterize mechanical systems
whose Hamiltonian explicitly depends on time. In this context, a new ex-
tended phase space (incorporating the time dimension) is endowed with a
contact structure defined by the renowned Poincaré–Cartan 1-form. Despite
the versatility of this framework to formulate a theory of Hamilton–Jacobi,
and that beyond the point symmetries of the Lagrangian and their Noether
invariants, the concept of contact symmetries was necessary to characterize a
non-canonical quantization of the symplectic solution of the Solution Mani-
fold through Hamiltonian vector fields (consult [1]), a new framework for the
phase space of any mechanical system (dissipative or non-dissipative) was
proposed in [5], consisting of a contact manifold which serves as a natural
extension of the classical symplectic phase space, endowed with an additional
dimension represented by a new dynamic variable “z” characterizing the sys-
tem interaction with the environment.

The principles of heat and energy interactions have substantially im-
pacted the development of geometric–differential models that combine the
two fundamental laws of thermodynamics: the conservation of energy (free
energy) and the increase of entropy (dissipation). Notable examples include
the introduction of dissipation brackets and Casimir functions, which have
proven instrumental in capturing the essential characteristics of thermody-
namic systems within a geometric framework (see, for instance, [31])

In particular, thermodynamics has greatly benefited from its influence
on contact geometry, particularly within the realm of non-equilibrium energy
transformation processes. The geometric framework of contact geometry has
been recognized as an appropriate approach for describing thermodynamic
systems and their transformations capturing the intricacies of energy conser-
vation and entropy production (one can consult, in an extensive literature,
the references [4,10,28,29,40]).

This viewpoint crystallized as a powerful tool in describing mechanical
systems with dissipation (see, for instance, [5,9,51]). In particular, contact
geometry has been able to propose a generalization of Hamilton’s equations
through the so-called contact Hamiltonian equations. This has emerged as
a potent approach in modeling systems with frictional forces or those that
exchange energy or have other interactions with the environment (consult,
for example, [16]).

It is noteworthy how this contact framework has also been capable of
addressing dissipation processes within the realm of field theories (see [24]
and [25]).

A fundamental difference between symplectic and contact Hamiltonian
dynamics is that in the latter case, the Hamiltonian H is not preserved along
the system’s dynamics. In fact, along every curve defined by this evolutionary
process, the following relation holds

d
dt

H = H
∂H

∂z
,
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(one can refer to [50] for a classical variational proof of this equation. The
first geometric justification of this fact may have been provided in [5]). This
condition is essential in the description of irreversible processes and open sys-
tems, assuming both system invariance properties and the encoding of flows
due to non-equilibrium conditions (consult [9] and [19]) and leads us to define
dissipated quantities of the system as those functions on the configuration
space that dissipate at the same ratio as the Hamiltonian.

In this regard, just as the analysis of conserved quantities in the Hamil-
tonian formulation of autonomous Hamiltonian systems is guided by a strong
geometric framework (we refer, for example, in an extensive bibliography, to
[43]), it has resulted that the consideration of dissipated quantities in a con-
tact Lagrangian system is intimately linked to the new geometric framework
on the configuration manifold. We refer to [23] and [36], two of the earliest
seminal works in this project, as they made groundbreaking contributions
to establishing the foundations of this subject. This topic has since rapidly
branched out extensively, and we will briefly go over some significant de-
velopments. Notably, [22] highlights the importance of understanding these
concepts in non-conservative field theories. Drawing upon the approach of the
pioneering work of Skinner and Rusk [49], formulated on the Whitney sum
T ∗Q⊕TQ, [38] highlights the importance of a combined geometric framework
in advancing our understanding of contact autonomous mechanical systems.
Canonoid transformations are a class of transformations for Hamiltonian sys-
tems that preserve the Hamiltonian form of equations of motion but are
not necessarily canonical [3]. The main objective of studying these trans-
formations, as discussed in [38], is to explore the existence of characteristic
quantities of motion associated with them. In [2], the author examines Lie
integrability by quadratures for both time-independent and time-dependent
Hamiltonian systems, emphasizing the connection between Lie integrability
and the existence of a solvable Lie algebra of constants of motion, enhancing
our understanding of the integrability of Hamiltonian systems on various geo-
metric structures, including contact Hamiltonian systems. Similarly, an inter-
esting perspective is presented in [7], where the authors explore the concept of
reducing systems with scaling symmetries to equivalent contact Hamiltonian
systems, effectively removing physically irrelevant degrees of freedom.

In this wise, the Noether Theorem undergoes a radical transformation
in the transition from a Lagrangian system to a contact Lagrangian system:
infinitesimal symmetries do not yield conserved quantities but rather dissi-
pated quantities.

Thus, the geometric description of Noether Theorem for a Lagrangian
L : TQ → R (see, for instance, [14]) states that the invariance condition
Xc(L) = 0 for the lift Xc to TQ of a vector field X provides Xv(L) as a
conserved quantity, where Xv is a vertical field on TQ over Q, canonically
associated with X.

We owe to de León and Lainz [36] the striking result that, in the anal-
ogous situation for a contact Lagrangian L : TQ × R → R, it yields Xv(L)
as a quantity that dissipates in the same way as the energy of the system
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H = vi∂L/∂vi − L. Upon this crucial point, we shall return several times
throughout this article.

