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A Novel Super-Convergent Numerical
Method for Solving Nonlinear Volterra
Integral Equations Based on B-Splines

M. Ghasemi, A. Goligerdian and S. Moradi

Abstract. We introduce and thoroughly examine a novel approach
grounded in B-spline techniques to address the solution of second-kind
nonlinear Volterra integral equations. Our method revolves around the
application of B-spline interpolation, incorporating innovative end con-
ditions, and delving into the associated existence and error estimation
aspects. Notably, we develop this technique separately for even and
odd-degree splines, leading to super-convergent approximations, par-
ticularly significant when employing even-degree splines. This paper ex-
tends its commitment to a comprehensive analysis, delving deeply into
the method’s convergence characteristics and providing insightful er-
ror bounds. To empirically validate our approach, we present a series of
numerical experiments. These experiments underscore the method’s effi-
cacy and practicality, showcasing numerical approximations that closely
align with the anticipated theoretical outcomes. Our proposed method
thus emerges as a promising and robust tool for addressing the chal-
lenging realm of nonlinear Volterra integral equations, bridging the gap
between theoretical expectations and practical applications.

Mathematics Subject Classification. 45Dxx, 65R20, 41A15.

Keywords. B-spline, Volterra integral equations, Super-convergence, Gauss–
Legendre quadrature.

1. Introduction

Integral equations is a branch of mathematics that deals with equations in
which an unknown function appears under an integral sign. These equations
arise in many areas of science and engineering, such as physics, chemistry,
biology, economics, signal processing, potential theory electrostatics and fluid
dynamics [1–12]. The theory of integral equations is an important tool for
understanding and solving complex problems in various fields of science and
engineering. Consider the second kind nonlinear Volterra integral equation
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u(x) =
∫ x

0

G (x, t, u(t)) dt + g(x), x ∈ [0, T ], (1.1)

where g and G are given functions. A large variety of numerical methods
have been developed to approximate the numerical solution of Volterra inte-
gral equations. In [13], the higher degree fuzzy transform technique is used for
the numerical solution of the second kind Volterra integral equations with sin-
gular and nonsingular kernels. A smoothing transformation technique based
on quasi-linearization and product integration methods has been used for the
numerical solution of nonlinear weakly singular Volterra integral equations
in [14]. A solution has been obtained in [15], using the fixed point technique
in the setting of dislocated extended b-metric space for the Volterra integral
equations. Xiao-yong [16] developed a high-order algorithm for the solution
of nonlinear Volterra integral equations with vanishing variable delays. The
algorithm was a nontrivial extension of single step methods. A Runge–Kutta
method based on the first kind Chebyshev polynomials has been developed
to approximate the solution of nonlinear stiff Volterra integral equations of
the second kind in [17]. In [18], a collocation method based on Chebyshev
polynomial interpolation is developed for the numerical solution of Volterra
integral equations of the second kind. This method used the roots of Cheby-
shev polynomial as collocation points. A lot of other numerical approaches
such as Chebyshev collocation method [19], Romberg extrapolation method
[20,21], iterated Galerkin method [22] and finite difference method [23] have
been used to approximate the numerical solution of Volterra integral equa-
tions of the second kind.

Using spline functions in the context of numerical solution of integral
equations dates back to 1970s. Hung [24], used spline function to approxi-
mate the solution of Volterra integral equations of the first and second kind.
He obtained a convergent scheme based on linear and quadratic spline. He
also proved that using cubic spline leads to divergent approximations. Tom
[25], developed an approximation based on spline function to approximate
the solution Volterra integral equations of the second kind. It is proved that,
splines of degree greater than two with maximum degree of smoothness lead
to unstable approximations for the solution of Volterra equations of the sec-
ond time. Tom [26], determined the conditions for stability of spline based
methods for the solution of Volterra integral equations. In [27], a C2-cubic
spline is used to approximate the solution of the Volterra integral equation
of the second kind but the question of stability does not answered. Kauthen
[28], developed a polynomial spline collocation method for the solution of an
integral-algebraic equations of the Volterra type. In successive papers [29–32],
Oja et al. discuss the stability and convergence of spline collocation method
for the solution of Volterra integral equations of the second kind. It is proved
that solving Volterra integral equations with step by step collocation using
m-th degree spline of class Cm−1[0, T ] leads to an unstable and divergent
approximations for m ≥ 3. In recent years, many researchers did attempt
to approximate the solution of second kind Volterra integral equations using
spline [33–37].
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In the current work, we endeavor to devise a novel approach anchored
in the collocation B-spline method, tailored to solve nonlinear Volterra inte-
gral equations of the second kind. Our methodology is meticulously designed,
taking into account both odd and even-degree splines, which are treated sep-
arately to harness their unique strengths. For odd degree splines, we collocate
the problem on the grid points of the uniform partition while the midpoints
of the partition are used for the even degrees. For m ≥ 2, some extra relations
are needed to uniquely determine the spline approximation. To construct such
extra relations, we collocate the problem at near boundary midpoints for odd
values of m and near boundary grid points for even values of m. At first, we
prove that such an spline is exist and we obtain the local error bounds for
interpolating sufficiently smooth functions. Then, we use the method to ap-
proximate the solution of nonlinear Volterra integral equations of the second
kind. It is proved that the method is super-convergent for even m.

The rest of the paper is organized as follows: In Sect. 2, we will introduce
a B-spline collocation method with new end conditions and we will obtain
some local error bounds to be used in the convergence analysis. In Sect.
3, we will construct our new approach based on proposed B-spline for the
solution of the nonlinear Volterra integral equations. Section 4 is devoted to
the convergence analysis and error bound of the method. In Sect. 5, we will
solve some problems to show the applicability and efficiency of the proposed
method.

