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The Ground State Solutions of Discrete
Nonlinear Schrödinger Equations with
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Abstract. In this paper, we study the discrete nonlinear Schrödinger
equation

−Δu +

(
V (x) − ρ

(|x|2 + 1)

)
u = f(x, u), u ∈ �2(ZN ),

where N ≥ 3, V is a bounded periodic potential and 0 lies in a spectral
gap of the Schrödinger operator −Δ+V . The resulting problem engages
two major difficulties: one is that the associated functional is strongly in-
definite and the other is the lack of compactness of the Cerami sequence.
We overcome these two major difficulties by the generalized linking the-
orem and Lions lemma. This enables us to establish the existence and
asymptotic behavior of ground state solutions for small ρ ≥ 0.
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1. Introduction

The nonlinear Schrödinger equation

−Δu +
(

V (x) − ρ

|x|2
)

u = f(x, u), x ∈ R
N ,

has drawn a great deal of interest in recent years. In particular, for ρ = 0,
there is a broad literature treating the Schrödinger equation with periodic
potential. For example, when the operator −Δ+V is positive definite, Pankov
[27] proved an existence result by the Nehari variational principle and con-
centration compactness methods. (Even more general asymptotically periodic
case was treated in that paper). Later, Rabinowitz [32] obtained the existence
of nontrivial solutions under less restrictive assumptions on the nonlinearity
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f . Moreover, in [21], the authors established the ground state solutions un-
der a more natural super-quadratic condition [see (F4) below]. When 0 lies
in a finite spectral gap and the operator −Δ + V is not positive definite, the
first existence results (under very strong assumptions on the nonlinearity)
were found in [1,16]. Later, Troestler and Willem [40] and Kryszewski and
Szulkin [19] proved the existence of nontrivial solutions under much more
natural conditions. Pankov [28] demonstrated the existence of ground state
solutions by the Nehari manifold method to the case of strongly indefinite
functionals. Moreover, Szulkin and Weth [38] obtained the ground state so-
lutions based on a direct and simple reduction of the indefinite variational
problem to a definite one. After that, Liu [25] improved the result of Szulkin
and Weth [38] under a weaker monotonicity condition on f . Recently, for
ρ > 0, Guo and Mederski [13] studied the existence and behavior of ground
state solutions under some conditions on f . Later, the authors in [22] also
established the existence and asymptotical behavior of ground state solutions
under different assumptions on f . For more related results, we refer readers
to [4,9,17,20,33,35,43] and the references therein.

Nowadays, many researchers turn to study differential equations on
graphs, especially for the nonlinear Schrödinger equations. For example, a
class of Schrödinger equations with the nonlinearity of power type have been
studied on graphs, see [10–12,14,15,45]. In addition, the existence or mul-
tiplicity of gap solitons (then the associated energy functional is strongly
indefinite) of periodic discrete Schrödinger equation on the lattice graph Z

has been extensively investigated. For example, Pankov [29] obtained the ex-
istence of nontrivial solutions by a generalized linking theorem due to [19].
Pankov [30] also obtained the existence of ground state solutions by a gen-
eralized Nehari manifold and periodic approximation technique. Later, Chen
and Ma [6] proved the existence of ground state solitons and the existence of
infinitely many pairs of geometrically distinct solitons by the generalized Ne-
hari manifold method developed by Szulkin and Weth [38]. Moreover, Chen
and Ma [5,7] established the existence of nontrivial solutions with asymptot-
ically or super linear terms by a variant generalized weak linking theorem.
For related works, we refer readers to [23,36,37,39,41,44].

As far as we know, there is no existence results for the Schrödinger
equation with hardy potential on the lattice graph Z

N , which is a natural
discrete model for the Euclidean space. Motivated by the works mentioned
above, in this paper, we prove the existence and asymptotical behavior of
ground state solutions for a class of strongly indefinite problems with hardy
weights on Z

N with N ≥ 3 by following the arguments in [13,26].
Let Ω be a subset of ZN , we denote by C(Ω) the space of real-valued

functions on Ω. The support of u ∈ C(Ω) is defined as supp(u) := {x ∈
Ω: u(x) �= 0}. Moreover, we denote by the �p(Ω) the space of �p-summable
functions on Ω. For convenience, for any u ∈ C(Ω), we always write

∫
Ω

u dμ :=∑
x∈Ω u(x), where μ is the counting measure in Ω.