This paper is organized as follows: Section 2 is devoted to introducing
the concept of contact Hamiltonian systems, some calculus instruments on
these systems, as well as some dissipation laws associated with symmetries
of the contact system given by the action of a Lie group. In Sect. 3, we revisit
the scheme outlined in [36] concerning the establishment of dissipation laws.
We structure it and consider broader aspects concerning vector fields in the
tangent bundle of the corresponding differentiable manifold, which generate
dissipation laws. In Sect. 4, we continue, in the spirit of Noether, with the
aim of obtaining dissipation laws for each element A ∈ g, the Lie algebra
of a Lie group G that acts on TQ × R as symmetries (in a sense we will
specify) of a contact Lagrangian system. In Sect. 5, we provide several exam-
ples that exemplify some of the most noteworthy results from the theory on
dissipation laws and their associated contact structure. Finally, we include
a section dedicated to pointing out further research directions, drawing in-
spiration from the classification of symmetries of Hamiltonian systems and
their corresponding conserved quantities that may be critical in the search
for dissipated quantities in the dynamics of such systems. Additionally, we
discuss two characteristic cases of symmetries of Lagrangian systems—gage
and differential invariance—which, along with their associated conservation
laws, should merit interpretation within the context of contact Lagrangian
systems. These aspects forms part of a broader context, such as the devel-
opment of time-dependence in contact Hamiltonian systems and a potential
encounter with the Hamilton–Jacobi formulation of contact Hamiltonian sys-
tems. We have included several references that can serve as a guide for further
research along these paths.

2. Contact Hamiltonian Systems: Lie Group Actions

A contact manifold (M,η) is a (2n + 1)-dimensional orientable manifold en-
dowed with a 1-form η, called the contact form on M, such that η ∧ (dη)n

is a volume form. On (M,η) there exists a unique vector field R, the Reeb
vector field, such that

iR (η ∧ (dη)n) = (dη)n.

For every smooth real function H on M, there is a unique vector field XH ,
its Hamiltonian vector field, verifying,

η(XH) = −H (1a)
LXH

η = ρη, (1b)

for some function ρ ∈ C∞(M). From these same conditions, it follows that
in fact ρ = −R(H).

It is conventional to employ the formula (1b) in its Cartan equivalent
form

iXH
dη = dH − R(H) · η. (1b’)
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When H ∈ C∞(M) is fixed we shall call the triple (M,η,H) a contact
Hamiltonian system.

For f, g ∈ C∞(M), we define the contact bracket

{f, g} = −i[Xf ,Xg]η = − (LXf
iXg

− iXg
LXf

)
η

= Xf (g) + R(f) · g (2)

where Xf and Xg are the Hamiltonian vector fields corresponding to f and
g respectively.

The contact bracket obeys the Jacobi identity

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0,

but not the Leibniz rule, we have instead the following relation

{f, gh} = {f, g}h + {f, h}g − {f, 1}gh. (3)

As a particular case of (2), we have

XH(H) = −R(H) · H,

relation called the dissipation law of the Hamiltonian H.
In this sense, we will say that a real function f on (M,η,H) is a dissi-

pated quantity if {H, f} = 0, that is, XH(f) = −R(H) · f.
Similarly, we say that g ∈ C∞(M) is a conserved quantity if XH(g) = 0.

It is easy to verify that if f1 and f2 are dissipated quantities, then f1/f2 is a
conserved quantity in the complement of (f2)0 .

De León and Lainz [36], have provided us with the following useful and
elegant calculation tool.

Proposition 1. Let us consider the contact Hamiltonian system (M,η,H). Let
f ∈ C∞(M) and X a vector field on M such that η(X) = −f, then

η([XH ,X]) = η([XH ,Xf ]),

where XH and Xf are the Hamiltonian vector field corresponding to H and
f respectively. Consequently

{H, f} = (LXη)(XH) + X(H). (4)

Definition 2. The vector field Y ∈ X(M) is a dynamical symmetry of (M,η,H)
if

LY XH = 0.

Next, we present a pair of examples applying this Proposition.

Proposition 3. If Y a dynamical symmetry then η(Y ) is a dissipated quantity.

Proof. It suffices to consider that

{H, η(Y )} = η([XH , Y ]). (5)

�

Conversely, if (5) holds, that is, Y is a vector field such that η(Y ) is a
dissipated quantity then [XH , Y ] is η-horizontal vector field (view [36] and
refer to [23] with a specific viewpoint).
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Proposition 4. Let X be a dynamical symmetry on (M,η,H) such that LXη =
dg, for some g smooth function on M. Then g is a conserved quantity if and
only if H is a first integral of X.

Proof. Writing f = −η(X), then

0 = {H, f} = (LXη) (XH) + X(H)

= XH(g) + X(H),

whereby the statement of the Proposition. �
Let G be a Lie group acting by contactomorphisms on (M,η), that is,

g∗η = η if g ∈ G. It is plain that LA∗η = 0 where A ∈ g (the Lie algebra of
G) and we denote by A∗ its corresponding fundamental vector field on M ,
that is,

A∗
x =

d
dt

∣
∣
∣
∣
t=0

exp(tA) · x, x ∈ M.

Proposition 5. If the Lie group G acts by contactomorphisms of the Hamil-
tonian system (M,η,H) and leaves invariant the Hamiltonian function H,
g∗H = H, ∀g ∈ G, then the Hamiltonian function fA∗ corresponding to the
fundamental vector field A∗ is a dissipated quantity,

{H, fA∗} = 0.

Proof. Since LA∗η = 0, it follows that the vector field A∗ is the Hamiltonian
vector field corresponding to the function η(A∗) = −fA∗ and we have

iA∗dη = d (−iA∗η) = dfA∗ (6)

Consequently R(fA∗) = 0. In this way,

{fA∗ ,H} = A∗(H) + R(fA∗) · H = 0.