2. B-Spline Collocation Method

B-splines are the splines with smallest compact support, which means that
the basis functions are non-zero only within a small interval or segment of
the domain. Such a property makes B-splines computationally efficient, as
the calculations can be localized to these smaller segments. B-splines form
a partition of unity, which means that their sum over the entire domain is
equal to one. This property allows for the construction of a global approx-
imation by combining local B-spline basis functions. Each basis function is
associated with a specific control point and only affects a small region of the
domain. By properly choosing the control points and their corresponding ba-
sis functions, it is possible to create a global approximation that accurately
represents the behavior of the solution throughout the domain. The partition
of unity property also ensures that the approximated solution satisfies im-
portant properties, such as conservation laws or boundary conditions. This
is crucial in many applications where physical laws or constraints need to
be preserved. The partition of unity and non-negativity of the B-spline basis
functions are equivalent to the affine invariance and the convex hull prop-
erties of B-spline curves. Meaning that, a B-spline curve is contained in the
convex hull of its control polyline. Consequently, as the interpolated function
u moves from a to b and crosses a knot, a basis function becomes zero and a
new non-zero basis function becomes effective. As a result, one control point
whose coefficient becomes zero will leave the definition of the current convex
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hull and is replaced with a new control point whose coefficient becomes non-
zero. One of the advantages of using B-splines for this purpose is their ability
to provide a smooth and continuous representation of the solution. This is
particularly important in the context of differential equations, where the so-
lution is often expected to be differentiable and exhibits certain smoothness
properties.

In what follows, we will provide a succinct overview of (cardinal) B-
spline functions and their properties. Afterward, we will introduce a novel
numerical scheme that utilizes the Gauss–Legendre quadrature method. This
scheme aims to numerically solve integral equations with high precision and
convergence. If you wish to delve deeper into the subject matter, we recom-
mend referring to references [38] and [39] for comprehensive information on
B-splines and Gauss–Legendre quadrature method.

Let Δ ≡ {0 = x0 < x1 < · · · < xn = T} be a uniform partition of the
interval [0, T ] with h = T

n as step size and Ω ≡ {
τi = xi − h

2

}n

i=1
be the set

of mid-points of Δ. Also let denote by Ii = [xi−1, xi), i = 1, . . . , n − 1 and
In = [xn−1, xn], the subintervals of the partition Δ. Given a positive integer
m < n, the space of piecewise polynomials of degree m is defined as

PΠm(Δ) ≡ {q : ∃pi ∈ Πm, i = 1, . . . , n, s.t. q(x) = pi(x),∀x ∈ Ii} ,

where Πm is the space of polynomials of degree m. Now for Δ and m defined
above the space of polynomial spline of degree m with the simple knots at
the points x0, x1, ..., xn can be defined as

SPm(Δ) ≡ PΠm(Δ) ∩ Cm−1[0, T ],

where Cm−1[0, T ] is the space of m− 1 time continuously differentiable func-
tions defined on [0, T ]. It is the smoothest space of piecewise polynomials of
degree m. Polynomial spline spaces are finite dimensional linear spaces with
very convenient bases. In the ongoing, following [38], we will introduce a basis
for SPm(Δ), which is compact support and defines a partition of unity.

Let us define the extended partition Δ̃ = {x̃i}n+2m
i=0 , associated with Δ

with the knots x̃i defined as

x̃0 ≤ · · · ≤ x̃m = 0, T = x̃n+m ≤ · · · ≤ x̃n+2m

and

x̃m+i = xi, i = 1, . . . n − 1.

It should be noted that the interior knots {x̃i}m+n
i=m are uniquely determined

while the first and last m points can be chosen arbitrarily. Let Δ̃ be the
extended partition associated with Δ and define

Bi(x) = (−1)m+1(x̃m+i+1 − x̃i) [x̃i, . . . , x̃m+i+1] (x − y)m
+ , 0 ≤ i ≤ n + m − 1

where (x − y)m
+ is the truncated power function

(x − y)m
+ =

{
(x − y)m x ≥ y
0 x < y

,

and the divided difference operator [x̃i, . . . , x̃m+i+1] (x−y)m
+ is defined in [38]

Definition 2.49. The set of functions {Bi(x), 0 ≤ i ≤ n + m − 1} forms a
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basis for the space of spline functions of SPm(Δ) which is compact support,
that is

Bi(x) = 0, x /∈ [x̃i, x̃i+m+1]

and

Bi(x) > 0, x ∈ (x̃i, x̃i+m+1).

Moreover, the basis functions form a partition of unity that is
n+m−1∑

i=0

Bi(x) = 1, ∀x ∈ [0, T ].

In another terminology using the cardinal spline function

Bm+1(x) =
1
m!

m+1∑
j=0

(−1)j

(
m + 1

j

)
(x − j)m

+ , (2.1)

the B-spline basis functions can be constructed as follows [40]

Bi(x) = Bm+1

(
x − x0

h
− i + 2

)
, i = 0, . . . , n + m − 1,

which means that

SPm(Δ) = span

{
Bm+1

(
x − x0

h
− i + 2

)
, i = 0, . . . , n + m − 1

}
.

