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On the Dω-Classical Orthogonal
Polynomials
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Dedicated to Pascal MARONI on occasion of his 90th birthday.

Abstract. We investigate the Dω-classical orthogonal polynomials, where
Dω is the weighted difference operator. So, we address the problem
of finding the sequence of orthogonal polynomials such that their Dω-
derivatives is also orthogonal polynomials. To solve this problem we
adopt a different approach to those employed in this topic. We first begin
by determining the coefficients involved in their recurrence relations,
and then providing an exhaustive list of all solutions. When ω = 0, we
rediscover the classical orthogonal polynomials of Hermite, Laguerre,
Bessel and Jacobi. For ω = 1, we encounter the families of discrete
classical orthogonal polynomials as particular cases.
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1. Introduction and Preliminary Results

The orthogonal polynomials are characterized by the fact that they satisfy a
second-order recurrence relation. They said to be classical if their derivatives
also form a sequence of orthogonal polynomials [11]. Hahn generalized the
classical orthogonal polynomials by generalizing their characteristic proper-
ties (see [2,6] for more details). For this, he considered the linear operator
[12]

(Hq,ωf) (x) :=
f(qx + ω) − f(x)

(q − 1)x + ω
, (1.1)

for all polynomial f , with q and ω are two fixed complex numbers.
Hahn showed that there is no loss of generality in assuming ω to be zero

so that in what follows q may be thought of as 1 or different to 1. For q �= 1
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and ω = 0, we obtain the q-difference operator (also known as the Jackson’s
q-operator) which we write (Dqf) (x) := (Hq,0f) (x). When q = 1 with ω �= 0
we get the discrete operator (Dωf) (x) := (H1,ωf) (x), that is,

(Dωf) (x) =
f(x + ω) − f(x)

ω
. (1.2)

Unless otherwise stated we assume that ω ∈ C.
The limiting case ω → 0 (resp. q → 1) of Dω (resp. Dq) gives rise to

the derivative operator D = d/dx, giving (Df)(x) := f ′(x). Because it is
always possible to take such a limit, this point is not really important at this
time. It will be dealt with a little bit later when necessary. Obviously, if we
take ω = 1 in (1.2), we recover the finite (or forward) difference operator
Δf(x) = f(x + 1) − f(x).

Motivated by the several properties common to all of the classical or-
thogonal polynomials, Hahn [12] posed and solved five (equivalent) problems
that are related to the operator Dq and obtained that all possible solutions
lead to the same orthogonal polynomial sequences (OPS) which are the so-
called classical q-orthogonal polynomials. Later on, the study of such polyno-
mials has known an increasing interest (see for instance [14] and the references
therein).

The first problem studied by Hahn is the following:
Find all OPS {Pn}n�0 such that {DqPn}n�0 is also an OPS.
For more details about solutions of these problems we refer the reader

to [2,6,11,13].
In [8] Douak and Maroni considered the problem of finding all OPS

such that their D-derivatives are also OPS. Instead of basing the study of
this problem on the various properties of orthogonal polynomials, the au-
thors have rather founded their exposures in a purely algebraic point of view,
focusing primarily on the explicit calculation of recurrence coefficients. The
identified polynomials are none other than the classical orthogonal polyno-
mials of Hermite, Laguerre, Jacobi and Bessel with the usual restrictions on
the parameters.

Referring back to the operator Dω, we will pose the analogous problem:
(P) Find all OPS {Pn}n�0 such that {DωPn}n�0 are also OPS.
When Dω is replaced by the operator Δ, the analogous problem was

solved by Lancaster [15] by considering a second order difference equation
of the Sturm–Liouville type (see [2] for more details). He obtained that the
eigenfunctions of the related difference operator are the discrete orthogonal
polynomials. Later Lesky in [16,17] stated the same conclusion.

Note that in this field a general method of studying the classical or-
thogonal polynomials of a discrete variable as solutions of a second-order
difference equation of hypergeometric type was considered by Nikiforov et
al. [23]. On the other hand, by introducing a new matrix approach using the
basic algebraic properties of the matrices, Verde-Star [27] solved similar prob-
lems by looking for sequences of orthogonal polynomials possessing Hahn’s
property.
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This work is mainly intended to constructing the Dω-classical orthogo-
nal polynomials by proceeding as in [8]. Such approach is rather new and, of
course, different to those previously used in several studies dedicated to this
topic (see for instance [1,10,11,23] and the references therein). After deter-
mining the recurrence coefficients explicitly, we proceed to the identification
of the resulting polynomials. Under some restrictions on the parameters, we
establish that these polynomials can be reduced to one of the well-known
families of discrete classical orthogonal polynomials.

Similar method was also used within the d-orthogonality context (d � 1)
to provide many extensions of the classical orthogonal polynomials (see, e.g.,
[7–9,18] and the references therein). The same approach used in the Dunkl
context, namely, when the ordinary derivative D (or Dω) is replaced by the
Dunkl operator, also gives interesting results, as will be published elsewhere.

In an earlier survey, Abdelkarim and Maroni [1] investigated the prob-
lem (P) according to a functional approach. The authors had established
various equivalent properties characterizing the resulting polynomials. Par-
ticularly, they showed that those polynomials satisfy the so-called functional
Rodrigues’s formula (1.14). Based on this last characterization, up to linear
transformation of the variable, they found that there are four classes of Dω-
classical orthogonal sequences satisfying Rodrigues’s formula, including the
Charlier, Meixner, Krawchuk and Hahn polynomials as special cases of them.

Let P be the vector space of polynomials of one variable with complex
coefficients and let P ′ be its algebraic dual. We denote by

〈
., .

〉
the duality

brackets between P ′ and P. By {Pn}n�0 we denote a polynomials sequence
(PS), deg Pn = n, and {un}n�0 its associated dual sequence (basis) defined
by

〈
un, Pm

〉
= δnm; n,m � 0, where δnm is the Kronecker’s delta symbol.

The first element u0 of the dual sequence is said to be the canonical
form associated to the PS {Pn}n�0. Throughout this article, we will always
consider the sequence of monic polynomials, i.e., the leading coefficient of
each polynomial Pn is one (Pn(x) = xn + · · · ).

Given a form u ∈ P ′. The sequence of complex numbers (u)n, n =
0, 1, 2, . . . , defined by (u)n := 〈u, xn〉 denotes the moments of u with respect
to the sequence {xn}n�0. The form u is called regular (or quasi-definite) if
we can associate with it a PS {Pn}n�0 such that

〈u, PnPm〉 = knδn,m, n,m � 0 ; kn �= 0, n � 0.

In this case {Pn}n�0 is an orthogonal polynomials sequence (OPS) with
respect to (w.r.t.) u. As an immediate consequence of the regularity of u, we
have (u)0 �= 0 and u = λu0 with λ �= 0. Furthermore, the elements of the
dual sequence {un}n�0 are such that

un =
(〈

u0, P
2
n

〉)−1
Pnu0, n = 0, 1, 2, . . . . (1.3)

So, in all what follows, we consider the orthogonality of any PS w.r.t.
its canonical form u0.

First, let us introduce the two operators ha and τb defined for all f ∈ P
by

(haf)(x) = f(ax) and (τbf)(x) = f(x − b), a ∈ C
∗ := C\{0}, b ∈ C.
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(1.4)

On the other hand, for any functional u, we can write by transposition

〈τ−bu, f(x)〉 := 〈u, τbf(x)〉 = 〈u, f(x − b)〉 , f ∈ P, (1.5)
〈hau, f(x)〉 := 〈u, haf(x)〉 = 〈u, f(ax)〉 , f ∈ P. (1.6)

For further formulas and other properties fulfilled by the operator Dω

see [1].
We now consider the sequence of monic polynomials {Qn(x)}n � 0

defined by {Qn(x) := (n + 1)−1DωPn+1(x)}n�0, with its associated dual
sequence denoted by {vn}n�0 and fulfilling

D−ω (vn) = −(n + 1)un+1, n � 0, (1.7)

where by definition

〈D−ωu , f〉 = −〈u , Dωf〉 , u ∈ P ′, f ∈ P. (1.8)

Next, in the light of the so-called Hahn property [11], we give the fol-
lowing definition.

Definition 1.1. The OPS {Pn}n�0 is called “Dω-classical” if the sequence of
its derivatives {Qn}n�0 is also a OPS.