In this paper, we study the nonlinear Schrödinger equation

− Δu + (V (x) − ρ

(|x|2 + 1)
)u = f(x, u), u ∈ �2(ZN ), (1)
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where N ≥ 3. Here the operator Δ is the discrete Laplacian defined as
Δu(x) =

∑
y∼x(u(y) − u(x)). We always assume that

(H): V ∈ L∞(ZN ), V is T -periodic with T ∈ Z
N and

σ− := sup [σ(−Δ + V ) ∩ (−∞, 0)] < 0 < σ+ := inf [σ(−Δ + V ) ∩ (0,+∞)],

where σ(−Δ + V ) is the spectrum of the operator −Δ + V in �2(ZN );
(F1): f :ZN × R → R is T -periodic in x and continuous in u ∈ R;
(F2): There are constants a > 0 and p > 2 such that

|f(x, u)| ≤ a(1 + |u|p−1), (x, u) ∈ Z
N × R;

(F3): f(x, u) = o(u) uniformly in x as |u| → 0;
(F4): F (x,u)

u2 → +∞ uniformly in x as |u| → +∞ with F (x, u) =
∫ u

0
f(x, t) dt;

(F5): u 	→ f(x,u)
|u| is non-decreasing on (−∞, 0) and (0,+∞);

(F6): f(x, u) is of C1 class about u ∈ R and satisfies

f(x, u)u − 2F (x, u) ≥ b|u|q, (x, u) ∈ Z
N × R,

where b > 0 and 2 < q ≤ p.

Clearly, by (F1), (F2) and (F3), for any ε > 0, there exists cε > 0 such that

|f(x, u)| ≤ ε|u| + cε|u|p−1, (x, u) ∈ Z
N × R. (2)

Moreover, by (F3) and (F5), we have that

f(x, u)u ≥ 2F (x, u) ≥ 0, (x, u) ∈ Z
N × R. (3)

Denote A := −Δ + V and X := �2(ZN ). Then the energy functional of
(1) is

Jρ(u) =
1
2
(Au, u)2 − 1

2

∫
ZN

ρ

(|x|2 + 1)
|u|2 dμ −

∫
ZN

F (x, u) dμ,

where (·, ·)2 is the inner product in X. The corresponding norm in X is
denoted by ‖ · ‖2. Then Jρ(u) ∈ C1(X,R) and the Gateaux derivative is
given by

〈J ′
ρ(u), φ〉 = (Au, φ)2 −

∫
ZN

ρ

(|x|2 + 1)
uφ dμ −

∫
ZN

f(x, u)φ dμ, u, φ ∈ X.

By (H), we have the decomposition X = X+ ⊕ X−, where X+ and X−

are the positive and negative spectral subspaces of A in X. Then we have
that

(Au, u)2 ≥ σ+‖u‖2
2, u ∈ X+, and − (Au, u)2 ≥ −σ−‖u‖2

2, u ∈ X−.

Hence the form (Au, u)2 is positive definite on X+ and negative definite on
X−.

For any u, v ∈ X = X+ ⊕X−, u = u+ +u− and v = v+ + v−, we define
an equivalent inner product (·, ·) and the corresponding norm ‖ · ‖ on X by

(u, v) = (Au+, v+)2 − (Au−, v−)2 and ‖u‖ = (u, u)
1
2 ,
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respectively. Clearly, the decomposition X = X+⊕X− is orthogonal with re-
spect to both inner products (·, ·) and (·, ·)2. Therefore, the energy functional
Jρ and the corresponding Gateaux derivative can be rewritten as

Jρ(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 − 1

2

∫
ZN

ρ

(|x|2 + 1)
|u|2 dμ −

∫
ZN

F (x, u) dμ,

and

〈J ′
ρ(u), φ〉 = (u+, φ) − (u−, φ) −

∫
ZN

ρ

(|x|2 + 1)
uφ dμ −

∫
ZN

f(x, u)φ dμ,

u, φ ∈ X,

respectively.
We say that u ∈ X is a solution of (1), if u is a critical point of the

energy functional Jρ, i.e., J ′
ρ(u) = 0. A ground state solution of (1) means

that u is a nontrivial critical point of Jρ with the least energy, that is,

Jρ(u) = inf
Nρ

Jρ > 0,

where

Nρ = {u ∈ X\X−: 〈J ′
ρ(u), u〉 = 0 and 〈J ′

ρ(u), v〉 = 0 for v ∈ X−}
is the Nehari manifold.