Therefore, any spline s ∈ SPm(Δ) can be written in the following form

s(x) =
n+m−1∑

i=0

ciBm+1

(
x − x0

h
− i + 2

)
,

where ci, i = 0, ..., n + m − 1 are unknown coefficients to be determined. We
will define the interpolation conditions on the grid points and midpoints of
the partition for odd and even m, respectively. Let for f ∈ C[a, b], s(x)
satisfies the interpolatory conditions

s(τi) = f(τi), 1 ≤ i ≤ n, (2.2)

for even m, and
s(xi) = f(xi), 0 ≤ i ≤ n, (2.3)

for odd m.
As we know the dimension of SPm(Δ) is n+m, thus in order to uniquely

determine s(x), we need m−1 end conditions for odd m and m end conditions
for even m along with interpolatory conditions. To avoid the utilization of
derivatives of the solution at the initial point as additional conditions, we
introduce the following alternative end conditions:

s(xi) = f(xi), i ∈ {0, 1, . . . , δ} ∪ {n − δ, . . . , n}, (2.4)

for even m and

s(τi) = f(τi), i ∈ {1, . . . , σ} ∪ {n − σ + 1, . . . , n}, (2.5)

for odd m, where δ = [m−1
2 ] and σ = [m

2 ] ([ν] means the greatest integer
smaller than ν).
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To establish the well-defined nature of the spline interpolation intro-
duced above, it is necessary to refer to the following Theorem from [41],
which provides a sufficient condition for the unique solvability of the result-
ing system.

Theorem 2.1. The coefficients matrix A = (Bi(xj)) of the B-spline, interpo-
lating a function at the grid points xj is nonsingular if and only if all diagonal
elements Bi(xi) are nonzero.

At both the grid points and midpoint of the partition, the subsequent
Theorem presents a local error estimate for the aforementioned spline inter-
polation. Before, we need to recall the following Lemma from [42].

Lemma 2.1. Let A = {aij} be an n×n matrix with |aii| ≥ ∑n
j=1,j �=i |aij |+ ε,

1 ≤ i ≤ n, where ε > 0, then we have ‖A−1‖∞ < ε−1.

Theorem 2.2. Let s ∈ SPm(Δ) be the unique spline interpolation for f ∈
Cm+2[0, T ] satisfying interpolatory conditions (2.2)–(2.4) for even m or (2.3)–
(2.5) for odd m, then

s(xi) = f(xi) + O(hm+2), 0 ≤ i ≤ n, (2.6)

if m is even, and

s(τi) = f(τi) + O(hm+1), 1 ≤ i ≤ n, (2.7)

if m is odd.

Proof. We will prove the first relation, since the second one can be proved in
a similar manner. Consider the following consistency relation which connect
s(x) at the midpoints and grid points of the partition [40]

δ+1∑
j=−δ−1

lis(xi+j) =
δ+1∑

j=−δ

dis(τi+j), δ < i < n − δ, (2.8)

where

li = Bm+1

(
m +

1
2

− i

)
, di = Bm+1 (m − i) . (2.9)

Let us define the error function e(x) = s(x) − f(x). Subtracting
∑δ+1

j=−δ−1 li
f(xi+j) from both sides of (2.8), we have

δ+1∑
j=−δ−1

lis(xi+j) −
δ+1∑

j=−δ−1

lif(xi+j)

=
δ+1∑

j=−δ

dis(τi+j) −
δ+1∑

j=−δ−1

lif(xi+j), δ < i < n − δ.

which using the definition of e(x) the left hand side can be written as∑δ+1
j=−δ−1 lie(xi+j) and by the interpolatory conditions (2.2), s(τk) in the

right hand side can be replaced by f(τk) to obtain
δ+1∑

j=−δ−1

lie(xi+j) =
δ+1∑

j=−δ

dif(τi+j) −
δ+1∑

j=−δ−1

lif(xi+j), δ < i < n − δ.
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By the assumptions f ∈ Cm+2[0, T ], so M1 = max0≤x≤T |f (m+2)(x)| < ∞.
By expanding f in both terms in the right hand side of the relation above,
using Taylor series expansion about xi and simplifying we obtain

δ+1∑
j=−δ−1

lie(xi+j) = O(M1 hm+2) = O(hm+2), δ < i < n − δ. (2.10)

The system above contains n−m+1 equations with n+1 unknown e(xi), 0 ≤
i ≤ n. Using (2.4) and (2.10) together, we obtain the following (n + 1) × (n + 1)
system ⎧⎪⎨

⎪⎩
e(x0) = e(x1) = · · · = e(xδ) = 0,∑δ+1

j=−δ−1 lie(xi+j) = O(hm+2), δ < i < n − δ,

e(xn−δ) = · · · = e(xn−1) = e(xn) = 0.

(2.11)

Obviously, certain elements within the above system are zero. By eliminating
the unknowns corresponding to these zero elements, the size of the system
can be reduced. Consequently, the system can be reformulated in its matrix
form as shown below:

AE = O(hm+2) (2.12)
where

E = [e(xδ+1), e(xσ+2), . . . , e(xn−δ−1)]T

and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

lδ lδ+1 · · · lm
lδ−1 lδ · · · lm−1 lm

. . .
l0 l1 · · · lδ · · · lm−1 lm

. . .
l0 l1 · · · lδ · · · lm−1 lm

. . .
l0 l1 · · · lδ lδ+1

l0 l1 · · · lδ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.13)

According to Theorem 2.1, the coefficients matrix A is nonsingular if
all the diagonal elements are nonzero. Specifically, all the diagonal elements
of A are equal to lδ which possesses the following value

lδ = Bm+1

(
m +

1
2

− δ

)
.

Since m+ 1
2 −δ ∈ support(Bm+1) thus lδ �= 0 and the matrix A is nonsingular.