�
Proposition 6. Let us consider the Hamiltonian system (M,η,H) over which
the Lie group G acts by contactomorphisms of (M,η) and leaves XH invari-
ant, g∗XH = XH , ∀g ∈ G. Then, {H, fA∗} = 0.

On the other hand, if R(H) = 0, the relations XH(fA∗) = 0 and
A∗(H) = 0 hold. Also, the product fA∗ · fB∗ is also a dissipated quantity
for any A,B ∈ g.

Proof. The first statement follows from the equality

{H, fA∗} = −η([XH , A∗]) = 0, (7)

The second assertion of the Proposition follows from the relations

{H, fA∗} = XH(fA∗) + R(H) · fA∗

= −(A∗(H) + R(fA∗) · H).

Finally, the conclusion follows from relation (3), as we have

{H, fA∗ · fB∗} = {H, fA∗} · fB∗ + {H, fB∗} · fA∗ .

�
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Remark . We know from [23], as a consequence of considering several kinds
of symmetries for contact dynamical systems, that the contact action of G,
along with the G-invariance of the Hamiltonian H, implies the preservation by
G of the Hamiltonian vector field XH . Conversely, let us see that conditions
g∗η = η and g∗XH = XH , ∀g ∈ G, imply the G-invariance of the Hamiltonian
H. In fact,

g∗H = g∗ (iXH
η) = ig∗XH

g∗η = iXH
η = H.

In this manner, the statements of Propositions 4 and 5 are equivalent. They
have been set apart to emphasize two arguments of a different nature: the
first rests on the genesis of the Hamiltonian function fA∗ , while the second
focuses on the preservation of solutions of the Hamiltonian vector field XH .

Within the framework of contact geometry, analogously to the symplec-
tic case, one can define a momentum map relative to the action of a Lie group
that preserves a contact structure (see [20]). A version of Proposition 5 using
this context can be found in [36].

3. Contact Lagrangian Systems

Analogously to the cotangent bundle of the configuration space manifold of
a mechanical system, which inherently possesses a central geometric struc-
ture in Hamiltonian theory (the canonical 1-form), the tangent bundle of a
differentiable manifold is intrinsically characterized by a geometric structure
which plays a crucial role in the development of Lagrangian theory, with a
key function, for example, in determining the inverse problem of Lagrangian
dynamics or defining symmetries of a Lagrangian system, (consult, for ex-
ample, [37,41] and [14]). In fact, the integrable almost tangent structure on
a manifold M, defined by a (1, 1)-tensor field J , such that Im(Sp) = ker(Sp)
(for every p ∈ M) and whose Nijenhuis tensor vanishes, already embodies
the full Lagrangian theory within itself (foundations for this splendid theory
can be consulted in the references [12,13], and [48]).

In this way, let Q be an n-dimensional manifold, and we consider TQ its
tangent bundle and the extended phase space TQ×R. We denote by (qi, vj , z)
the bundle coordinates on TQ × R and consider the natural extension to
TQ × R of the canonical almost tangent structure J on TQ locally defined
by the (1, 1)-tensor field

J =
∂

∂vi
⊗ dqi.

If wp is a p-form on TQ × R, then iJwp is the (0, p)-tensor field defined as

(iJwp) (X1, ...,Xp) = wp(JX1,X2, ...,Xp).

For a vector field X on TQ × R, one has

LX (iJwp) = (iLXJ) wp + iJ (LXwp) (8)

Also we define the Liouville vector field Δ on TQ×R by the local expression

Δ = vi ∂

∂vi
.
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Let us consider a regular Lagrangian function L : TQ × R → R, that is, its
Hessian matrix

(Wij) =
(

∂2L

∂vi∂vj

)

is nonsingular everywhere.
As a consequence, the 1-form on TQ × R

ηL := dz − iJdL

is a contact form. In local coordinates, we write

αL := iJdL = dL ◦ J =
∂L

∂vi
dqi.

The couple (TQ × R, ηL) will be called a contact Lagrangian system
The energy function of the system is given by

EL = ΔL − L = vi ∂L

∂vi
− L.

The Hamiltonian vector field XEL
of the energy will be denoted by ξL.

In local coordinates

ξL = vi ∂L

∂qi
+ W ik

(
∂L

∂qk
− ∂2L

∂qj∂vk
vj − L

∂2L

∂z∂vk
+

∂L

∂z

∂L

∂vk

)
∂

∂vi
+ L

∂

∂z
.

Consequently J(ξL) = Δ.
In the context of a contact Lagrangian system, it is interesting to observe

that the conditions (1a) and (1b) of the definition of ξL can be alternatively
replaced by the so-called Herglotz conditions,

ξL(z) = L
ξL

(
∂L
∂vi

) − ∂L
∂qi = ∂L

∂qi
∂L
∂z

}

This viewpoint is useful when considering the dynamics of the variational
problem or to address and solve the inverse problem in the case of Lagrangian
contact systems (see, for example, [37] and [18]).

The Reeb vector field RL of the contact form ηL is given by the local
expression

RL =
∂

∂z
− W ij ∂2L

∂vi∂z

∂

∂vj
, (9)

where (W ij) is the inverse of the Hessian matrix (Wij).
Furthermore, a direct calculation yields

RL(EL) = −∂L

∂z
.

3.1. Q- and R-Projectable Vector Fields

We define Xproj(TQ × R) as the set of vector fields on TQ × R that can be
projected onto both Q and R. Its expression in the local coordinates (qj , vi, z)
of TQ × R takes the form

X = Fi
∂

∂qi
+ Gi

∂

∂vi
+ H

∂

∂z
, (10)
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with

Fi = Fi(q1, ..., qn), (1 ≤ i ≤ n), H = H(z).