Thus, {Pn}n�0 is orthogonal w.r.t. u0 and satisfies the second-order
recurrence relation

Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1Pn(x), n � 0, (1.9a)
P1(x) = x − β0, P0(x) = 1, (1.9b)

and {Qn}n�0 is orthogonal w.r.t. v0 and satisfies the second-order recurrence
relation

Qn+2(x) = (x − β̃n+1)Qn+1(x) − γ̃n+1Qn(x), n � 0, (1.10a)

Q1(x) = x − β̃0, Q0(x) = 1, (1.10b)

with the regularity conditions γn �= 0 and γ̃n �= 0 for every n � 1.
Finally, we will summarize in the following proposition the important

properties characterizing the Dω-classical orthogonal polynomials as stated
in [1, Propositions 2.1−2.3].

Proposition 1.2. For any OPS {Pn}n�0, the following are equivalent state-
ments:

(a) The sequence {Pn}n�0 is Dω-classical.
(b) The sequence {Qn}n�0 is orthogonal.
(c) There exist two polynomials Φ monic (with deg Φ = t � 2) and Ψ

(with deg Ψ = 1), and a sequence {λn}n�0, λn �= 0 for all n, such that

Φ(x) (Dω ◦ D−ωPn+1) (x) − Ψ(x) (D−ωPn+1) (x) + λnPn+1(x) = 0, n � 0.

(1.11)
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(d) The sequences {Qn}n�0 and {Pn}n�0 are interlinked via the differenti-
ation formula

Φ(x)Qn(x) = α2
n+2Pn+2(x) + α1

n+1Pn+1(x) + α0
nPn(x), n � 0, (α0

n �= 0).
(1.12)

This identity is referred to as the first structure relation of the OPS
{Pn}n�0.

(e) The form u0 is Dω-classical, say, it is regular and satisfies the functional
equation

D−ω (Φu0) + Ψu0 = 0. (1.13)

(f) There exist a monic polynomial Φ, deg Φ � 2, and a sequence {λn}n�0,
λn �= 0 for all n, such that the canonical form u0 satisfies the so-called
functional Rodrigues formula

Pnu0 = λnDn
−ω

{( n−1∏

ν=0

τ−νωΦ
)
u0

}
, n � 0, with

−1∏

ν=0

:= 1. (1.14)

It is worth noting that the structure relation (1.12) was also explained
in [21, Proposition 4.5] in a more general setting, namely that of the Dω-semi-
classical case. Here we will add a new characterization to those established in
the preceding proposition. This will be proved once we give the lemma below.
To begin with, apply the operator Dω to (1.9a)–(1.9b), taking into account
(1.10a)–(1.10b), we obtain

Pn+2(x) = Qn+2(x) + α̃1
n+1Qn+1(x) + α̃0

nQn(x), n � 0, (1.15a)

P1(x) = Q1(x) + α̃1
0, P0(x) = Q0(x) = 1. (1.15b)

We refer to the above relation as the second structure relation of the
polynomials Pn, n � 0. This will be instrumental in Sect. 2 to derive the
system connecting the coefficients α2

n+2, α1
n+1 and α0

n, for n � 0, and the
pair of recurrence coefficients (βn, γn).

Combining (1.15a)–(1.15b) with (1.9a)–(1.9b) and then use (1.10a)–
(1.10b), we infer that

α̃1
n = (n + 1)(βn+1 − β̃n − ω) and α̃0

n = (n + 1)γn+2 − (n + 2)γ̃n+1, n � 0.

(1.16)

Reminder that, for the classical orthogonal polynomials (ω = 0), the first
structure relation was given by Al Salam and Chihara [3], and the second one
was established by Maroni [20].

When Dω is replaced by the finite difference operator Δ, Garcia et al.
[10] proved that the structure relations (1.12) and (1.15a)–(1.15b), as well
as the functional Rodrigues formula (1.14) characterize the discrete classical
polynomials of Charlier, Meixner, Krawchuk and Hahn.

We will now return to the operator Dω and show that (1.15a)–(1.15b)
also characterize the Dω-classical orthogonal polynomials. To do so, we need
the following lemma.
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Lemma 1.3. ([19]) Let {Pn}n�0 be a sequence of monic polynomials and let
{un}n�0 be its associated dual sequence. For any linear functional u and
integer m � 1, the following statements are equivalent:

(i) 〈u , Pm−1〉 �= 0 ; 〈u , Pn〉 = 0, n � m;
(ii) ∃ λν ∈ C, 0 � ν � m − 1, λm−1 �= 0, such that u =

∑m−1
ν=0 λνuν .

Proposition 1.4. Let {Pn}n�0 be an OPS satisfying (1.9a)–(1.9b). The se-
quence {Pn}n�0 is Dω-classical if and only if it fulfils (1.15a)–(1.15b).

Proof. The proof is similar in spirit to that of [10, Proposition 2.10]. The
necessary condition has already been shown. Conversely, suppose that the
OPS {Pn}n�0 fulfils (1.15a) with (1.15b).

The action of the functional v0 on both sides of the aforementioned
identities gives rise to

〈v0 , P0〉 = 1, 〈v0 , P1〉 = α̃1
0 〈v0 , P2〉 = α̃0

0 and 〈v0 , Pn〉 = 0, for n � 3.

Application of Lemma 1.3 shows that

v0 = λ0u0 + λ1u1 + λ2u2, (1.17)

with λ0 = 1, λ1 = α̃1
0 = β1 − β̃0 − ω and λ2 = α̃0

0 = γ2 − 2γ̃1.
Now, the use of (1.3) enables us to write u1 =

(〈
u0, P

2
1

〉)−1
P1u0 and

u2 =
(〈

u0, P
2
2

〉)−1
P2u0.

In (1.17) we replace u1 and u2 by their respective expressions given
above, to deduce that there exists a polynomial Φ, with deg Φ � 2, such that
v0 = Φu0.

On the other hand, setting n = 0 in (1.7), it follows immediately that

D−ω (v0) = −u1 = − (〈
u0, P

2
1

〉)−1
P1u0 := −Ψu0.

Combining these last results, we deduce that

D−ω (Φu0) + Ψu0 = 0, with deg Φ � 2 and deg Ψ = 1.

By Proposition 1.2, we easily conclude that the orthogonal polynomials
sequence {Pn}n�0 is Dω-classical, and the proof is complete. �

At the end of this section, let us remember the definition of the shifted
polynomials denoted {P̂n}n�0 corresponding to the PS {Pn}n�0. For all
n, n = 0, 1, . . . , we have

P̂n(x) := â−nPn(âx + b̂), for (â; b̂) ∈ C
∗ × C. (1.18)

Since the classical character of the considered polynomials is preserved
by any linear change of the variable, for the OPS {Pn}n�0 satisfying (1.9a)–
(1.9b), we obtain that the polynomials P̂n, n = 0, 1, . . ., satisfy also the second-
order recurrence relation

P̂n+2(x) = (x − β̂n+1)P̂n+1(x) − γ̂n+1P̂n(x), n � 0, (1.19a)

P̂1(x) = x − β̂0, P̂0(x) = 1, (1.19b)

with

β̂n =
βn − b̂

â
, n � 0, and γ̂n+1 =

γn+1

â2
, n � 0 (â �= 0). (1.20)
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Furthermore, from (1.5)–(1.6) we readily see that (1.18) becomes
P̂n(x) = â−n

(
hâ ◦ τ−b̂Pn

)
(x).

In addition, if u0 is Dω-classical, then Eq. (1.13) leads to

D− ω
â

(
Φ̂û0

)
+ Ψ̂û0 = 0, (1.21)

where Φ̂(x) = â−tΦ(âx + b̂), Ψ̂ = â1−tΨ(âx + b̂) and û0 = (hâ−1 ◦ τ−b̂)u0.
The paper is organized as follows. In the next section we pose and solve

two nonlinear systems. The first and most fundamental one relates the re-
currence coefficients βn, γn+1 with β̃n, γ̃n+1. The second system combines
the coefficients αi

n, i = 0, 1, 2 ; α̃j
n, j = 0, 1, β̃n and γ̃n+1 with those of the

polynomial Φ (Proposition 2.2). This allows to express the coefficients αi
n, in

terms of βn or γn+1. In Sect. 3, we investigate the four canonical families of
Dω-classical orthogonal polynomials which we identify after assigning partic-
ular values to the free parameters. The last section is devoted to the sequences
of higher order derivatives. We give, principally, the explicit expressions of
their recurrence coefficients in terms of the coefficients

(
βn, γn+1

)
n∈N

.
When ω = 0, we rediscover the link between every higher order deriva-

tive sequences for the classical polynomials of Hermite, Laguerre, Bessel and
Jacobi with each of these families.