Therefore, from (2.12), we obtain

‖E‖ =
∥∥A−1

∥∥ O(hm+2). (2.14)

For m ≤ 6, the system is strictly diagonally dominant and using Lemma 2.1
we have

∥∥A−1
∥∥

∞ < 46 thus, obviously in this case the proof is complete.
Let m > 6, it can be readily verified that for each B-spline basis function,
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all li values are positive and
∑m

i=0 li = 1, so ‖A‖1 = 1 and ‖A‖∞ = 1. By
leveraging the properties of the B-spline basis function Bm+1, it results

li = lm−i, i = 0, . . . ,
m

2
,

thus, A is a symmetric matrix. On the other hand, the nonsingularity of A
implies that all of its eigenvalues are nonzero. Specifically, we have μ(A) �=
0, where μ represents smallest absolute of eigenvalue of A. Drawing upon
concepts from linear algebra, we have

‖A‖2 =
√

ρ(AT .A) = ρ(A) (2.15)

where ρ represents the largest absolute eigenvalue of A. On the other hand
using the Gershgorin’s Theorem, all eigenvalues λ of A must lie within the
Gershgorin’s discs

|λ − lδ| ≤
m∑

i=0,i �=δ

|li|

which results

−1 < lδ −
m∑

i=0,i �=δ

|li| ≤ λ ≤ lδ +
m∑

i=0,i �=δ

|li| = 1 ⇒ ρ(A) ≤ 1.

It is noteworthy that the numerical experiments show that for fixed m, by
varying n, we have ρ(A) �= 1 which means that ‖A‖2 < 1. Consequently,
based on the principles of linear algebra for symmetric matrices, we have

‖A‖2‖A−1‖2 =
ρ(A)
μ(A)

(2.16)

which means that ‖A−1‖2 cannot be infinite. Let denote by M2 the upper
bound of ‖A−1‖2 , then substituting into (2.14) we obtain

‖E‖∞ ≤ ‖E‖2 =
∥∥A−1

∥∥
2
O(hm+2) = M2O

(
hm+2

)
= O

(
hm+2

)
. (2.17)

This together with (2.4) complete the proof of (2.6). �

3. Numerical Method

In this section, we present a cutting-edge numerical methodology centered
around the innovative utilization of B-spline methods for solving integral
equations. The proposed approach offers a robust and computationally effi-
cient framework for tackling integral equations. By employing B-splines to
represent the unknown functions in the integral equation, we can construct a
concise and highly accurate representation, leading to a significant reduction
in computational effort while preserving solution accuracy. Throughout this
section, we detail the theoretical foundation, algorithmic implementation, and
numerical consideration of our B-spline-based method. We further substanti-
ate the effectiveness and superiority of our approach through comprehensive
examples including nonlinear integral equations in Sect. 5.
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The operator representation of the integral Eq. (1.1) can be illustrated as
follows

u(x) = Ku(x) + g(x), (3.1)
where K : Cm+1 → Cm+1 is a nonlinear integral operator in the following
form:

Ku(x) =
∫ x

0

G (x, t, u(t)) dt, x ∈ [0, T ]. (3.2)

Assuming the existence and uniqueness of the solution to Eq. (3.1), our ob-
jective is to employ an m-th degree B-spline of the following form

s(x) =
n+m−1∑

j=0

cjBm+1

(
x − x0

h
− j + 2

)
,

to approximate the solution.

3.1. Even Degree B-Spline

Let m be even. Upon replacing u(x) with s(x) in Eq. (3.1), we take the ap-
proach of collocating the obtained equation at the midpoints of the partition,
we have

s(τi) =
∫ τi

0

G (τi, t, s(t)) dt + g(τi), 1 ≤ i ≤ n. (3.3)

Then employing the B-spline basis functions at points τi, the Eq. (3.3) can
be expressed as

n+m−1∑
j=0

cjBm+1

(
τi − x0

h
− j + 2

)

=
∫ τi

0

G

⎛
⎝τi, t,

n+m−1∑
j=0

cjBm+1

(
t − x0

h
− j + 2

)⎞
⎠ dt + g(τi), (3.4)

for 1 ≤ i ≤ n. The system described above consists of n equations and
m + n unknowns. In order to ensure the unique determination of the spline
approximation, we require an additional m equations. To this end, we employ
the collocation equation at m boundary and near-boundary grid points in the
following manner

s(xi) =
∫ xi

0

G (xi, t, s(t)) dt + g(xi), i ∈ {0, 1, . . . , δ} ∪ {n − δ, . . . , n}. (3.5)

Upon utilizing the expressive B-spline basis functions, we can express Eq. (3.5)
as follows

n+m−1∑
j=0

cjBm+1

(
xi − x0

h
− j + 2

)

=
∫ xi

0

G

⎛
⎝xi, t,

n+m−1∑
j=0

cjBm+1

(
t − x0

h
− j + 2

)⎞
⎠ dt + g(xi), (3.6)

for i ∈ {0, 1, . . . , δ} ∪ {n − δ, . . . , n}. The relation (3.4) together with (3.6)
yields a system of n+m equations involving n+m unknowns cj , j = 0, . . . , n+
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m − 1, which must be diligently solved to define s(x). The solution to this
system will lead us to the desired approximation of the function s(x) using
proposed B-spline basis functions.