Proposition 7. A sufficient condition for a vector field X on TQ×R to verify
LXαL = αX(L) is that LXJ = 0.

Proof. It suffices to consider that, by (8), we have

LXαL = LX(iJdL) = iLXJdL + iJd (LXL)
= iLXJdL + αX(L).

�

A brief calculation shows that for a vector field X ∈ Xproj(TQ × R)
given by the coordinate expression (10), the condition LXJ = 0 means

∂Gk

∂vj
=

∂Fk

∂qj
, 1 ≤ j, k ≤ n. (11)

Using the usual notation,

Xv = J(X) = Fi
∂

∂vi
,

if we write f = −ηL(X), then

f = −(H − XvL) = −
(

H −
∑

i

Fi
∂L

∂vi

)

Lemma 8. If X ∈ Xproj(TQ × R) then

RL(f) = −∂H

∂z
.

Proof. An straightforward computation gives

∑

i,j

W ij ∂2L

∂vi∂z

∂

∂vj

(
∑

k

Fk
∂L

∂vk

)

= 0.

With this, the local expression of the vector field RL in (9) gives the
result. �

Definition 9. The vector field X ∈ Xproj(TQ × R) is called an infinitesimal
symmetry of L if

X(L) = −RL(f) · L,

where f = −ηL(X).

Remark . This definition is the natural generalization of the case RL(f) = 0,
which includes the scenario of an infinitesimal symmetry of L given by the
lift Xc of a field X ∈ X(Q), in such a way that the relation Xc(L) = 0, is
equivalent to the dissipative property of the function Xv(L).
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Proposition 10. Every infinitesimal symmetry X ∈ Xproj(TQ×R) with LXJ
= 0 is a Hamiltonian vector field for ηL.

Proof. Writing ηL(X) = −f, we have

LXηL =
∂h

∂z
dz − LX (iJdL) =

∂h

∂z
dz − iJd(XL)

=
∂h

∂z
dz + iJd (RL(f) · L)

=
∂h

∂z
dz − ∂h

∂z
iJdL = −RL(f)ηL.

�

In this way, henceforth we will write X = Xf for f = −ηL(X) if X ∈
Xproj(TQ × R) is an infinitesimal symmetry.

Theorem 11. With the previous notations, for Xf ∈ Xproj(TQ × R) it holds
that f is a dissipated quantity.

Proof. We have

{EL, f} =
(LXf

ηL

)
ξL + Xf (EL) = −RL(f)ηL(ξL) + Xf (EL)

= −RL(f)(L − dL(J(ξL)) + Xf (EL)

= −RL(f)(L − dL(Δ) + Xf (EL)

= RL(f)EL + Xf (EL) = {f,EL}.

In consequence {EL, f} = 0. �

Remark . In [36], vector fields on TQ × R are considered of the form

Y = Fi
∂

∂qi
+ vj ∂Fi

∂qj

∂

∂vi
+ H

∂

∂z
with Fi = fi(q, z), H = h(z). (12)

obtained by restricting lifts to T (Q × R) of fields in Q × R. However, their
calculations (Theorem 10) require that Y be, in turn, Q-projectable (to en-
sure that RL(f) = −∂H/∂z), a condition not satisfied by the field given
by expression (12). In any case, (12) represents a more restrictive condition
than that given by (11), thus satisfying [Δ, Y ] = 0; using this property, the
authors conclude (addressing some inadequacies) that

{EL, f} = {L, f}.

Now,

{L, f} = Xf (L) + RL(f)L = −RL(f) · L + RL(f) · L = 0.

3.2. Vector Fields over TQ × R in General Position

We are now seeking dissipation laws similar to those obtained in the previous
scenarios, applicable to fields on TQ × R that lack a significant connection
with the base Q × R.

Given the strong dependence of the previous techniques on the geometric
nature of the fields, we will now adopt a different approach in our calculations.
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In this manner, consider

X = Fi
∂

∂qi
+ Gj

∂

∂vj
+ H

∂

∂z
, (13)

where (qi, vj , z) are the fiber coordinates in T (Q) × R.
First, we have

d (iJdL) (ξL,X) = ξL {iJdL(X)} − X {iJdL(ξL)} − iJdL [ξL,X]
= ξL(XvL) − X(ΔL) − [ξL,X]v L. (14)

Moreover, utilizing the relation (1b’)

iξLdηL = dEL − (RLEL) ηL (15)

and since dηL = −d(dJf), we derive

d (dJL) (ξL,X) = −X(EL) + (RLEL) ηL(X)

= −X(ΔL) + X(L) + (RLEL) (H − XvL)

thus,

{EL,Xv(L)} = X(L) + [ξL,X]v L − ∂L

∂z
H. (16)

Summarizing, we have

Proposition 12. Let us consider the vector field X ∈ X(TQ × R) in the form
(13), then X(L) + [ξL,X]v L + (RLEL) H represents the obstruction for the
function Xv(L) to be a dissipated quantity for the contact Lagrangian system
defined by L.

Remark . Let us examine the expression (16) for the particular case where the
vector field X on TQ×R is the lift Y c of a field Y ∈ X(Q). In this situation,
(16) provides the expression

{EL, Y v(L)} = Y c(L)

which defines Y v(L) as the dissipated quantity linked to the symmetry con-
dition Y c(L) = 0. This recovers the translation of Noether Theorem in con-
servative Lagrangian systems to the case of dissipative contact Lagrangian
systems.