Denote

ρ+ := sup {M > 0: (Au, u)2 ≥ M

∫
ZN

|∇u|2 dμ, u ∈ X+}. (4)

Since |∇u(x)|2 = 1
2

∑
y∼x

(u(y) − u(x))2, one gets easily that

∫
ZN

|∇u|2 dμ ≤ CN‖u‖2
2.

Note that for u ∈ X+, (Au, u)2 is positive definite, then ρ+ > 0. Let ρ̃+ =
min{ρ+, 1} and κ > 0 be the constant in Lemma 2.1 below. Now we state
our first main result of this paper.

Theorem 1.1. Let 0 ≤ ρ < ρ̃+

κ . Assume that (H) and (F1)–(F5) hold. Then
the Eq. (1) has a ground state solution.

Remark 1.2. (i) In the continuous setting, the nonlinear term f has a su-
perlinear and subcritical growth. However, in our context, it is just a
superlinear nonlinear term thanks to the embedding �s into �t for s < t
in the discrete setting;

(ii) The authors in [8,12,31,46] have proved the existence of nontrivial so-
lutions to the discrete Schrödinger equations with unbounded poten-
tials. The unbounded potential V ensures a compact embedding from
a weighted subspace of �2 into �q (q ≥ 2), which allows to handle the
lack of compactness of a Palais–Smale or Cerami sequence. In contrast
to the unbounded case, in this paper, the Hardy potential V tends to
zero, which has no direct compact embedding. This leads to our proof
more difficult;
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(iii) For the Schrödinger equations with Hardy type potentials, the existence
of ground state solutions depends on the constant ρ. This fine property
is well known in the continuous case, but not yet in the discrete case;

(iv) The assumption that 0 is in a finite spectral gap of the operator −Δ+V
leads to the associated functional is strongly indefinite. To tackle this
difficulty, we follow the lines of the continuous case to get the discrete
version. It is worth noting that our conditions can be used to signifi-
cantly improve the well-known results of the corresponding continuous
case;

(v) The existence of nontrivial solutions to the discrete Schrödinger equa-
tion with a sign-changing periodic potential has been extensively stud-
ied on the lattice graph Z, see for example [5,7,29,30]. However, for the
higher dimensional lattice graphs Z

N , as far as we know, there is no
such existence results. This is the first attempt in the literature on the
existence of a ground state solution for the strongly indefinite problem
with a Harty weight.

The second main result is about the behavior of ground state solution
in the limit ρ → 0+.

Theorem 1.3. Let 0 ≤ ρ < ρ̃+

κ . Assume that (H) and (F1)–(F6) hold. Let uρ

and u0 be the ground state solutions of Jρ and J0. Then for ρn → 0+, there
exists a sequence {xn} ⊂ Z

N such that uρn
(x + xn) tends to a ground state

solution u0 of J0 as n → +∞.

This paper is organized as follows. In Sect. 2, we present some prelim-
inaries including settings for graphs and some auxiliary lemmas. In Sect. 3,
we state a generalized linking theorem and demonstrate the functional Jρ ∈
C1(X,R) satisfies the conditions of the linking theorem. In Sect. 4, we study
the behavior of Cerami sequences. In Sect. 5, we are devoted to prove Theo-
rems 1.1 and 1.3.

2. Preliminaries

In this section, we introduce some settings for graphs and give some useful
lemmas.

Let G = (V,E) be a connected, locally finite graph, where V denotes
the vertex set and E denotes the edge set. We call vertices x and y neighbors,
denoted by x ∼ y, if there is an edge connecting them, i.e., (x, y) ∈ E. For
any x, y ∈ V, the distance d(x, y) is defined as the minimum number of edges
connecting x and y, i.e.,

d(x, y) = inf{k: x = x0 ∼ · · · ∼ xk = y}.

Let Br(a) = {x ∈ V:, d(x, a) ≤ r} be the closed ball of radius r centered at
a ∈ V and denote |Br(a)| = �BS

r (a) as the volume (i.e., cardinality) of the
set Br(a). For brevity, we write Br := Br(0).