To effectively handle the integrals in (3.4) and (3.6), we employ the q-
point Gauss–Legendre quadrature method. This numerical integration tech-
nique is well-suited for accurately approximating integrals over specific in-
tervals by distributing q quadrature’s points in a way that optimally cap-
tures the underlying function’s behavior [39]. By introducing the notation
z(t) = G

(
τi, t,

∑n+m−1
j=0 cjBm+1

(
t−x0

h − j + 2
))

and change of variable, the
integrals in (3.4) can be reformulated as follows

Ii =

∫ τi

0

z(t)dt =

∫ τ1

0

z(t)dt +

∫ τi

τ1

z(t)dt

=
τ1
2

∫ 1

−1

z
(τ1

2
(η + 1)

)
dη +

i−1∑
r=1

τr+1 − τr

2

∫ 1

−1

z
(τr+1 − τr

2
η +

τr+1 + τr

2

)
dη.

Now by incorporating the Gauss–Legendre quadrature into our system of
equations, we can efficiently compute the unknown coefficients cj , ultimately
leading to a highly accurate approximation of s(x). We end up with

Ii =
τ1
2

q∑
k=1

ϑk z
(τ1

2
(ηk + 1)

)

+
i−1∑
r=1

τr+1 − τr

2

q∑
k=1

ϑk z

(
τr+1 − τr

2
ηk +

τr+1 + τr

2

)
, (3.7)

where ϑk and ηk represent the weights and abscissas associated with q-point
Gauss–Legendre integrating formula. In a same manner by introducing the
notation z̃(t) = G

(
xi, t,

∑n+m−1
j=0 cjBm+1

(
t−x0

h − j + 2
))

the integrals in
(3.6) can be approximated as follows

Ĩi =
∫ xi

0

z̃(t)dt =
i−1∑
r=0

xr+1 − xr

2

q∑
k=1

ϑk z̃

(
xr+1 − xr

2
ηk +

xr+1 + xr

2

)
.

(3.8)

3.2. Odd Degree B-Spline

For odd m, we collocate the problem at grid points of the partition as follows

n+m−1∑
j=0

cjBm+1

(
xi − x0

h
− j + 2

)

=
∫ xi

0

G

⎛
⎝xi, t,

n+m−1∑
j=0

cjBm+1

(
t − x0

h
− j + 2

)⎞
⎠ dt + g(xi), (3.9)
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for 0 ≤ i ≤ n. Obviously, the above system of equations requires m − 1 extra
relations to be uniquely solvable. In this case, the collocated problem

n+m−1∑
j=0

cjBm+1

(
τi − x0

h
− j + 2

)

=
∫ τi

0

G

⎛
⎝τi, t,

n+m−1∑
j=0

cjBm+1

(
t − x0

h
− j + 2

)⎞
⎠ dt + g(τi), (3.10)

can be utilized at the near boundary mid points of the partition for i ∈
{1, . . . , σ} ∪ {n − σ + 1, . . . , n}. It is worth noting that the integrals in (3.9)
and (3.10) can be approximated in the same manner as (3.7) and (3.8).

4. Convergence Analysis and Error Estimation

4.1. Spline Approximation Error

In this section, we embark on an in-depth exploration of the error estimation
and convergence rates pertaining to the scheme proposed within this paper.
Our objective is to rigorously assess the accuracy and convergence properties
of the introduced methodology. We constructed a collocation method based
on B-splines for the solution of

u = Ku + g (4.1)

where K is the Volterra integral operator (3.2). We will prove the convergence
for even degree splines and the proof is similar for odd degrees. Therefore, let
m be even, in order to achieve an error bound and analyze the convergence of
the proposed method, we define the operator Pnu : Cm+1 → SPm(Δ) such
that, for any function α ∈ Cm+1 we have⎧⎨

⎩
(Pnα)(xi) = α(xi), i = 0, 1, ..., δ,
(Pnα)(τi) = α(τi), 1 ≤ i ≤ n,
(Pnα)(xi) = α(xi), i = n − δ, ..., n.

(4.2)

Rewriting (3.3) and (3.5), we have

s(xi) =
∫ xi

0

G (xi, t, s(t)) dt + g(xi), i ∈ {0, 1, . . . , δ}

s(τi) =
∫ τi

0

G (τi, t, s(t)) dt + g(τi), 1 ≤ i ≤ n,

s(xi) =
∫ xi

0

G (xi, t, s(t)) dt + g(xi), i ∈ {n − δ, . . . , n}

which by means of operator Pn and (4.1) can be written in the operator form
as

Pns = PnKs + Png.

Also s ∈ SPm(Δ), thus Pns = s and we have

s = PnKs + Png. (4.3)
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Lemma 4.1. The operator Pn is uniformly bounded in Ck[0, T ].

Proof. Using [38], Theorem 6.22, for every α ∈ C[a, b], we have

‖Pnα‖
C[a,b] ≤ (2m)m‖α‖

C[a,b] ,

so Pn is uniformly bounded. �

Lemma 4.2. The sequence of operators Pn uniformly converges to identity
operator.

Proof. Let α ∈ C[0, T ], then according to Lebesgue Lemma, we have

‖Pnα − α‖ ≤ (1 + ‖Pn‖) inf
u∈Πm

‖α − u‖.

But the right hand side of the above inequality represents the error of best
approximation for α in Πm. Suppose that u∗ be the best approximation for
f then using Jackson’s Theorem in each interval [τi, τi+1] we have

sup
τi≤x≤τi+1

|α(x) − u∗(x)| ≤ 6ω

(
α,

h

2m

)
.

Thus we have

‖Pnα − α‖ ≤ 6(1 + ‖Pn‖)ω
(

α,
h

2m

)
→ 0,

and the proof is complete. �

In fact from Theorem 2.2 for α ∈ Cm+1[0, T ] we have

||Pnα − α|| = O(hm+1)

and if α ∈ Cm+2[0, T ], for even m we have the following local bound

|Pnα − α|
xi

= O(hm+2).