Definition 13. A Cartan symmetry is a vector field X ∈ X(TQ×R) satisfying

LXηL = df

for a certain function f ∈ C∞(TQ × R).

Proposition 14. Let X be a Cartan symmetry of the contact system defined
by L, given by the expression (13) in local coordinates. Then, the quantity
f − H + XvL is a first integral of the Reeb field RL.

Proof. We have

df = iXdηL + diXηL = iXdηL + d(H − XvL),

consequently,

RL(f − H + XvL) = 0.

�
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4. Gauge Symmetries on Lagrangian Contact Systems

In this section, we continue the objective initiated in Sect. 2 of defining dissi-
pation laws for each element A ∈ g, the Lie algebra of a Lie Group G acting
on the phase space. Specifically, we focus on G acting on TQ × R, which
corresponds to lifting its operation via diffeomorphisms of the base Q.

This purpose has its roots in the consideration of symplectomorphisms
of a classical symplectic Lagrangian system on TQ, defined by the lifting of
diffeomorphisms of the base manifold Q.

Let us briefly revisit the case of a classical mechanical system character-
ized by a regular Lagrangian function L : TQ → R, where the Hessian matrix
is regular in every coordinate neighborhood (qi, vj). It is crucial to point out
that, under these conditions, the exact 2-form wL = −d (αL) = −d(iJdL)
defines a symplectic structure on TQ. Notably, the associated Poisson alge-
bra encodes the primary dynamic properties of the system. In this way, we
can define the Hamiltonian vector field XL associated with the energy func-
tion EL = ΔL − L as the unique vector field determined by the dynamical
equation

iXL
wL = dEL.

Let us now consider dispersion laws associated with transformations of the
configuration manifold Q that define gage-contact symmetries on the ex-
tended tangent bundle TQ × R of a given contact Lagrangian system.

In this context, it is significant to consider the moduli of Lagrangian
L : TQ → R with respect to the class of XL-preserving symplectomorphisms
of wL. This is already a result considered classic, which we restate in our
own terms. One may refer, for example, to reference [11], which includes a
reflection on this point in relation to working on a closely related subject.

Proposition 15. Let L̃ and L be regular Lagrangian on TQ. Let XL̃,and XL

be the corresponding Lagrangian vector fields. The following assertions are
equivalent:

(a) L̃ = L+α+k where α is a closed 1-form on Q, understood as a function
α : TQ → R and k ∈ R.

(b) XL̃ = XL and wL̃ = wL.

Proof. Assume (a). The first crucial step is to take into account that 1-forms
on the manifold Q can be identified with linear functions on the tangent
bundle TQ. This can be seen naturally in local coordinates (qi, vi) by defining
a function f on TQ from the 1-form α as follows

α =
∑

i

fi(q)dqi ≡
∑

i

fiv
i := f.

In this way, it is clear that Δ(f) = f, hence Δ(L̃) − L̃ = Δ(L) − L − k, that
is,

Ẽ = E − k.
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With the same interpretation for the 1-form iJdf as a function on TQ, we
can write

iJdf =
∂f

∂vi
dqi = fidqi ≡ fiv

i = f.

In this way,

αL̃ = iJdL̃ = iJd(L + f + k) = iJdL + f ≡ αL + α.

As α is a closed 1-form, we have

dηL̃ = dηL

that is, wL̃ = wL. Accordingly, we also have XL̃ = XL.

If (b) holds, then Ẽ = E + k, hence

L − L̃ = Δ(L − L̃) + k.

Expressing the function Δ(L − L̃) on TQ using 1-form notation,

Δ(L − L̃) ≡
(

∂L

∂vi
− ∂L̃

∂vi

)

dqi := Θ. (17)

Since wL̃ = wL, we have dΘ = 0 and we can write locally

Δ(L − L̃) = dg =
∂g

∂qi
dqi +

∂g

∂vi
dvi. (18)

for some local function g : TQ → R. From (17) and (18), it follows that g

does not depend on the coordinates {vi} and hence Δ(L − L̃) is a closed
1-form on Q and we have (a). �

Considering now again the case of a contact Lagrangian system defined
by a regular Lagrangian L : TQ×R → R, we aim to investigate the behavior
of the corresponding contact Lagrangian form ηL = dz − iJdL under the
action of lifting of diffeomorphisms of the base space Q.

Inspired by the symplectic case, we shall provide the following definition.

Definition 16. Let ϕ be a diffeomorphism of Q and L ∈ C∞(TQ×R). Denote
by ϕ : TQ×R →TQ×R the product application of the tangent lift of ϕ and
the identify on R. We say that ϕ is a gage symmetry of the contact Lagrangian
system defined by L, if ϕ∗L = L + α, where α is a closed 1-form on Q.

Henceforth, we will use the notation

L̃ = ϕ∗L = L + α ≡ L + fα

where fα : TQ → R is the function associated with the 1-form α on Q. Taking
into account the proof of Proposition 15, we have

ηL = dz − iJdL

ηL̃ = dz − iJdL̃ = dz − iJdL − fα ≡ dz − iJdL − α. (19)

Consequently, we have on TQ × R two different contact structures given by
the contact Lagrangian forms ηL y ηL̃, such that their Lagrangian energies
are identical,

EL̃ = Δ(L̃) − L̃ = Δ(L) + fα − (L + fα) = EL. (20)
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Moreover, by the local expression (9) of the Reeb vector fields, we have

RL = RL̃, (21)

while the closed character of the 1-form α implies

dηL = dηL̃. (22)

We gather these facts in the following proposition:

Proposition 17. With the notations of Definition 16, let ηL be the contact
form associated with the regular Lagrangian L : TQ×R → R and consider the
contact form ηL̃ associated with the Lagrangian L̃ = ϕ∗L = L + α where α is
a closed 1-form on Q. Both forms share their Lagrangian energies, EL̃ = EL,
their Reeb vector fields RL = RL̃ and satisfy dηL = dηL̃.