2. Computation of the Related Coefficients

In order to compute the various related recurrence coefficients, the first
step is to establish the main system connecting the recurrence coefficients
{βn}n�0, {γn+1}n�0 with {β̃n}n�0, {γ̃n+1}n�0. To do this, we proceed as
follows. Substituting in (1.9a), Pn+2, Pn+1 and Pn by their expressions pro-
vided in (1.15a) we derive a relation in terms of the polynomials Qk for
k = n + 2, . . . , n − 2. Now, in this new relation we replace xQn+1, xQn

and xQn−1 by their respective expressions derived from the recurrence re-
lation (1.10a) obtaining an expansion depending only on the polynomials
Qn+2, . . . , Qn−2.

By rearranging the terms in the resulting expansion and after a few
further simplifications, the next system (valid for all n � 1) follows by iden-
tification

(n + 2)β̃n − nβ̃n−1 = (n + 1)βn+1 − (n − 1)βn − ω;

2β̃0 = β1 + β0 − ω,

(n + 3)γ̃n+1 − (n + 1)γ̃n

= (n + 1)γn+2 − (n − 1)γn+1 + (n + 1)
(
βn+1 − β̃n

)(
βn+1 − β̃n − ω

)
;

3γ̃1 = γ2 + γ1 +
(
β1 − β̃0

)(
β1 − β̃0 − ω

)
,

(n + 1)γ̃n

(
2βn+1 − β̃n − β̃n−1 − ω

) − nγn+1

(
βn+1 + βn − 2β̃n−1 − ω

)
= 0,

(n + 2)γ̃nγ̃n+1 − 2(n + 1)γ̃nγn+2 + nγn+1γn+2 = 0.

We should mention here the important role played by the Hahn prop-
erty (Definition 1.1) to establish such a system, since we just assume that
these polynomials as well as their Dω-derivatives are orthogonal w.r.t. regular
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forms. In other words, we only rely on the fact that such sequences satisfy a
second-order recurrence relation, as it is introduced in Sect. 1.

When ω = 0, we recover the system initiated and solved by Douak
and Maroni [8] whose the solutions provide the classical OPS of Hermite,
Laguerre, Jacobi and Bessel, after assigning particular values to the free pa-
rameters. We will encounter these families again in this paper.

To solve the above system, let us introduce the auxiliary coefficients δn

and θn by writing

β̃n = βn+1 + δn , n � 0, (2.1)

γ̃n =
n

n + 1
γn+1θn , n � 1,

(
θn �= 0

)
. (2.2)

With these considerations, the two equalities (1.16) take the form

α̃1
n = −(n + 1)(δn + ω), n � 0 ; α̃0

n = (n + 1)γn+2(1 − θn+1), n � 0.

(2.3)

2.1. The Coefficients of the Recurrence Relations

Our main objective here is to initially compute the auxiliary coefficients δn

and θn, and then give the explicit expressions of the coefficients βn and
γn. This in turn allows to determine the coefficients β̃n and γ̃n and write
significantly better each of the coefficients αi

n and α̃j
n.

Under the formulas (2.1)–(2.2), it is easy to see that the above system
can be transformed into

βn+1 − βn = nδn−1 − (n + 2)δn − ω, n � 0, (δ−1 = 0), (2.4)
[
(n + 3)(θn+1 − 1) + 1

] γn+2

n + 2
− [

n(θn − 1) + 1
] γn+1

n + 1
= δn(δn + ω), n � 1,

(2.5)
(
3θ1 − 2)γ2 − 2γ1 = 2δ0(δ0 + ω), (2.6)

[
(n + 3)(θn − 1) + 1

]
δn − [

(n − 1)(θn − 1) + 1
]
δn−1 + 2(θn − 1)ω = 0, n � 1,

(2.7)
(θn+1 − 2) θn + 1 = 0, n � 1. (2.8)

To solve this system, we begin with the Riccati equation (2.8) whose
solutions are

A. θn = 1, n � 1,

B. θn =
n + θ + 1

n + θ
, n � 1, θ �= −1,−2, . . . .

Hence, the first three equations must be examined in the light of these
solutions.

Case A. For θn = 1, the above system reduces to

βn+1 − βn = nδn−1 − (n + 2)δn − ω, n � 0, (2.9)
γn+2

n + 2
− γn+1

n + 1
= δn(δn + ω), n � 0, (2.10)

δn+1 − δn = 0, n � 0. (2.11)
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Equation (2.11) clearly shows that δn = δ0, n � 0, giving δn(δn + ω) =
δ0(δ0 + ω), n � 0.

Thus it is quite natural to single out the two statements δ0(δ0 + ω) = 0
and δ0(δ0 +ω) �= 0. But right now we go back to the two first equations from
which we readily deduce that

βn = β0 − (2δ0 + ω)n, n � 0, (2.12)
γn+1 = (n + 1)

(
δ0(δ0 + ω)n + γ1

)
, n � 0. (2.13)

If we take ω = 0, we recover the recurrence coefficients of the Hermite
or Laguerre polynomials as shown in [8]. This will be made more precise in
the subcases A1 and A2 below.

Case B. For θn = (n + θ + 1)/(n + θ), the system (2.4)–(2.8) becomes

βn+1 − βn = nδn−1 − (n + 2)δn − ω, n � 0, (2.14)
(2n + θ + 4)
(n + θ + 1)

γn+2

n + 2
− (2n + θ)

(n + θ)
γn+1

n + 1
= δn(δn + ω), n � 0, (2.15)

(
2n + θ + 3

)
δn − (

2n + θ − 1
)
δn−1 = −2ω, n � 1, (2.16)

unless, of course, θ happen to be zero for the index n = 0. So, we will first
discuss the solution of the above system when θ �= 0. The case θ = 0 is
special, it will be considered separately.

When ω = 0, with appropriate choices of the parameters, the only
orthogonal polynomials obtained as solutions of this problem are those of
Bessel and Jacobi (see [8] for more details).

We now return to seeking solutions for the equations (2.14)–(2.16). Ob-
serve first that the RHS of Eq. (2.15) vanishes if and only if δn = −ω or
δn = 0. Each of these is possible.

It is easy to check that the former statement is dismissed, since it con-
tradicts Equality (2.16). For the latter, if we replace δn = 0 in (2.16), we
immediately see that this leads to ω = 0.

Straightforwardly from Eqs. (2.14) and (2.15), one has

βn = β0 ; γn+1 = γ1
(θ + 2)(n + 1)(n + θ)
(2n + θ + 2)(2n + θ)

, n � 0. (2.17)

If we set θ = 2λ and make a linear transformation with the choice
â2 = 2(λ + 1)γ1 ; b̂ = β0, then

β̂n = 0 ; γ̂n+1 =
(n + 1)(n + 2λ)

(n + λ + 1)(n + λ)
, n � 0. (2.18)

We thus meet the Gegenbauer polynomials which will reappear again
in Subcase B21.

From now on we assume that δn(δn + ω) �= 0, n � 0. Starting from Eq.
(2.16), multiply both sides by 2n + θ + 1, after summation we get

δn =
δ0(θ + 3)(θ + 1) − 2ωn(n + θ + 2)

(2n + θ + 3)(2n + θ + 1)
, n � 0. (2.19)

Use a division to obtain
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δn =
2μ

(
2n + θ + 3

)(
2n + θ + 1

) − 1
2
ω, n � 0, (2.20a)

δn = μ
(
ϑn − ϑn+1

) − 1
2
ω, n � 0, (2.20b)

where we have written μ := 1
4 (2δ0+ω)(θ+3)(θ+1) and ϑn = (2n + θ + 1)−1

,
n � 0.

Thanks to the identity (2.20b), we can write

(2n + θ + 2) δn(δn + ω) = μ2
(
ϑ2

n − ϑ2
n+1

) − 1
4
ω2(2n + θ + 2), n � 0.

(2.21)

The objective of course is to incorporate this new expression into (2.15)
to derive the coefficients γn, n � 1, which will in fact be processed in a next
step. We first calculate the coefficients βn. For this, observe that the RHS of
(2.14) may be rewritten using Eq. (2.16) in the form

nδn−1 − (n + 2)δn − ω =
1
2
(θ − 1)(δn − δn−1), n � 1. (2.22)

It is easily seen that, if θ assumes the value 1, Eq. (2.22) provides δn =
− 1

2ω, n � 0.
As a straightforward consequence of this last result, one sees immedi-

ately that (2.14), (2.15) respectively provides

βn = β0, n � 0, (2.23)

γn+1 = −1
4

(n + 1)2
(
ω2n(n + 2) − 12γ1

)

(2n + 3)(2n + 1)
, n � 0. (2.24)

When ω = 0, under the transformation â2 = 3γ1, b̂ = β0, we meet the
Legendre polynomials.