We will show that (4.3) has a unique solution that converges to the solution
of (4.1) and finally, we will obtain the rate of convergence. Let us restate the
following Theorem from [43].

Theorem 4.1. Suppose that operators T and Tn on the Banach space B can
be represented as

T = PK, Tn = PnK

where K is a nonlinear, completely continuous operator mapping B into an-
other Banach space B′ and P and Pn are continues linear operators taking
B′ into B. Suppose that the operator equation

w = PKw (4.4)

has a solution υ. A sufficient condition that υ be an isolated solution of (4.4)
in some sphere ‖ω − υ‖ ≤ μ (μ > 0) is that K be differentiable at the point υ
the homogeneous equation

w − PK ′(υ)w = 0, (4.5)
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has only the trivial solution w = 0. Suppose further that the sequence of
operators Pn converges strongly to the operator P , then the equation

w = Tnw (4.6)

has a solution υn satisfying ‖υn − υ‖ ≤ μ for all sufficiently large n, υn → υ
as n → ∞, and the rate of convergence is bounded by

‖υn − υ‖ ≤ M ′‖(Pn − P )Kυ‖ (M ′ = constant). (4.7)

Proof. See [43]. �

Theorem 4.2. Let for even m, u ∈ Cm+1[a, b] and s ∈ SPm(Δ) be the exact
and spline solutions of problem (1.1), respectively. If s is obtained by (3.4)–
(3.6), then it converges to u as n tends to infinity and for some constant C,
we have

‖s − u‖ ≤ C hm+1, h → 0.

Also, if u ∈ Cm+2[a, b], the following local error bound holds

|s − u|xi
= O

(
hm+2

)
, xi ∈ Δ.

Proof. Since Pn → I thus we have PnK → K and the assumptions of Theo-
rem 4.1 are satisfied. Hence, the collocation equation

s = PnKs + Png

has a solution s for which ‖s − u‖ → 0. Also, using Theorem 4.1 we have the
following bound

‖sn − u‖ ≤ M ′ ‖(Pn − I)Ku‖ . (4.8)
where M ′ is some finite constant. On the other hand, we have

‖Png − g‖ = O(hm+1)

which combining with complete continuity of K gives

‖s − u‖ = O(hm+1).

Also since |Png − g|xi
= O(hm+2), it results that

|s − u|xi
= O(hm+2), xi ∈ Δ.

�

4.2. Effect of Quadrature Rule on Error

We used a q-point Gauss–Legendre quadrature method to approximate inte-
grals arose in the collocation system. It is well known that the error associated
with q-point Gauss–Legendre quadrature for f ∈ C2q[a, b] is bounded by [44]

E(f) =
(b − a)2n+1(n!)4

(2n + 1)(2n!)3
f (2q)(θ), a < θ < b.

Since we used quadrature in each subinterval thus b− a ≤ h. Having that for
q in range, the term (n!)4

(2n+1)(2n!)3 remains bounded, thus

E(f) = O(h2q+1),
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for small q. On the other hand, we proved that the error of the collocation
system is O(hm+1) for odd m and O(hm+2) for even m. Thus, q should be
chosen such that it satisfies{

2q + 1 ≥ m + 1, odd m,
2q + 1 ≥ m + 2, even m.

While the Newton-Cotes quadrature can be employed to approximate inte-
grals in the collocation system, it is worth noting that its accuracy is inferior
to Gauss quadrature method. Consequently, a greater number of quadrature
nodes will be required for satisfactory results.

5. Some Test Problems

In this section, we solve some test problems of second kind Volterra integral
equations to show the applicability of the proposed method,. Two examples
with smooth kernel and one with non-smooth kernel are solved. The acquired
results are compared with various existing methods to demonstrate the effi-
cacy of our approach. The maximum absolute errors and the experimental
orders of convergence are presented in Tables 1, 2, 3, 4, 5, 6, 7. The experi-
mental orders are calculated by

Order =
log

(
En1
En2

)

log
(

n2
n1

)

where En denotes the maximum absolute error obtained with n+1 collocation
points. All the programs are written in Mathematica 12, and run on a system
with Intel Core i7-2670 2.20 GHz and 8 GB of RAM.

Example 5.1. As first test problem consider the linear second kind Volterra
integral equation

u(x) = λ̄

∫ x

0

u(t)dt + f(x), x ∈ [0, 1],

with the exact solution u(x) = 1
2 (sin(x) + cos(x) + ex), where λ̄ is a constant

parameter. In [30] and [31], it is show that step-by-step spline collocation
procedure based on quadratic and cubic spline may diverge for some choices of
collocation parameters. It is shown that the nonlocal approach based on spline
can be better comparing to step-by-step algorithm. Here, we solve the test
problem for various values of λ̄ using quadratic and cubic spline approach and
compared the results with splines in [30] and [31]. The results are tabulated
in Tables 1 and 2. It is obvious that using our approach more accurate results
can be achieved. Also, the method is stable and the solution remains bounded.
We also run the problem in larger domain [0, 5] and tabulated the results in
Table 3. The results show that the method is still accurate and remains stable
in larger domains.
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Table 1. Maximum absolute errors using quadratic spline,
m = 2 for example 5.1 in [0,1]