The following result entails a suitable position for a Lagrangian contact
system within the framework of Proposition 17 for gage symmetries.

Proposition 18. Let G be a Lie group of transformations on Q such that its
lift to TQ × R is such that

g∗L = L + α, g ∈ G,

where α is a closed 1-form on Q and in such a way that the action of G leaves
ξL invariant,

g∗ξL = ξL,∀g ∈ G.

For each A ∈ g, the function ηL(A∗) is a dissipated quantity on TQ × R.
Additionally, if H1(Q) = 0, there exists a function hA on Q such that L∗

AηL =
dhA; furthermore, hA is a first integral of ξL.

Proof. Let gt = exp(tA) with A ∈ g. Then

g∗
t L = L + βt

where βt is a closed form on Q. Thus, A∗L = βA for a certain 1-form closed
on Q, and let us denote its corresponding function on TQ as fA.

In this manner, we have

A∗(ΔL) = ΔA∗L ≡ ΔfA = fA,

consequently

A∗(EL) = A∗(ΔL − L) = 0.

Thus, by the proof of Proposition 17, we have

g∗
t ηL = ηL − βt

which implies

LA∗ηL = βA.

The closedness of βA implies, by Poincaré’s Lemma and considering that
H1(Q) = 0 as stated in the Proposition, that βA on Q can be expressed as
the differential of a function hA, that is, βA = dhA.

By Proposition 1, we have

[EL, ηL(A∗)] = − (LA∗ηL) (ξL) − A∗(EL)
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On the other hand,

〈LA∗ηL, ξL〉 = LA∗ 〈ηL, ξL〉 − 〈ηL,LA∗ξL〉 ,

and since 〈LA∗ηL, ξL〉 = ξL(hA), LA∗ 〈ηL, ξL〉 = −A∗EL = 0 and LA∗ξL = 0,
the statements of the proposition follow. �

5. Some Examples

5.1. Gravity, Friction, and a Body in Motion

Let us consider a body subjected to the action of a constant gravitational
field, as well as experiencing the influence of a resistive force or friction which
opposes the motion and dissipates energy, typically in the form of heat. Con-
sider a simplified Lagrangian given by,

L =
1
2
(v2

x + v2
y) − y − γz

where the first term accounts for the kinetic energy associated with velocities
vx and vy, the second term represents the potential energy related to posi-
tion y, and the final term incorporates the energy dissipation γz due to the
damping force.

The contact structure of the system is defined by the following tensors

ηL = dz − vxdx − vydy, dηL = dx ∧ dvx + dy ∧ dvy

RL =
∂

∂z
, EL =

1
2
(v2

x + v2
y) + y + γz.

Now, let us consider the vector field

X = γ
∂

∂y
− ∂

∂z
∈ Xproj(TR

2 × R)

We have

f = −ηL(X) = 1 + γvy.

Since X(L) = 0 and RL(f) = 0, the conditions for X to be an infinitesimal
symmetry of L (according to Definition 9) are satisfied. As a consequence of
Theorem 11, it follows that

{El, f} = 0

what defines f as a dissipated quantity.

5.2. Emden Model and Interstellar Gas Clouds

We will now develop an approximation to Robert Emden model (1907) for an
interstellar gas cloud. In this endeavor, we shall first put into operation our
derived formula (16) for vector fields in general position which respect to the
projection TQ×R → Q×R. Thus, we aim to put the theoretical foundation
supporting our approach into practice.
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In his model, Emden introduced a Lagrangian that we have modified
by excluding the time dependency and incorporating an additional term to
account for the energy dissipated due to dispersion forces, represented by

L =
1
2
v2 − 1

6
q6 − γz.

The sixth-degree dependence of the potential energy of gas within the inter-
stellar cloud can be attributed to the internal structure of the star and its
asymptotic behavior: as we move away from the center of the star, the density
and pressure decrease, affecting the interactions between the particles that
compose it. This includes the van der Waals force potential for molecular
interactions and also captures the distribution of electric charge that induces
interaction between molecules.

The Emden model contact structure is characterized by the following
elements

ηL = dz − vdq, dηL = dq ∧ dv

RL =
∂

∂z
, EL =

1
2
v2 +

1
2
q2 + γz.

The Hamiltonian vector field ξLarises from the dynamical equations,

ηL(ξL) = −EL

iξLdηL = dEL − RL(EL)ηL

}

Solving these equations provides:

ξL = v
∂

∂q
− (q5 + γv)

∂

∂v
+ L

∂

∂z
.

Consider the field X = γ ∂
∂q −q5 ∂

∂z which satisfies the condition X(L) =
0. A computation leads us to

[ξL,X]v =
[
v

∂

∂q
− (q5 + γv)

∂

∂v
+ L

∂

∂z
, γ

∂

∂q
− q5

∂

∂z

]v

= 0.

As a result, based on Eq. (16), we obtain

{El,X
v(L)} = X(L) +

[
v

∂

∂q
− (q5 + γv)

∂

∂v
+ L

∂

∂z
, γ

∂

∂q
− q5

∂

∂z

]v

L − γq5.

This leads to the following law

{El, γv} = −γq5.