We now turn to the case θ �= 1. Using the identity (2.22), Eq. (2.14)
gives rise to

βn+1 − βn =
1
2
(θ − 1)(δn − δn−1), n � 1, (2.25)

β1 − β0 = −(2δ0 + ω), (2.26)

with δn is given by (2.19). From this, it may be concluded that

βn = β0 − (2δ0 + ω)(θ + 3)n(n + θ)
(2n + θ + 1)(2n + θ − 1)

, n � 0. (2.27)

We can now proceed to compute the coefficients γn+1, n � 0. To do so,
multiply both sides of Eq. (2.15) by 2n + θ + 2 and set

Θn+1 =
(2n + θ + 2) (2n + θ)

(n + θ)
γn+1

n + 1
, n � 0. (2.28)

Then, taking into consideration (2.21), we easily check that (2.15) takes
the form

Θn+2 − Θn+1 = μ2
(
ϑ2

n − ϑ2
n+1

) − 1
4
ω2(2n + θ + 2), n � 0.
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By summation, we deduce that

Θn+1 = Θ1 + μ2
(
ϑ2
0 − ϑ2

n

) − 1
4
ω2n(n + θ + 1), n � 0. (2.29)

Substituting (2.28) into (2.29) yields

γn+1 = −
(n + 1)(n + θ)

{[
1
4ω2n (n + θ + 1) − (

μ2ϑ2
0 + (θ + 2)γ1

) ]
(2n + θ + 1)2 + μ2

}

(2n + θ + 2)(2n + θ + 1)2(2n + θ)
.

(2.30)

It is possible to write the expression between braces in the numerator
of (2.30) in the form

(
ωn(n + θ + 1) + �n + ρ1

)(
ωn(n + θ + 1) − �n + ρ2

)
,

where the three parameters ρ1, ρ2 and � are such that

(θ + 1)�2 + (ρ2 − ρ1)� = 0, (2.31)
�2 − (ρ2 + ρ1)ω =

(
(θ + 3)δ0 + (θ + 2)ω

)(
(θ + 3)δ0 + ω

)
+ 4(θ + 2)γ1,

(2.32)
ρ2ρ1 = −(θ + 1)2(θ + 2)γ1. (2.33)

The roots of the quadratic equation (2.31) are � = 0 and � = (ρ1 − ρ2)/
(θ + 1) for ρ2 �= ρ1, with the root � = 0 being double, if ρ2 = ρ1. The last
equation clearly shows that ρ2ρ1 �= 0.

All these parameters will be well specified when dealing with the canon-
ical families. But, in any way, we have to consider the following two cases.

1. For � = 0, we obtain

γn+1 = − (n + 1)(n + θ)
(
ωn(n + θ + 1) + ρ1

)(
ωn(n + θ + 1) + ρ2

)

(2n + θ + 2)(2n + θ + 1)2(2n + θ)
, n � 0.

(2.34)

In the particular case ρ2 = ρ1 := ρ, (2.34) simplifies to

γn+1 = − (n + 1)(n + θ)
(
ωn(n + θ + 1) + ρ

)2

(2n + θ + 2)(2n + θ + 1)2(2n + θ)
, n � 0. (2.35)

2. For the general case � �= 0, we have

γn+1 = − (n + 1)(n + θ)
(
ωn(n + θ + 1) + �n + ρ1

)(
ωn(n + θ + 1) − �n + ρ2

)

(2n + θ + 2)(2n + θ + 1)2(2n + θ)
, n � 0.

(2.36)

We now turn to the special case θ = 0. Substituting this in (2.4)–(2.7)
yields

βn+1 − βn = nδn−1 − (n + 2)δn − ω, n � 0,

γn+2 − γn+1 =
1
2
(n + 1)δn(δn + ω), n � 1,

γ2 − 1
2
γ1 =

1
2
δ0(δ0 + ω),

(2n + 3)δn − (2n − 1)δn−1 = −2ω, n � 1.
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The same reasoning applies to this case gives

δn =
3δ0 − 2ωn(n + 2)
(2n + 3)(2n + 1)

, n � 0,

βn = β0 − 3(2δ0 + ω)n2

(2n + 1)(2n − 1)
, n � 0,

γn+1 = −
(
ωn(n + 1) + τn + τ1

)(
ωn(n + 1) − τn + τ2

)

4(2n + 1)2
, n � 1,

where τ1, τ2 and τ are such that

τ2 + (τ2 − τ1)τ = 0,

τ2 − (τ2 + τ1)ω = (3δ0 + 2w)(3δ0 + ω) + 8γ1,
τ2τ1 = −2γ1.

When ω = 0, if moreover δ0 = 0, which we may assume, it follows that

δn = 0, n � 0, βn = β0, n � 0, γn+1 =
1
2
γ1, n � 1.

Thus, choosing β0 = 0 and γ1 = 1
2 , we meet the Tchebychev polynomials

of the first kind.
After having finished solving the first system, we now proceed to the

determination of the coefficients α̃j
n and αj

n in terms of βn and γn+1, n � 0.
This will be done in the next subsection.

2.2. The Coefficients of the Structure Relations

Proposition 2.1. Let Φ be the polynomial arising in Proposition 1.2. We let
the degree of Φ to be two 2 and write Φ(x) = a2x

2 + a1x + a0. Then the coef-
ficients implicated in the two structure relations (1.12) and (1.15a)–(1.15b)
are interlinked through the following system

α2
n+2 = a2, n � 0, (2.37)

α1
n+1 + a2α̃

1
n+1 = a2(β̃n+1 + β̃n) + a1, n � 0, (2.38)

α1
n+1α̃

1
n + a2α̃

0
n + α0

n = a2(γ̃n+1 + γ̃n + β̃2
n) + a1β̃n + a0, n � 0,

(2.39)

α1
n+1α̃

0
n−1 + α0

nα̃1
n−1 = a2γ̃n(β̃n + β̃n−1) + a1γ̃n, n � 1, (2.40)

α0
n+1α̃

0
n−1 = a2γ̃n+1γ̃n, n � 1, (2.41)

where we have adopted the convention that γ̃0 := 0 so that (2.39) remains
valid for n = 0.

Proof. As for the preceding system, we give only the main ideas of the proof.
First, comparison of coefficients in (1.12) shows that α2

n+2 = a2. Now, use the
recurrence relation (1.10a) twice to write the product Φ(x)Qn, which is the
LHS of (1.12), in terms of the polynomials Qn+2, . . . , Qn−2. Then replace in
the RHS of (1.12) Pn+2, Pn+1 and Pn by their expressions provided in (1.15a)
to obtain another expansion in terms of the polynomials Qn+2, . . . , Qn−2.
After some simplifications, and by identification the equations (2.38)–(2.41)
follow. �
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As far as the author knows, the technique used here to find explicit
expressions for the coefficients involving in (1.15a) with (1.15b) is new, and
the results obtained still unknown. So, the solution of the above system brings
an answer to this question. But before doing so, recall that when the form
u0 is Dω-classical, namely, it is regular and satisfies (1.13), the polynomials
Φ and Ψ necessarily satisfy (see [1, p. 7] for further details):

κΦ(x) = (1 − θ1)x2 − (
(1 − θ1)(β1 + β0) + δ0 + ω

)
x +

(
(1 − θ1)β1

+δ0 + ω
)
β0 + θ1γ1, (2.42)

κΨ(x) = P1(x) = x − β0. (2.43)

Note that the expression in the RHS of (2.42) is slightly transformed
in accordance with the relations (2.1) and (2.2). The coefficient κ is to be
chosen later so that Φ(x) is being monic.

Since we are proceeding following the two situations Case A and Case
B, we see that the leading coefficient a2 of Φ(x) assumes the value 0, when
θ1 = 1, or is such that κa2 = −(θ + 1)−1, when θ1 = (θ + 2)/(θ + 1). To get
a2 = 1 in the latter case, we choose κ = −(θ + 1)−1 which, in turn, allows to
write the polynomial Φ(x) in one of the four standard forms

Φ(x) = 1, Φ(x) = x, Φ(x) = x2 and Φ(x) = (x + 1)(x − c), c ∈ C\{−1}.

The classification achieved according to the degree of Φ as in [1] is of
course exhaustive and is equivalent to that based on the values of θn. It is this
second alternative that we will retain in the next section to go over the diverse
families of Dω-classical orthogonal polynomials or some relevant cases. But
before doing so, let us discuss the solutions of the system (2.37)–(2.41) when
a2 takes one of the values 0 or 1, with use of (2.3).