Step-by-step ([31]) n = 4 n = 8 n = 16 n = 32 n = 64

λ̄ = −2 3.28(−3) − 98.02 − 1.1(+27)
λ̄ = −1 2.59(−3) − 76.56 − 8.5(+26)
λ̄ = 1 1.46(−3) − 45.99 − 5.1(+26)
λ̄ = 2 1.02(−3) − 35.36 − 4.0(+26)
Nonlocal ([31])
λ̄ = −2 3.27(−3) − 6.27(−5) − 1.02(−6)
λ̄ = −1 3.11(−3) − 6.18(−5) − 1.02(−6)
λ̄ = 1 2.77(−3) − 5.99(−5) − 1.01(−6)
λ̄ = 2 2.60(−3) − 5.91(−5) − 1.01(−6)
Our Method
λ̄ = −2 3.72(−5) 2.40(−6) 1.54(−7) 9.76(−9) 6.14(−10)
λ̄ = −1 4.74(−5) 3.07(−6) 1.96(−7) 1.24(−8) 7.81(−10)
λ̄ = 1 9.46(−5) 6.72(−6) 4.48(−7) 2.89(−8) 1.83(−09)
λ̄ = 2 1.47(−4) 1.18(−5) 8.35(−7) 5.55(−8) 3.58(−09)

Table 2. Maximum absolute errors using cubic spline, m = 3
for example 5.1 in [0,1]

Cubic spline [30] n = 4 n = 8 n = 16 n = 32 n = 64

λ = 2 1.65(−4) − 6.81(−7) − 2.70(−9)
λ = −1 1.94(−4) − 8.83(−7) − 3.48(−9)
Our Method
λ = 2 2.09(−5) 2.12(−6) 1.57(−7) 1.06(−8) 6.88(−10)
λ = −1 3.90(−6) 3.00(−7) 2.01(−8) 1.29(−9) 8.23(−11)

Table 3. Maximum absolute errors using cubic spline, m = 3
for example 5.1 in [0,5]

Quadratic spline n = 16 n = 32 n = 64 n = 128 n = 256

λ = −2 1.44(00) 9.66(−2) 6.20(−3) 3.92(−4) 2.46(−5)
λ = −1 1.91(−2) 1.43(−3) 9.80(−5) 6.40(−6) 4.09(−7)
λ = 1 3.30(−3) 2.39(−4) 1.61(−5) 1.04(−6) 6.64(−8)
λ = 2 2.59(−3) 1.89(−4) 1.28(−5) 8.33(−7) 5.31(−8)
Cubic spline
λ = −2 1.95(00) 2.32(−2) 1.63(−3) 1.07(−4) 6.96(−6)
λ = −1 4.84(−3) 3.37(−4) 2.20(−5) 1.41(−6) 8.90(−8)
λ = 1 3.97(−4) 2.77(−5) 1.81(−6) 1.16(−7) 7.32(−9)
λ = 2 5.52(−4) 3.80(−5) 2.46(−6) 1.56(−7) 9.83(−9)
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Table 4. Number of collocation points to obtain the toler-
ance with m = 3 for example 5.2

Error [45], Meth. 1 [45], Meth. 2 [45], Meth. 3 [46] Our Meth.

10−9 110 74 45 110 28
10−11 350 234 130 350 91
10−13 850 739 400 − 301

Example 5.2. Consider the following nonlinear second kind Volterra integral
equation

u(x) = φ(x, u(x))
∫ x

0

Φ(x, t, u(t))dt + f(x), x ∈ [0, 1],

where Φ(x, t, u(t)) = xt+u(t) and φ(x, t, u(x)) = x
1+x ln(1+u(x)). The exact

solution is u(x) = 1
10x10. The problem is already solved using cubic spline

[45] and a method based on mean-value Theorem [46]. We solved the problem
using cubic spline approach. The number of collocation points for reaching
the tolerance are tabulated in Table 4. Obviously, our method may require
fewer collocation points comparing to the existing methods.

Example 5.3. Consider the following second kind singular cordial Volterra
integral equation

u(x) =
∫ x

0

x−1ϕ
( t

x

)
u(t)dt + f(x), x ∈ [0, 1],

with ϕ(t/x) = (t/x)ξ−1 and ξ > 0. In [43], for ϕ ∈ L1[0, 1], it is proved that
Vϕ ∈ L(Cm) where Vϕ is the cordial integral operator

Vϕ =
∫ x

0

x−1ϕ
( t

x

)
u(t)dt

and L(Cm) is the space of linear bounded operators from Cm to Cm. So the
new approach can be used successfully without any modifications.

We solved this problem for various kinds of exact solutions. The problem
is solved for ξ = 3

2 using various degrees of splines and maximum absolute
errors and orders of convergence are tabulated in tables 4-7. Based on The-
orem 4.2, the order of convergence depends on the regularity of the exact
solution. The results in tables 4-7 verify the theoretical results as well. Also,
it is obvious that using even degree splines we obtain super-convergent ap-
proximations.