In this paper, we consider the natural discrete model of the Euclidean
space, the integer lattice graph. The N -dimensional integer lattice graph,
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denoted by Z
N , consists of the set of vertices V = Z

N and the set of edges
E = {(x, y): x, y ∈ Z

N ,
∑N

i=1 d(xi, yi) = 1}. In the sequel, we write the
distance d(x, y), as defined in the Euclidean space, as |x − y| on Z

N .
We denote the space of real-valued functions on V by C(V), and denote

the subspace of functions with finite support by Cc(V). For any Ω ⊂ V,
via continuation by zero, the spaces C(Ω) and Cc(Ω) are considered to be
subspaces of C(V) and Cc(V). For any u ∈ C(Ω), the �p(Ω) space is given
by

�p(Ω) = {u ∈ C(Ω): ‖u‖�p(Ω) < +∞}, p ∈ [1,+∞],

where

‖u‖�∞(Ω) = sup
x∈Ω

|u(x)| and ‖u‖�p(Ω) =

(∑
x∈Ω

|u(x)|p
) 1

p

, p ∈ [1,+∞).

We shall write ‖u‖p instead of ‖u‖�p(V) if Ω = V.
For u, v ∈ C(V), the gradient form Γ, called the “carré du cham” oper-

ator, is defined as

Γ(u, v)(x) =
1
2

∑
y∼x

(u(y) − u(x))(v(y) − v(x)) =: ∇u∇v.

In particular, we write Γ(u) = Γ(u, u) and denote the length of Γ(u) by

|∇u|(x) =
√

Γ(u)(x) =

(
1
2

∑
y∼x

(u(y) − u(x))2
) 1

2

.

The Laplacian of u at x ∈ V is defined as Δu(x) =
∑

y∼x(u(y) − u(x)). For
convenience, for any u ∈ C(Ω), we always write

∫
Ω

u dμ :=
∑

x∈Ω u(x), where
μ is the counting measure in Ω ⊂ V.

Next, we give some useful lemmas. First, we recall a variant of Hardy
type inequality, see [34].

Lemma 2.1. Let N ≥ 3. We have the discrete Hardy inequality∫
ZN

|u|2
(|x|2 + 1)

dμ ≤ κ

∫
ZN

|∇u|2 dμ, u ∈ Cc(ZN ), (5)

where κ depends only on N .

Lemma 2.2. For any ε > 0, there exists Cε > 0 such that for any u ∈ X,∫
V

F (x, u) dμ ≤ ε‖u‖2
2 + Cε‖u‖p

p.

Proof. It follows from (2) and (3) that∫
V

F (x, u) dμ ≤ 1
2

∫
V

f(x, u)u dμ

≤ 1
2

(∫
V

ε|u|2 + cε|u|p dμ

)

≤ ε‖u‖2
2 + Cε‖u‖p

p.

�
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Lemma 2.3. Let 0 ≤ ρ < ρ̃+

κ . For any u ∈ X+, ‖u‖2
ρ :=

(
‖u‖2−

∫
V

ρ
(|x|2+1) |u|2

dμ
)
satisfies

‖u‖2 ≥ ‖u‖2
ρ ≥ 1

2
(ρ̃+ − κρ)‖u‖2.

Hence ‖ · ‖ρ is a norm defined on X+ and it is equivalent with the norm ‖ · ‖.

Proof. For any u ∈ X+, clearly, we have that ‖u‖2 ≥ ‖u‖2
ρ. In the following,

we prove that

‖u‖2
ρ ≥ 1

2
(ρ̃+ − κρ)‖u‖2.

By (4) with ρ+ ≥ ρ̃+ and the Hardy inequality (5), one has that

‖u‖2
ρ = ‖u‖2 −

∫
V

ρ

(|x|2 + 1)
|u|2 dμ

=
∫
V

(
|∇u|2 + V (x)|u|2

)
− ρ

(|x|2 + 1)
|u|2 dμ

≥
∫
V

ρ̃+|∇u|2 − ρ

(|x|2 + 1)
|u|2 dμ

≥ (ρ̃+ − κρ)
∫
V

|∇u|2 dμ. (6)

If
∫
V

V (x)|u|2 dμ ≤ 0, then it follows from (6) that

‖u‖2
ρ ≥ (ρ̃+ − κρ)

∫
V

|∇u|2 dμ

≥ (ρ̃+ − κρ)
∫
V

(|∇u|2 + V (x)|u|2) dμ

≥ 1
2
(ρ̃+ − κρ)

∫
V

(|∇u|2 + V (x)|u|2) dμ

=
1
2
(ρ̃+ − κρ)‖u‖2.