I. For a2 = 0, since α0
n �= 0 for each n, Eq. (2.41) readily gives α̃0

n =
0, n � 0, so, due to (2.3), we necessarily have θn = 1 for all n � 1. It turns
out that δn = δ0, n � 0, and so α̃1

n = −(n + 1)(δ0 + ω), n � 0. In this case, it
is easily seen that the coefficients βn and γn+1 are given by (2.12)–(2.13).

This actually happens in the case A when the polynomial Φ takes the
form

κΦ(x) = −(δ0 + ω)x + (δ0 + ω)β0 + γ1. (2.44)

Using the fact that the polynomial Φ(x) is monic, we are brought to
consider the following two situations according with the degree of this poly-
nomial.

(i) Φ(x) is constant. In this case we have δ0 + ω = 0 which leads to a2 =
a1 = 0 and a0 = 1. It follows that κ = γ1, Φ(x) = 1 and Ψ(x) =
γ−1
1 P1(x). Therefore α̃1

n = 0, n � 0, and the above system readily gives
α2

n+2 = α1
n+1 = 0 ; α0

n = 1, n � 0. Thus, Qn = Pn, n � 0, and so the
two structure relations coincide.

(ii) Φ(x) is linear. By setting κ = −(δ0 + ω) �= 0 and (δ0 + ω)β0 + γ1 = 0,
we conclude that a2 = a0 = 0 and a1 = 1 and so Φ(x) = x and
Ψ(x) = γ−1

1 β0P1(x). We thus have

α2
n+2 = 0; α1

n+1 = 1 and α0
n = β0 − δ0n, n � 0.
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Accordingly, the two structure relations may be written as follows

xQn(x) = Pn+1(x) + (β0 − δ0n)Pn(x), n � 0,

Pn(x) = Qn(x) − (δ0 + ω)nQn−1(x), n � 0, (Q−1 := 0).

For n = 1 in the first relation, we recover the equality (δ0+ω)β0+γ1 = 0,
that is, κβ0 = γ1. This interconnection between β0 and γ1 will prove
useful in Subcase A2.
II. For a2 �= 0, Φ(x) is then quadratic and so κ = 1 − θ1 = −(θ + 1)−1,

since we take a2 to be 1.
Changing n into n + 1 in (2.41) yields α0

n+2α̃
0
n �= 0, n � 0, from which

we see that the coefficients α̃0
n are not identically 0 for all n, and hence, due

to (2.3), we conclude that θn �= 1, n � 1. This in fact shows that the case B
is the one to be naturally considered here. We thus have

α̃1
n = −(n + 1)(δn + ω) and α̃0

n = − n + 1
n + θ + 1

γn+2, n � 0.

Additionally, the coefficients βn are given by (2.31), while the γn are
generated either by (2.34) or by (2.36). Moreover, taking into account the
position of the zeros of the polynomial Φ, we have to consider again two
subcases .

(i) Φ(x) = x2. Since a2 = 1 and a1 = a0 = 0, (2.42) leads to β1 + β0 =
(θ + 1)(δ0 + ω) and β2

0 = −(θ + 2)γ1. Analogously to the former case,
taking into consideration (2.3), the system (2.37)–(2.41) readily provides

α2
n+2 = 1 ; α1

n+1 = βn+1 + βn + n(δn−1 + ω) and

α0
n = −n + θ + 1

n + 1
γn+1, n � 0.

(ii) Φ(x) = (x+1)(x−c), c �= −1. We have a2 = 1, a1 = 1−c and a0 = −c.
Therefore, (2.42) gives rise to β1 + β0 = (θ + 1)(δ0 + ω) + c − 1 and
(β0 + 1)(β0 − c) = −(θ + 2)γ1. In the same manner we can see that

α2
n+2 = 1 ; α1

n+1 = βn+1 + βn + n(δn−1 + ω) − c + 1 and

α0
n = −n + θ + 1

n + 1
γn+1, n � 0.

We could now proceed to present an exhaustive classification of the re-
sulting polynomials. The sequences identified are, of course, consistent with
those found in [1] and are pointed out with some of their special cases. They
will be regarded as the canonical (or representatives) families. To provide
these results, depending on certain parameters, we review all situations oc-
curring in either of the cases A and B as we will see in the next section.

3. The Canonical Families of Dω -Classical Polynomials

In the sequel we are only interested in regular OPS, the finite sequences are
not considered here. Under some restrictions on the parameters, we redis-
cover the well-known families of discrete classical orthogonal polynomials or
some particular cases. This is achieved on account of the specific conditions
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observed in Sect. 2.2. For each situation, we summarise the relevant prop-
erties of the corresponding family of polynomials. We often use the linear
transformation (1.18) with (1.20) to provide the desired results.

� Case A. We first investigate the two main subcases, namely, δ0+ω = 0
and δ0 + ω �= 0. Then, we consider the particular subcase when δ0 assumes
the value 0.

A1 : δ0 +ω = 0. From (2.12)–(2.13), taking into account (2.1)–(2.2), we
immediately obtain β̃n = βn = β0 + ωn ; γ̃n+1 = γn+1 = γ1(n + 1), n � 0.
It follows that Qn = Pn, n � 0, and hence the PS {Pn}n�0 belongs to the
class of the so-called Dω-Appell sequences.

A1a. With the choice â2 = 2γ1 and b̂ = β0, we easily get β̂n = ω
â n ;

γ̂n+1 = 1
2 (n+1), n � 0. Now, replacing ω by âω, we obtain β̂n = ωn ; γ̂n+1 =

1
2 (n + 1), n � 0.

When ω = 0, and so δ0 = 0, we meet the Hermite polynomials.
A1b. The choice â = ω and b̂ = β0 − ωa with γ1 = aω2 gives

β̂n = a + n ; γ̂n+1 = a(n + 1), n � 0. We thus encounter the Charlier
polynomials [5].

A2 : δ0 + ω �= 0. We can assume without loss of generality that δ0(δ0 +
ω) = 1 ⇔ ω = δ−1

0 − δ0. Use of (2.12)–(2.13) then shows that βn = β0 −
(δ−1

0 + δ0)n ; γn+1 = (n + 1)
(
n + γ1

)
, n � 0, where the parameters β0 and

γ1 are related via β0 = −δ−1
0 γ1 as in the statement I-(ii) above.

By setting γ1 := α + 1, we can write β0 = −δ−1
0 (α + 1).

If we take now ω = 0 which yields δ20 = 1, we recover the Laguerre
polynomials for δ0 = −1, and the shifted Laguerre polynomials for δ0 = 1.

For δ0 = −1, we have βn = 2n+α+1 ; γn+1 = (n+1)
(
n+α+1

)
, n � 0.

From now on, we assume that δ0 �= −1 and set γ1 := α + 1 again. We
wish to examine two interesting situations already investigated in [1] with
slight differences in notation.

The first one occurs for δ0 := −e−ϕ, ϕ �= 0, so that ω = −2 sinh ϕ. It
follows that

βn = eϕ(α + 1) + 2n cosh ϕ ; γn+1 = (n + 1)(n + α + 1), n � 0.

Afterwards, choose â = ω ; b̂ = 0 and put c := e2ϕ, to get

β̂n =
c

1 − c
(α + 1) +

1 + c

1 − c
n ; γ̂n+1 =

c

(1 − c)2
(n + 1)(n + α + 1), n � 0.

When the parameter c ∈ R\{0, 1}, we obtain the Meixner polynomials
of the first kind [22]. The Krawtchouk polynomials are a special case of the
Meixner polynomials of the first kind.

The second situation appears for δ0 := eiφ, 0 < φ < π by taking
2λ = γ1 := α + 1. After making a linear transformation via the changes
â = iω ; b̂ = −λω, we obtain that

β̂n = −(n + λ) cot φ ; γ̂n+1 =
1
4

(n + 1)(n + 2λ)
sin2 φ

, n � 0.

From this, we conclude that the resulting polynomials are those of
Meixner–Pollaczek [25].
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A3 : For δ0 = 0, one sees that (2.12)–(2.13) yields βn = β0−ωn ; γn+1 =
γ1(n + 1), n � 0. From this, taking into consideration (2.1)–(2.2), we check
at once that β̃n = βn − ω and γ̃n+1 = γn+1, n � 0.

In accordance with (1.18), it is easily seen that Qn(x) = τ−ωPn(x) =
Pn(x + ω) for all n � 0.