Example 5.4. Consider the following nonlinear second kind Volterra integral
equation

u(x) =
∫ x

0

3 sin(t − x)u2(x)dt + 1 + sin2(x), x ∈ [0, T ],

with the exact solution u(x) = cos(x). The problem is already solved by a
cubic spline method with standard end conditions in [47]. In Table 9, we
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Table 5. Maximum absolute errors for example 5.3 with
u(x) = x3 + x3.5

n m = 1 Order m = 2 Order m = 3 Order m = 4 Order

8 1.00(−2) 1.69(−4) 4, 98(−6) 6.94(−07)
16 2.65(−3) 1.92 1.78(−5) 3.24 4.40(−7) 3.50 6.13(−08) 3.50
32 6.75(−4) 1.97 1.94(−6) 3.20 3.89(−8) 3.50 5.42(−09) 3.50
64 1.69(−4) 1.99 2.17(−7) 3.16 3.44(−9) 3.50 4.79(−10) 3.50

Table 6. Maximum absolute errors for example 5.3 with
u(x) = x4 + x4.5

n m = 1 Order m = 2 Order m = 3 Order m = 4 Order

8 1.29(−2) 3.03(−4) 2.60(−5) 8.23(−08)
16 3.26(−3) 1.98 1.97(−5) 3.94 1.87(−6) 3.80 3.63(−09) 4.50
32 8.17(−4) 1.99 1.25(−6) 3.97 1.25(−7) 3.89 1.60(−10) 4.50
64 2.04(−4) 1.99 7.96(−8) 3.98 8.19(−9) 3.93 7.09(−12) 4.49

Table 7. Maximum absolute errors for example 5.3 with
u(x) = x5 + x5.5

n m = 1 Order m = 2 Order m = 3 Order m = 4 Order

8 1.54(−2) 8.64(−4) 5.47(−5) 1.91(−06)
16 3.87(−3) 1.99 5.83(−5) 3.88 3.73(−6) 3.87 4.72(−09) 5.34
32 9.68(−4) 1.99 3.78(−6) 3.94 2.41(−7) 3.94 1.19(−09) 5.30
64 2.42(−4) 1.99 2.40(−7) 3.97 1.53(−8) 3.97 3.12(−11) 5.25

Table 8. Maximum absolute errors for example 5.3 with
u(x) = x6 + x6.5

n m = 1 Order m = 2 Order m = 3 Order m = 4 Order

8 1.79(−2) 1.93(−3) 8.72(−5) 7.02(−06)
16 4.49(−3) 1.99 1.37(−4) 3.80 6.28(−6) 3.79 1.15(−08) 5.92
32 1.12(−3) 1.99 9.19(−6) 3.90 4.17(−7) 3.91 1.85(−09) 5.96
64 2.81(−4) 1.99 5.92(−7) 3.95 2.67(−8) 3.96 2.93(−11) 5.98

compared the results obtained by our cubic spline method (m = 3) with
those reported in [47]. It is obvious that our results are more accurate than
the standard cubic spline. Also, we solved the problems in the larger domain
[0, T ], T = 2, 3, 4, 5, and tabulated the maximum absolute errors in Table 10.
The results show that the method is applicable for larger domains as well.
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Table 9. Absolute errors using cubic spline, m = 3 for ex-
ample 5.4 in [0,1]

Error Our Method [47] Our Method [47] Our Method [47]

n=10 n=10 n=20 n=20 n=40 n=40

0.1 1.63(− 9) 1.01(− 5) 3.12(− 11) 1.59(− 6) 8.66(− 12) 2.10(− 7)
0.2 2.01(− 9) 2.48(− 5) 5.46(− 10) 3.26(− 6) 4.82(− 11) 4.19(− 7)
0.3 1.42(− 8) 3.65(− 5) 1.52(− 09) 4.72(− 6) 1.15(− 10) 5.99(− 7)
0.4 3.21(− 8) 4.61(− 5) 2.86(− 09) 5.87(− 6) 2.04(− 10) 7.39(− 7)
0.5 5.66(− 8) 5.26(− 5) 4.46(− 09) 6.63(− 6) 3.08(− 10) 8.32(− 7)
0.6 8.38(− 8) 5.59(− 5) 6.18(− 09) 6.98(− 6) 4.17(− 10) 8.72(− 7)
0.7 1.14(− 7) 5.58(− 5) 7.88(− 09) 6.92(− 6) 5.23(− 10) 8.61(− 7)
0.8 1.39(− 7) 5.28(− 5) 9.46(− 09) 6.47(− 6) 6.20(− 10) 8.02(− 7)
0.9 1.51(− 7) 4.65(− 5) 1.08(− 08) 5.70(− 6) 7.00(− 10) 7.02(− 7)

Table 10. Maximum absolute errors for example 5.4 in dif-
ferent intervals [0, T ]

n [0, 2] Order [0, 3] Order [0, 4] Order [0, 5] Order

8 8.07(−06) 2.43(−4) 8.38(−3) 7.51(−2)
16 4.93(−07) 4.03 1.02(−5) 4.56 3.63(−4) 4.52 3.61(−3) 4.37
32 3.13(−08) 3.97 4.72(−7) 4.44 1.65(−5) 4.45 1.60(−4) 4.49
64 1.97(−09) 3.98 2.40(−8) 4.29 8.41(−7) 4.30 7.91(−6) 4.34
128 1.22(−10) 3.99 1.32(−9) 4.17 4.63(−8) 4.18 4.27(−7) 4.21

6. Conclusion

The paper has been concerned with the application of B-splines for the so-
lution of second kind Volterra integral equations. It is already known from
literature that using splines with maximum order of regularity for the solution
of second kind Volterra integral equations may lead to unstable approxima-
tions depend on the choice of collocation parameters [30,31]. We developed
a method based on B-splines for the second kind nonlinear Volterra integral
equations which uses the grid points and mid points of the uniform partition
as collocation points. The method is stable and convergent. Also, we found a
super-convergence using even degree splines. We used the method for some
test problems for which the step-by-step and nonlocal spline approaches are
unstable. It is obvious from the obtained results that the method efficient and
the theory is supported by numerical experiments as well. It is noteworthy
that the method presented in this paper can be readily applied for approxi-
mating solutions to Fredholm integral equations, as well as integro-differential
equations.
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