If
∫
V

V (x)|u|2 dμ ≥ 0, by the Hardy inequality (5) and the fact κρ <

ρ̃+ ≤ 1, we have that∫
V

|∇u|2 − ρ

(|x|2 + 1)
|u|2 dμ ≥ (1 − κρ)

∫
V

|∇u|2 dμ > 0.

This implies that

‖u‖2
ρ = ‖u‖2 −

∫
V

ρ

(|x|2 + 1)
|u|2 dμ

=
∫
V

(
|∇u|2 + V (x)|u|2

)
− ρ

(|x|2 + 1)
|u|2 dμ

≥
∫
V

V (x)|u|2 dμ

≥ (ρ̃+ − κρ)
∫
V

V (x)|u|2 dμ, (7)
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where we have used the fact that (ρ̃+−κρ) < 1 in the last inequality. Summing
(6) and (7), we get that

‖u‖2
ρ ≥ 1

2
(ρ̃+ − κρ)‖u‖2.

In a summary, we have ‖u‖2
ρ ≥ 1

2 (ρ̃+ − κρ)‖u‖2. �

Lemma 2.4. If limn→+∞ |xn| = +∞, then for any u ∈ X, as n → +∞,∫
V

1
(|x|2 + 1)

|u(x − xn)|2 dμ → 0.

Proof. Let φm ∈ Cc(V) and φm → u in X as m → +∞. Assume that
supp(φm) ⊂ Brm

with rm ≥ 1. Since limn→+∞ |xn| = +∞, for any m, there
exists n = n(m) such that |xn| − rm ≥ m and {n(m)} is an increasing
sequence. Then∫

V

1
(|x|2 + 1)

|φm(x − xn)|2 dμ =
∫
V

1
(|x + xn|2 + 1)

|φm|2 dμ

=
∫

Brm

1
(|x + xn|2 + 1)

|φm|2 dμ

≤ 1
(|xn| − rm)2

∫
Brm

|φm|2 dμ

≤ 1
m2

‖φm‖2
2 → 0, as m → +∞.

Then by the Hardy inequality (5), we get the result. �

Let (Ω,Σ, τ) be a measure space, which consists of a set Ω equipped
with a σ−algebra Σ and a Borel measure τ : Σ → [0,+∞]. We introduce the
classical Brézis—Lieb lemma [3].

Lemma 2.5. (Brézis–Lieb lemma) Let (Ω,Σ, τ) be a measure space and {un}
⊂ Lp(Ω,Σ, τ) with 0 < p < +∞. If
(a) {un} is uniformly bounded in Lp(Ω),

(b) un → u, τ−almost everywhere in Ω,
then we have that

lim
n→+∞

(‖un‖p
Lp(Ω) − ‖un − u‖p

Lp(Ω)) = ‖u‖p
Lp(Ω).

Remark 2.6. If Ω is countable and τ is the counting measure μ in Ω, then we
get a discrete version of the Brézis–Lieb lemma.

We give a discrete Lions lemma corresponding to Lions [24] on R
N ,

which denies a sequence {un} to distribute itself over V.

Lemma 2.7. (Lions lemma) Let 1 ≤ p < +∞. Assume that {un} is bounded
in �p(V) and ‖un‖∞ → 0, as n → ∞. Then for any p < q < +∞, as n → ∞,

un → 0, in �q(V).
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Proof. For p < q < +∞, this result follows from the interpolation inequality

‖un‖q
q ≤ ‖un‖p

p‖un‖q−p
∞ .

�

Finally, we prove that the direct sum X+ ⊕ X− in X associated to
a decomposition of the spectrum of the operator A remains “topologically
direct” in the �p(V) space.

Lemma 2.8. Let X+⊕X− be the decomposition of X = �2(V) according to the
positive and negative part of the spectrum σ(A). Assume that P, Q: X → X
are the projectors onto X− along X+ and onto X+ along X−, respectively.
Then for any p ∈ [1,+∞], the restrictions of P and Q to X ∩ �p(V) are
�p−continuous.