It is worth pointing out the following two subcases for which we can pro-
ceed analogously to the generation of A1a and A1b. This case could therefore
be regarded as a subcase of A1.

A3a. Similarly to A1a, the choice â2 = 2γ1 ; b̂ = β0 yields β̂n = −ω
â n ; γ̂n+1 =

1
2 (n + 1), n � 0. Replacing ω by −âω, we get β̂n = ωn ; γ̂n+1 =
1
2 (n + 1), n � 0, which for ω = 0 gives rise to the Hermite polynomials.

A3b. If we take â = −ω ; b̂ = β0 + ωa with γ1 = aω2, we get the Charlier
polynomials again. Note that, with â = iω ; b̂ = β0 + iωb and γ1 = aω2,
with a �= 0 and b an arbitrary constant, a specific case relative to this
situation have been mentioned in [1], where β̂n = b + in ; γ̂n+1 =
−a(n + 1), n � 0.
Note that the resulting polynomials encountered here are already iden-

tified in Subcases A1a and A1b. All the polynomials obtained in this first
case are summarized below in Table 1.

� Case B. Two main situations will be also investigated with some of
their special subcases. The remarks referred to in the statements II-(i) and
II-(ii) above must of course be taken into account to choose more precise
certain parameters involved in the recurrence coefficients.

In what follows, unless otherwise stated, we assume that θ �= 1.
B1: θ = 2α − 1. From (2.27) and (2.30), if we choose β0 = 1

2αω − μ1,
we get

βn =
1
2
αω − α(α − 1)μ1

(n + α)(n + α − 1)
, n � 0, (3.1)

γn+1 = − (n + 1)(n + 2α − 1)
(
ω(n + α)2 − 2αμ1

)2

(2n + 2α + 1)(2n + 2α)2(2n + 2α − 1)
, n � 0, (3.2)

where we have set μ1 := − 1
2 (α + 1)(2δ0 + ω).

Note that (3.1) is valid for n = 0, except that it becomes worthless if
concurrently α = 1.

For α = 1
2 , and so θ = 0, the coefficients βn and γn+1 coincide with

those previously established in Sect. 2.1.
B11. For μ1 �= 0, the choice â = αμ1 = 1 ; b̂ = 0, leads to

β̂n =
1
2
αω +

1 − α

(n + α)(n + α − 1)
, n � 0, (3.3)

γ̂n+1 = − (n + 1)(n + 2α − 1)
(
ω(n + α)2 − 2

)2

4(2n + 2α + 1)(n + α)2(2n + 2α − 1)
, n � 0. (3.4)

When ω = 0, we clearly encounter the Bessel polynomials.
B12. For ω �= 0 with the choice â = iω ; b̂ = 1

2αω, another specific
case was discovered in [1]. If on top of that we take μ1 = 0 and α > 0, the
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â
=

ω
,
b̂

=
0

c
(α

+
1
)

1
−

c
+

1
+

c
1
−

c
n

c
(n

+
1
)(

n
+

α
+
1
)

(1
−

c
)2

M
ei

xn
er

c
:=

ei
φ
,
0

<
φ

<
π

â
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corresponding orthogonal polynomials are symmetric and their associated
form is positive definite.

B2 : θ = ν − 1. Let c ∈ C − {−1}, thus from and (2.36), we obtain

βn =
1

4
νω − 1

2
(1 − c) +

ν(ν − 2)μ2

(2n + ν)(2n + ν − 2)
, n � 0, (3.5)

γn+1 = − (n + 1)(n + ν − 1)

(2n + 2ν + 1)(2n + 2ν)2(2n + 2ν − 1)
×

[
ωn(n + ν) + (1 + c)n + ν(β0 + 1)

][
ωn(n + ν) − (1 + c)n + ν(β0 − c)

]
, n � 0,

(3.6)

where we have put μ2 := 1
4 (ν+2)(2δ0+ω) and chosen β0 := 1

4νω− 1
2 (1−c)+μ2.

B21. For ω = 0 and c = 1, we may write ν(1 + β0) = 2(α + 1) and
ν(1 − β0) = 2(β + 1), so that

ν = α + β + 2 and β0 =
α − β

α + β + 2
.

Hence, we rediscover the Jacobi polynomials whose coefficients are

βn =
α2 − β2

(2n + α + β + 2)(2n + α + β)
, n � 0,

γn+1 = 4
(n + 1)(n + α + β + 1)(n + α + 1)(n + β + 1)

(2n + α + β + 3)(2n + α + β + 2)2(2n + α + β + 1)
, n � 0.

For α = β = λ − 1
2 , we meet again the Gegenbauer polynomials.

B22. When ω �= 0, we first write the two expressions between square
brackets in (3.6) as follows

ωn(n + ν) + (1 + c)n + ν(β0 + 1) =
[
ω(n + β + 1) + (1 + c)

]
(n + α + 1),

ωn(n + ν) − (1 + c)n + ν(β0 − c) =
[
ω(n + α + 1) − (1 + c)

]
(n + β + 1).

If we set η := α − (1 + c)/ω and apply a linear transformation with
â = iω ; b̂ = 1

4νω − 1
2 (1 − c), we may rewrite (3.5)–(3.6) as

β̂n =
1

2
i(α

2 − β
2
)

η − 1
2 (α + β)

(2n + α + β + 2)(2n + α + β)
, n � 0, (3.7)

γ̂n+1 =
(n + 1)(n + α + β + 1)(n + α + β + 1 − η)(n + η + 1)(n + α + 1)(n + β + 1)

(2n + α + β + 3)(2n + α + β + 2)2(2n + α + β + 1)
, n � 0.

(3.8)

Observe that if α2 −β2 = 0 or η = 1
2 (α+β), the corresponding polyno-

mials are symmetric. In consequence, it is worth while to discuss the following
subcases mentioned in [1].

B22a. For α − β = 0, we obtain

γ̂n+1 =
1
4

(n + 1)(n + 2α + 1)(n + 2α + 1 − η)(n + η + 1)
(2n + 2α + 3)(2n + 2α + 1)

, n � 0. (3.9)

When −1 < η < 2α + 1 or when α ∈ R and η + η̄ = 2α, α + 1 > 0, the
obtained polynomials are orthogonal with respect to a positive definite form.
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– For α = 0, the resulting polynomials are related to Pasternak polyno-
mials [24] having the coefficients

γ̂n+1 =
1
4

(n + 1)2(n + η + 1)(n − η + 1)
(2n + 3)(2n + 1)

, n � 0. (3.10)

.
– For η = 0, the resulting polynomials are the Touchard ones [26] which

are themselves particular cases of the continuous Hahn polynomials [4].
In this case we have

γ̂n+1 =
1
4

(n + 1)2(n + α + 1)(n − α + 1)
(2n + 3)(2n + 1)

, n � 0. (3.11)

B22b. For α + β = 0, we get

γ̂n+1 =
1
4

(n + α + 1)(n − α + 1)(n + η + 1)(n − η + 1)
(2n + 3)(2n + 1)

, n � 0. (3.12)

Again, observe that the associated form to these orthogonal polynomials
is positive definite when −1 < η < 2α + 1 or when α ∈ R and η + η̄ =
2α, α + 1 > 0.

– When α = 0, this leads to the Pasternak polynomials.
– When η = 0, we meet again the Touchard polynomials.

B22c. For η = 1
2 (α + β), we get

γ̂n+1 =
1
4

(n + 1)(n + α + β + 1)(n + α + 1)(n + β + 1)
(2n + α + β + 3)(2n + α + β + 1)

, n � 0. (3.13)

For α + 1 > 0 and β + 1 > 0, we have γ̂n+1 > 0, for all n � 0. The form
associated to these polynomials is then positive definite.

On the other hand, if both α and β are assumed to be real numbers,
and so η + η̄ = α + β, it is possible to find two numbers a and b, such that

a + ā = α + 1, b + b̄ = β + 1, a + b̄ = η + 1 and ā + b = α + β + 1 − η.

In addition, under the conditions 
a > 0 and 
b > 0, it was shown in [1,
p.18] that the resulting polynomials are orthogonal w.r.t. a positive definite
form and coincide with the continuous Hahn polynomials. For more details
we refer the reader to the aforementioned paper. The description of the main
results obtained in the second case are summarized in Table 2.