This author has made consistent efforts, using the result expressed in (16),
to identify dissipated quantities of the form Xv(L) for this particular case;
however, these attempts have thus far proven unsuccessful.

5.3. Dynamics of a Charged Particle under Dispersion Forces and Electro-
magnetic Fields: Analysis in a Specific Gage

Let us now observe that points (19) through (22) as a direct consequence of
Definition 16 in Sect. 4, naturally emerge within the framework of Herglotz
classical mechanics.
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Consider a particle with mass m and charge q under the influence of an
electromagnetic field defined by a gage (φ, V = Ai

∂
∂xi

). The Lagrangian for
this particle is given by

L =
m

2

3∑

i=1

v2
i + q

3∑

i=1

Aivi − qφ − γz

where we assume that the particle is subject to a dissipative force, and γz
denotes the corresponding dispersion energy associated with this force.

The contact structure of this system is defined by the following tensors:

ηL = dz − ∂L

∂vi
dxi = dz − (mvi + qAi)dxi,

dηL = mdxi ∧ dvi + q
∂Ai

∂xj
dxj ∧ dxi, RL =

∂

∂z

EL =
∂L

∂vi
vi − L =

m

2

3∑

i=1

v2
i + qφ + γz.

Now, since

dEL − RL(EL)ηL = mvidvi + q
∂φ

∂xi
+ γ(mvi + qAi)dxi

the equations

ηL(ξL) = −EL

iξLdηL = dEL − RL(EL)ηL

}

yield

ξL = vi
∂

∂xi
+ Fi

∂

∂vi
+ L

∂

∂z
.

where

mFi = qvi

3∑

j=1

(
∂Aj

∂qi
− ∂Ai

∂qj

)
− q

∂φ

∂xi
− γ(mvi + qAi).

Let us now consider an alternative gage of the form (φ, V + ∇f), where
f a smooth function on Q. Under this new gage, the Lagrangian takes the
form:

L̃ =
m

2

3∑

i=1

v2
i + q

3∑

i=1

(
Ai +

∂f

∂qi

)
vi − qφ − γz

that is

L̃ = L + q

3∑

i=1

∂f

∂xi
vi.

According to (19),

ηL̃ = ηL − qdf.
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Furthermore, based on (20), (21) and (22),

EL̃ = EL, dηL̃ = dηL, RL̃ = RL,

In this manner, the equations for the field ξL̃ which govern the new equations
of motion, can be written as

ηL̃(ξL̃) = −EL̃
iξL̃dηL̃ = dEL̃ − RL̃(EL̃)ηL̃

}

Under these conditions, we have

ξL̃ = ξL = vi
∂

∂xi
+ F̃i

∂

∂vi
+ L

∂

∂z

where

mF̃i = qvi

3∑

j=1

(
∂Aj

∂qi
− ∂Ai

∂qj

)
− q

∂φ

∂xi
− γ(mvi + qAi) − γq

∂f

∂xi
,

As a consequence, we find that the equations of motion are dependent upon
the specific gage definition chosen.

6. Some Future Outlook and Perspectives

In this paper, we have only addressed some aspects of what can potentially
become a fertile framework for research if these initial steps follow the scheme
created by the symmetries of autonomous Hamiltonian systems as a geometric
support in the search for conserved quantities and in the integration of the
dynamical equations (one may delve, for example, into [43], so that a general
program on symmetries of symplectic Hamiltonian systems can serve as an
archetype in the search for dissipated quantities associated with different
forms of understanding symmetries).

• From this perspective, a vector field Y ∈ X(TQ × R) on the contact
Hamiltonian system (TQ×R, ηL, EL) is a Noether symmetry if LY ηL =
0 and LY EL = 0.
A Noether symmetry is in fact a dynamical symmetry (Definition 2).
Indeed, to see [Y, ξL] = 0 it suffices to verify

i[Y,ξL]ηL = 0, i[Y,ξL]dηL = 0.

Now

i[Y,ξL]ηL = Y 〈ηL, ξL〉 − ηL([Y, ξL]) = 0

and

i[Y,ξL]dηL = [LY , iξL ]dηL = LY iξLdηL

= LY (dEL − R(EL) · EL) (23)

On the other hand, it is not difficult to see that Y preserves the Reeb
vector field, [Y,RL] = 0, and thus, from (23), we obtain i[Y,ξL]dηL = 0.
It follows then that if a Hamiltonian vector field Xf , (f ∈ C∞(TQ×R))
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is a Noether symmetry then f is a dissipated quantity. In fact, the
relation

{EL, f} = LXf
ηL(ξL) + Xf (EL)

provides the result.
However, for dissipated quantities, the converse of Noether theorem does
not hold, in the sense that if [EL, f ] = 0 then Xf is a Noether symmetry.
It is clear that adding the condition R(f) = 0 does indeed solve the
inverse problem, but the issue persists outside of the first integrals of
the Reeb vector field.

• We now address symmetries that are not of Noether type. In this regard,
we will say that Y is a non-Hamiltonian symmetry on (TQ×R, ηL, EL),
if LY EL �= 0, and i[ξL,Y ]ηL = 0.
From basic calculus, we obtain

0 = i[ξL,Y ]ηL = LξLiY ηL − iY LξLηL,

leading to ξL (ηL(Y )) = −R(EL)ηL(Y ) which is Proposition 3.
It is a classical result for Hamiltonian symplectic dynamics that the sys-
tem energy subject to a dynamical symmetry is, in turn, a conservation
law. However, in the dissipative framework there exists an obstruction
to this fact. Indeed, a straightforward calculation leads us to

{EL,LY EL} = −LY (RL(EL)) · EL.