Proof. Assume that �p(V;C) = �p(V) + i �p(V) is the complexification of
�p(V). Let Ap be the operator

Ap: �p(V;C) → �p(V;C): u 	→ −Δu + V (x)u

with domain D(Ap) := {u ∈ �p(V;C)|Apu ∈ �p(V;C)}. Since the potential V
is bounded, it follows from [2] that the spectrum σ(Ap) ⊂ R is independent
of p ∈ [1,+∞], and moreover, for any λ �∈ σ(Ap) = σ(A2) = σ(A),

(Ap − λ)−1 = (A2 − λ)−1, on �p(V;C) ∩ �2(V;C).

Then 0 �∈ σ(Ap) and we assume that Pp, Qp are the projectors on the negative
and positive eigenspaces of Ap. Since σ(Ap) is bounded below, by Theorem
6.17 of [18], we can define the projector Pp as follows:

Pp =
1

2πi

∫
Γ

(Ap − λ)−1 dλ,

where Γ is a right-oriented curve around the negative part of σ(Ap) but not
crossing the spectrum. This yields that

Pp = P2, on �p(V;C) ∩ �2(V;C).

Then we get the desired result since P = P2|X and Q = I − P . �

3. Generalized Linking Theorem

In this section, we first introduce a new topology T on the space X so as
to provide a generalized linking theorem involving the Nehari–Pankov man-
ifold, then we demonstrate that the functional Jρ ∈ C1(X,R) satisfies the
conditions of the linking theorem.

Let X = X+ ⊕ X− with X+ ⊥ X−. For any u ∈ X, we write u =
u+ + u−, where u+ ∈ X+ and u− ∈ X−, as the direct sum decomposition.

Clearly, we have the norm topology ‖ · ‖ on X. Now we introduce a new
topology T on X which is introduced by the norm

‖u‖T = max

{
‖u+‖,

∞∑
k=1

1
2k+1

|〈u−, ek〉|
}

,
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where {ek}+∞
k=1 is a complete orthonormal system in X− [19,42]. Observe that

for any u ∈ X,

‖u+‖ ≤ ‖u‖T ≤ ‖u‖.

The convergence of a sequence {un} ⊂ X in T will be denoted by un
T−→ u.

Obviously, the new topology T is closely related to the topology on X which
is strong on X+ and weak on X−. More precisely, if {un} ⊂ X is bounded,
then

un
T−→ u ⇔ u+

n → u+ and u−
n ⇀ u−. (8)

We will show that the functional Jρ satisfies the following conditions:

(A1) For ρ ≥ 0, Jρ is T −upper semicontinuous, i.e., J−1
ρ ([t,+∞)) is T -closed

for any t ∈ R;

(A2) For ρ ≥ 0, J ′
ρ is T −to-weak∗ continuous, i.e. J ′

ρ(un) ⇀ J ′
ρ(u) as un

T−→
u0;

(A3) For 0 ≤ ρ < ρ̃+, there exists r > 0 such that m := infu∈X+:‖u‖=r Jρ(u) >
0;

(A4) For 0 ≤ ρ < ρ̃+, if u ∈ X\X−, then there exists R(u) > r such that

sup
∂M(u)

Jρ ≤ Jρ(0) = 0,

where M(u) = {tu + v ∈ X|v ∈ X−, ‖tu + v‖ ≤ R(u), t ≥ 0} ⊂
R

+u ⊕ X− = R
+u+ ⊕ X− with R

+ = [0,+∞);
(A5) For ρ ≥ 0, if u ∈ Nρ, then Jρ(u) ≥ Jρ(tu + v) for t ≥ 0 and v ∈ X−.

Note that the conditions (A3) and (A4) imply that the functional Jρ

satisfies the linking geometry. Hence, we introduce a generalized linking the-
orem. For any A ⊂ X, I ⊂ [0,+∞) such that 0 ∈ I, and h : A × I → X, we
collect the following assumptions:

(h1): h is T -continuous (with respect to norm ‖ · ‖T );

(h2): h(u, 0) = u for all u ∈ A;

(h3): Jρ(u) ≥ Jρ(h(u, t)) for all (u, t) ∈ A × I;

(h4): each (u, t) ∈ A×I has an open neighborhood W in the product topology
of (X, T ) and I such that the set {v − h(v, s) : (v, s) ∈ W ∩ (A × I)} is
contained in a finite-dimensional subspace of X.