4. The Recurrence Coefficients of the Higher Order
Derivatives

Let k be a positive integer and let {Pn}n�0 be a Dω-classical OPS. The se-
quence of the normalized higher order Dω-derivatives, denoted as {P

[k]
n }n�0,

is recursively defined by

P [k]
n (x) :=

1
n + 1

DωP
[k−1]
n+1 (x), k � 1, (4.1a)
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â
=

iω
,
b̂

=
1 4
ν
ω

−
1 2
(1

−
c)

1 2
i(

α
2

−
β
2
)

η
−

1 2
(α

+
β
)

(2
n
+

α
+

β
+
2
)(
2
n
+

α
+

β
)

(n
+
1
)(

n
+

α
+

β
+
1
)(

n
+

α
+

β
+
1
−

η
)

(2
n
+

α
+

β
+
3
)(
2
n
+

α
+

β
+
2
)2

(2
n
+

α
+

β
+
1
)
×

ω
�=

0,
ν

=
α

+
β

+
2

α
2

−
β
2

�=
0

{(
n

+
η

+
1)

(n
+

α
+

1)
(n

+
β

+
1)

}
α

−
β

=
0

0
1 4
(n

+
1
)(

n
+
2
α
+
1
)(

n
+
2
α
+
1
−

η
)(

n
+

η
+
1
)

(2
n
+
2
α
+
3
)(
2
n
+
2
α
+
1
)

α
=

β
=

0
0

1 4
(n

+
1
)2

(n
+

η
+
1
)(

n
−

η
+
1
)

(2
n
+
3
)(
2
n
+
1
)

P
as

te
rn

ak

η
=

0
0

1 4
(n

+
1
)2

(n
+

α
+
1
)(

n
−

α
+
1
)

(2
n
+
3
)(
2
n
+
1
)

T
ou

ch
ar

d

α
+

β
=

0
0

1 4
(n

+
α
+
1
)(

n
−

α
+
1
)(

n
+

η
+
1
)(

n
−

η
+
1
)

(2
n
+
3
)(
2
n
+
1
)

η
=

1 2
(α

+
β
)

0
1 4
(n

+
1
)(

n
+

α
+

β
+
1
)(

n
+

α
+
1
)(

n
+

β
+
1
)

(2
n
+

α
+

β
+
3
)(
2
n
+

α
+

β
+
1
)

ω
=

0,
ν

=
α

+
β

+
2

α
2
−

β
2

(2
n
+

α
+

β
+
2
)(
2
n
+

α
+

β
)

4
(n

+
1
)(

n
+

α
+

β
+
1
)(

n
+

α
+
1
)(

n
+

β
+
1
)

(2
n
+

α
+

β
+
3
)(
2
n
+

α
+

β
+
2
)2

(2
n
+

α
+

β
+
1
)

Ja
co

bi

c
=

1

H
er

e
μ
1

:=
−

1 2
(α

+
1)

(2
δ 0

+
ω
);

μ
2

:=
1 4
(ν

+
2)

(2
δ 0

+
ω
)

an
d

η
:=

α
−

(1
+

c)
/ω



MJOM On the 𝐷𝜔-Classical Orthogonal Polynomials Page 21 of 27 104

or, equivalently,

P [k]
n (x) :=

1
(n + 1)k

Dk
ωPn+k(x), k � 1, (4.1b)

where (μ)n = μ(μ + 1) · · · (μ + n − 1), (μ)0 = 1, μ ∈ C, n ∈ N, is the
Pochhammer symbol. Application of Definition 1.1, with the special notations
P

[1]
n := Qn and P

[0]
n := Pn, allows one to write β

[1]
n := β̃n, γ

[1]
n := γ̃n and

β
[0]
n := βn, γ

[0]
n := γn, respectively.

The following corollary, which is in fact an immediate consequence of
Proposition 1.2, plays an important role in establishing our results.

Corollary 4.1. ([1]) If the OPS {Pn}n�0 is Dω-classical, then the sequence
{P

[k]
n }n�0 is also Dω-classical OPS for any k � 1.

By an application of this corollary, if we denote by
(
β
[k]
n , γ

[k]
n+1

)
n∈N

the

recurrence coefficients corresponding to the OPS {P
[k]
n }n�0, with k � 1, then

P
[k]
n+2(x) = (x − β

[k]
n+1)P

[k]
n+1(x) − γ

[k]
n+1P

[k]
n (x), n � 0, (4.2a)

P
[k]
1 (x) = x − β

[k]
0 , P

[k]
0 (x) = 1. (4.2b)

Our objective here is to express the coefficients β
[k]
n and γ

[k]
n+1 in terms

of the corresponding coefficients of the OPS {Pn}n�0, namely, βn and γn+1

obtained either in Case A or in Case B.
This will be stated in the next proposition.

Proposition 4.2. Let {Pn}n�0 be a Dω-classical OPS. Then, for every k ∈ N,
we have

β[k]
n = βn+k + kδn+k−1, n � 0, (4.3)

γ[k]
n =

n

n + k
γn+k

(
k(θn+k−1 − 1) + 1

)
, n � 1, (4.4)

where δn and θn are solutions for the Eqs. (2.7) and (2.8), respectively.

Proof. From Corollary 4.1 it follows that each sequence {P
[k]
n }n�0, k � 1, is

also Dω-classical. Accordingly, both of the OPS {P
[k]
n }n�0 and {P

[k+1]
n }n�0

are characterized by the fact that they satisfy a second structure relation of
type (1.15a)–(1.15b). For {P

[k]
n }n�0, this is given by

P
[k−1]
n+2 = P

[k]
n+2 + αk,1

n+1P
[k]
n+1 + αk,0

n P [k]
n , n � 0, (4.5a)

P
[k−1]
1 = P

[k]
1 + αk,1

0 , P
[k−1]
0 = P

[k]
0 = 1, (4.5b)

where

αk,1
n = (n + 1)

(
β
[k−1]
n+1 − β[k]

n − ω
)

and

αk,0
n = (n + 1)γ[k−1]

n+2 − (n + 2)γ[k]
n+1. (4.6)

Likewise, for {P
[k+1]
n }n�0, an equivalent relation may be written as

P
[k]
n+2 = P

[k+1]
n+2 + αk+1,1

n+1 P
[k+1]
n+1 + αk+1,0

n P [k+1]
n , n � 0, (4.7a)
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P
[k]
1 = P

[k+1]
1 + αk+1,1

0 , P
[k]
0 = P

[k+1]
0 = 1, (4.7b)

with

αk+1,1
n = (n + 1)

(
β
[k]
n+1 − β[k+1]

n − ω
)

and

αk+1,0
n = (n + 1)γ[k]

n+2 − (n + 2)γ[k+1]
n+1 . (4.8)

To prove the equalities (4.3) and (4.4), we can proceed by induction on
k. For this, let P(k) be the proposition that these two equalities hold. Observe
first that the assertion P(1) is trivial. Let us check that P(2) is true. Setting
k = 1 in (4.5a)–(4.5b) we get

Pn+2 = P
[1]
n+2 + α1,1

n+1P
[1]
n+1 + α1,0

n P [1]
n , n � 0, (4.9a)

P1 = P
[1]
1 + α1,1

0 , P0 = P
[1]
0 = 1, (4.9b)

where α1,1
n := α̃1

n and α1,0
n := α̃0

n, since P
[1]
n := Qn and P

[0]
n := Pn. Roughly

speaking, in this special case, the formulas (4.9a)–(4.9b) and (1.15a)–(1.15b)
coincide.

Similarly, if we take k = 2 in (4.5a)–(4.5b), we have

P
[1]
n+2 = P

[2]
n+2 + α2,1

n+1P
[2]
n+1 + α2,0

n P [2]
n , n � 0, (4.10a)

P
[1]
1 = P

[2]
1 + α2,1

0 , P
[1]
0 = P

[2]
0 = 1. (4.10b)

Replace n by n + 1 in (4.9a) and then apply the operator Dω yields

(n + 3)P [1]
n+2 = (n + 3)P [2]

n+2 + (n + 2)α1,1
n+2P

[2]
n+1 + (n + 1)α1,0

n+1P
[2]
n , n � 0.

(4.11)

Multiply both sides of (4.10a) by (n + 3) and compare this with (4.11)
readily gives

(n + 3)α2,1
n+1 = (n + 2)α1,1

n+2, (4.12a)

(n + 3)α2,0
n = (n + 1)α1,0

n+1. (4.12b)

By (4.6), for k = 2 and k = 1, it is easy to check that (4.12a) and
(4.12b), respectively, lead to

(n + 3)(n + 2)
[
β
[1]
n+2 − β

[2]
n+1 − ω

]
= (n + 3)(n + 2)

[
βn+3 − β

[1]
n+2 − ω

]
,

(n + 3)
[
(n + 1)γ[1]

n+2 − (n + 2)γ[2]
n+1

]
= (n + 1)

[
(n + 2)γn+3 − (n + 3)γ[1]

n+2

]
.