In this manner, by also imposing the condition LY (RL(EL)) = 0 on the
field Y we obtain not only LY EL as the dissipated quantity but also
LY (ηL(Y )):

{EL,LY (ηL(Y ))} = ξL(LY (ηL(Y ))) + LY (ηL(Y ))R(EL)

= LY (−RL(EL)ηL(Y )) + LY (ηL(Y ))R(EL)

= −LY (RL(EL)) ηL(Y ) = 0.

Furthermore, we have

LξL(LY ηL) = LY (LξLηL) = LY (−RL(EL)ηL) = −RL(EL)LY ηL

that is,

LξL(LY ηL) = −RL(EL)LY ηL

leading to the concept of a dissipated 1-form LY ηL on (TQ×R, ηL, EL).
From this perspective, it is worthwhile to deepen our understanding of
significant facets of the theory, such us Noether symmetries (for in-
stance, [6], [45] and [46]), or hidden symmetries [33,44] which can be of
great importance.

• As we are finalizing our article, we will now return to its very original
germ: just as the symmetries of a classical Lagrangian system yield con-
served quantities (considering the lifting, both vertical and complete, to
the phase space of its symmetry group), the analogous situation within
the framework of a contact Lagrangian system remarkably yields dis-
sipation laws using the same duality between motions and their corre-
sponding vertical components in phase space.
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First, let us gather, with a certain level of basic detail, the previously
mentioned result as a mean of framing two other ways to understand
the invariance of a Lagrangian system in the phase space of velocities
that may potentially serve as a guide in directing forthcoming research
pertaining to dissipated quantities in contact dynamics (as the first of
them has become a paradigmatic example).
In fact, if we have a one-parameter group q′ = Qε(q, t) of transforma-
tions of Q such that its extension (q′ = Qε(q, t), v′ = Vε(v, t)) to TQ
leaves the Lagrangian L(q, v, t) invariant,

L(Qε(q, t), Vε(v, t)), t) = L(q, v, t).

Thus, for the infinitesimal generator X ∈ X(TQ)

X =
∂Qε(q, t)

∂ε

∣
∣
∣
∣
ε=0

∂

∂q
+

∂Vε(q, t)
∂ε

∣
∣
∣
∣
ε=0

∂

∂q
= a

∂

∂q
+

da

dt

∂

∂v

(q = (q1, ..., qn), etc.) the Euler–Lagrange equations ∂L/∂q = ∂/∂t
(∂L/∂v) makes the condition X(L) = a · ∂L/∂q + da/dt · ∂L/∂v = 0
into

d (XvL)
dt

= 0

where XV = a∂/∂v.
However, it soon became clear that the way of understanding the in-
variance of a Lagrangian system substantially altered the nature of the
conserved quantities
If the one-parameter transformation Qε(q, t) de Q produces a gage in-
variance in L, in the sense that there exists a function ψ(q, t) such that

L(Qε(q, t), Vε(q, t), t) +
dψ(Qε(q, t), t)

dt
= L(q, v, t)

(thus, L(q, v, t) and L′(q, v, t) = L(Qε(q, t), Vε(q, t), t) define identical
Euler–Lagrange equations), so a calculation similar to the previous one
shows that.

XvL + Xcψ

(where Xc = ai∂/∂qi) , is a conserved quantity for the system.
As a final situation, let us consider the case where τε is a one-parameter
group of transformations of Q × Rt,

q′ = Qε(q, t), v′ = Qε(q, t), t′ = τε(q, t)

such that its infinitesimal generator is

X = a
∂

∂q
+

da

dt

∂

∂v
+ ao

∂

∂t
.

A calculation proofs that as a consequence of the differential invariance
of the 1-form

L(q′, v′, t′)dt′ = L(q, v, t)dt,

we have the conservation law
XvL − aoEL

where EL is, as usual, the energy of the system.
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• This last issue must be addressed within the context of time-dependence
in contact Hamiltonian systems. It is a topic that warrants further re-
search and development. Here, we will outline some key advances and
milestones achieved so far. Following an excellent introduction in [5], the
authors of [26] delve deeper into the relationship between symmetries
and dissipated quantities in time-dependent contact Hamiltonian sys-
tems and they introduce new classes of symmetries for time-dependent
contact Lagrangian systems. In [35], the authors introduce a new geo-
metric structure called cocontact manifolds to describe time-dependent
contact systems. This study contributes to describing dissipative sys-
tems and paves the way for further advancements in understanding
time-dependent contact mechanics.

• Hamilton–Jacobi Theory holds deep significance when constructing con-
servation laws, bearing implications on the Liouville integrability of the
system. This is a topic that warrants attention beyond canonical sym-
plectic geometry, potentially including dissipated quantities. A possible
first encounter with the Hamilton–Jacobi formulation of contact Hamil-
tonian systems might be in the reference [5]. In particular, it is shown
that, as in the classical case, a complete solution to the Hamilton–Jacobi
PDE can be used to solve the contact Hamiltonian equations. Another
seminal article in this subject is [34], which focuses on finding solu-
tions for classical Hamiltonian systems that align with cosymplectic or
contact structures, thereby incorporating explicit time-dependence and
dissipative effects. A recent article, [39] explores the integrability of
contact Hamiltonian systems, including both time-dependent and inde-
pendent cases. It presents various Hamilton–Jacobi equations according
to specific contexts.

• As we conclude this article, let us propose revisiting one of our own
objectives by drawing attention to the result of Proposition 18, exposing
the dispersive nature of the quantity ηL(A∗) to specific problems.
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Departamento de Matemáticas Fundamentales
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