Thanks to (2.1)–(2.2), we, respectively, deduce that

β[2]
n = βn+2 + 2δn+1, n � 0,

γ[2]
n =

n

n + 2
γn+2

(
2θn+1 − 1

)
, n � 1,

which is precisely the desired conclusion, that is, P(2) is true.
Now, we must show that the conditional statement P(k) → P(k + 1) is

true for all positive integers k. We can proceed analogously to the proof of
P(2). Starting from (4.5a), replacing n by n + 1 and then apply the operator
Dω we find
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(n+3)P [k]
n+2=(n+3)P [k+1]

n+2 +(n+2)αk,1
n+2P

[k+1]
n+1 +(n+1)αk,0

n+1P
[k+1]
n , n � 0.

(4.13)

Multiply both sides of (4.7a) by (n+3) and compare this with (4.13) readily
gives

(n + 3)αk+1,1
n+1 = (n + 2)αk,1

n+2, (4.14a)

(n + 3)αk+1,0
n = (n + 1)αk,0

n+1. (4.14b)

On account of (4.6)–(4.8), we have

(n + 3)(n + 2)
[
β
[k]
n+2 − β

[k+1]
n+1 − ω

]
= (n + 3)(n + 2)

[
β
[k−1]
n+3 − β

[k]
n+2 − ω

]
,

(n + 3)
[
(n + 1)γ[k]

n+2 − (n + 2)γ[k+1]
n+1

]
= (n + 1)

[
(n + 2)γ[k−1]

n+3 − (n + 3)γ[k]
n+2

]
.

From this, we deduce that

β
[k+1]
n+1 = 2β

[k]
n+2 − β

[k−1]
n+3 , (4.15)

γ
[k+1]
n+1 = 2

n + 1
n + 2

γ
[k]
n+2 − n + 1

n + 3
γ
[k−1]
n+3 . (4.16)

On the other hand, according to the induction hypothesis we may write

β
[k]
n+2 = βn+k+2 + kδn+k+1, β

[k−1]
n+3 = βn+k+2 + (k − 1)δn+k+1,

γ
[k]
n+2 =

n + 2
n + k + 2

γn+k+2

(
k(θn+k+1 − 1) + 1

)
,

γ
[k−1]
n+3 =

n + 3
n + k + 2

γn+k+2

(
(k − 1)(θn+k+1 − 1) + 1

)
.

Substituting these into (4.15)–(4.16), and then changing n into n − 1,
it follows that

β[k+1]
n = βn+k+1 + (k + 1)δn+k, n � 0,

γ[k+1]
n =

n

n + k + 1
γn+k+1

(
(k + 1)(θn+k − 1) + 1

)
, n � 1.

These last equalities show that P(k + 1) is also true, which completes
the proof. �

Remark. Due to (4.3) and (4.4), from (4.6), it is seen that the two coefficients
αk,1

n and αk,0
n involving in the structure relation (4.5a)–(4.5b) can be rewritten

as

αk,1
n =−(n+1) (δn+k−1+ω) ; αk,0

n =
(n+1)(n+2)

n+k+1
γn+k+1 (1−θn+k) , n � 0.

(4.17)

For k = 1, this reduces to (2.3) providing the coefficients of (1.15a)–
(1.15b).

Application.
When ω = 0, the identities (4.5a)–(4.5b) consist of the structure relation
characterizing the higher order derivatives sequence of the classical orthogo-
nal polynomials. In this case, a direct application of the preceding proposition
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enables us to express the recurrence coefficients of the sequence {P
[k]
n }n�0 in

terms of the recurrence coefficients for each of the four classical families.
To this purpose, if we denote by {Ĥn}n�0, {L̂n(.;α)}n�0, {B̂n(.;α)}n�0

and {Ĵn(.;α, β)}n�0, respectively, the (monic) Hermite, Laguerre, Bessel and
Jacobi polynomials, and by Ĥ

[k]
n (x), L̂

[k]
n (x;α), B̂

[k]
n (x;α) and Ĵ

[k]
n (x;α, β)

their corresponding sequences of derivatives of order k, then application of
Formulas (4.3) and (4.4) successively give:

Case A. For θn = 1, n � 1, and δn = δ0, n � 1, we have

β̂[k]
n = β̂n+k + kδ0, n � 0, (4.18)

γ̂[k]
n =

n

n + k
γ̂n+k, n � 1. (4.19)

Hermite case: When δ0 = 0, γ̂1 = 1
2 , this yields

β̂[k]
n = 0, n � 0, and γ̂

[k]
n+1 =

1
2
(n + 1), n � 0.

Laguerre case: When δ0 = −1, γ̂1 = β̂0 = α + 1, we get

β̂[k]
n = 2n + α + k + 1, n � 0, and γ̂

[k]
n+1 = (n + 1)(n + α + k + 1), n � 0.

Case B. For θn = n+θ+1
n+θ , n � 1, and δn = δ0(θ+3)(θ+1)(

2n+θ+3
)(

2n+θ+1
) , n � 0,

we deduce that

β̂[k]
n = β̂n+k +

kδ0(θ + 3)(θ + 1)
(
2(n + k) + θ + 1

)(
2(n + k) + θ − 1

) , n � 0, (4.20)

γ̂[k]
n =

n(n + θ + 2k − 1)
(n + k)(n + θ + k − 1)

γ̂n+k, n � 1. (4.21)

Bessel case: When θ = 2α − 1, δ0 = −1/(α + 1)α, we obtain

β̂[k]
n =

1 − (α + k)
(n + α + k)(n + α + k − 1)

, n � 0,

γ̂
[k]
n+1 = − (n + 1)(n + 2(α + k) − 1)

(2n + 2(α + k) + 1)(n + α + k)2(2n + 2(α + k) − 1)
, n � 0.

Jacobi case: When θ = α + β + 1, δ0 = 2(α − β)/(α + β + 4)(α + β + 2),
we get

β̂
[k]
n =

(α − β)(α + β + 2k)

(2n + α + β + 2k + 2)(2n + α + β + 2k)
, n � 0,

γ̂
[k]
n+1 = 4

(n + 1)(n + α + β + 2k + 1)(n + α + k + 1)(n + β + k + 1)

(2n + α + β + 2k + 3)(2n + α + β + 2k + 2)2(2n + α + β + 2k + 1)
, n � 0.

We thus rediscover the well known relations Ĥ
[k]
n (x) = Ĥn(x),

L̂
[k]
n (x;α) = L̂n(x;α + k), B̂

[k]
n (x;α) = B̂n(x;α + k) and Ĵ

[k]
n (x;α, β) =

Ĵn(x;α + k, β + k).
The results presented above are of course known and clearly show that

the sequences of higher order derivative for the classical orthogonal polyno-
mials belonging to the same class, provided that the parameters α and β take
values in the range of regularity.
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Corollary 4.1 asserts that the Dω-classical character remain invariants
under a differentiation of any Dω-classical polynomials. However, except for
the case ω = 0, application of the kth order operator Dk

ω does not lead to a
shift on the parameters of the original sequence.

Conclusion

We studied the Dω-classical orthogonal polynomials using a new method in
this domain. The results obtained in Sect. 3 are expected, where four rep-
resentatives families are pointed out with some of their special cases. The
recurrence coefficients of the resulting orthogonal polynomials are explicitly
determined. Proposition 1.4 established a new characterization of these poly-
nomials via a structure relation, and Proposition 4.2 provided relations con-
necting the recurrence coefficients of each sequence of polynomials with those
of its higher order derivatives. For ω = 0, the classical orthogonal polynomials
are rediscovered.

We conclude, of course, by asking whether our approach provides a
rather easy answer to the first Hahn’s problem, that is, when Dω is replaced
by Dq?
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[12] Hahn, W.: Über Orthogonalpolynome, die q−Differenzengleichungen geng̈en.
Math. Nachr. 2, 4–34 (1949). https://doi.org/10.1002/mana.19490020103

[13] Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in one Vari-
able. Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge
University Press, Cambridge (2005)

[14] Koekoek, R., Lesky, P., Swarttouw, F.: Hypergeometric Orthogonal Polyno-
mials and Their q-Analogues. Springer Monographs in Mathematics. Springer,
Berlin (2010)

[15] Lancaster, O.E.: Orthogonal polynomials defined by difference equations. Am.
J. Math. 63, 185–207 (1941). https://doi.org/10.2307/2371289

[16] Lesky, P.: Orthogonale Polynomsysteme als Lösungen Sturm-Liouvillescher
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