Now we state the linking theorem, which can be seen in [26,42].

Theorem 3.1. If Jρ ∈ C1(X,R) satisfies (A1)–(A4), then there exists a Ce-
rami sequence {un} at level cρ, that is, Jρ(un) → c and (1+‖un‖)J ′

ρ(un) → 0,
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where

cρ := inf
u∈X\X−

inf
h∈Γ(u)

sup
u′∈M(u)

Jρ(h(u′, 1)) ≥ m > 0,

Γ(u) := {h: M(u) × [0, 1] → X satisfies (h1) − (h4)}.

Suppose that (A5) holds, then cρ ≤ infNρ
Jρ. If cρ ≥ Jρ(u) for some critical

point u ∈ X\X−, then cρ = infNρ
Jρ.

Now we are devoted to verify the conditions (A1)–(A5) so as to apply
the linking theorem 3.1. First, we show that Jρ satisfies (A1)–(A2).

Lemma 3.2. Let ρ ≥ 0. Then Jρ is T −upper semicontinuous and J ′
ρ is T −to-

weak∗ continuous.

Proof. Assume that un
T−→ u. Let t ∈ R such that

Jρ(un) =
1
2
(‖u+

n ‖2 − ‖u−
n ‖2) − 1

2

∫
V

ρ

(|x|2 + 1)
|un|2 dμ −

∫
V

F (x, un) dμ ≥ t.

It is clear that ‖u+
n ‖ is bounded; Since ‖u−

n ‖2 ≤ ‖u+
n ‖2 −2t, ‖u−

n ‖ is bounded
and hence ‖un‖ is bounded. Passing to a subsequence if necessary,

un ⇀ u, in X, and un → u, pointwise inV.

(i) By (8), the weak lower semicontinuity of ‖ · ‖ and the Fatou lemma, we
obtain that

Jρ(u) =
1
2
(‖u+‖2 − ‖u−‖2) − 1

2

∫
V

ρ

(|x|2 + 1)
|u|2 dμ −

∫
V

F (x, u) dμ ≥ t.

(ii) It is sufficient to show that for any φ ∈ Cc(V), lim
n→+∞

〈J ′
ρ(un), φ〉 =

〈J ′
ρ(u), φ〉.

Assume that supp(φ) ⊂ Br with r ≥ 1. Since Br+1 is a finite set
in V, un → u pointwise in V as n → +∞ and the assumption (F2), we
get that

〈J ′
ρ(un), φ〉 − 〈J ′

ρ(u), φ〉 =
1

2

∑
x∈Br+1

∑
y∼x

[(un − u)(y) − (un − u)(x)](φ(y) − φ(x))

+
∑

x∈Br

(V (x) − ρ

(|x|2 + 1)
)(un − u)(x)φ(x)

−
∑

x∈Br

(f(x, un) − f(x, u))φ(x)

→ 0, n → +∞.

�
Then, for 0 ≤ ρ < ρ̃+

κ , we prove that Jρ satisfies (A3)-(A4).

Lemma 3.3. Let 0 ≤ ρ < ρ̃+

κ . Then for any u0 ∈ X\X−, there exist R(u0) >
r > 0 such that

m := inf
u∈X+: ‖u‖=r

Jρ(u) > Jρ(0) = 0 ≥ sup
∂M(u0)

Jρ(u),

where M(u0) = {u = tu0 + v ∈ X: v ∈ X−, ‖u‖ ≤ R(u0), t ≥ 0} ⊂ R
+u0 ⊕

X−.
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Proof. For u ∈ X+, by Lemmas 2.2 and 2.3, we get that

Jρ(u) ≥ 1
4
(ρ̃+ − κρ)‖u‖2 −

∫
V

F (x, u) dμ

≥ 1
4
(ρ̃+ − κρ)‖u‖2 − ε‖u‖2

2 − Cε‖u‖p
p.

Note that ‖·‖ is equivalent to ‖·‖2 on X+ and ‖u‖p ≤ ‖u‖2 for p > 2. Hence,
for ε > 0 small enough, there exists r > 0 small enough such that

m := inf
u∈X+: ‖u‖=r

Jρ(u) > Jρ(0) = 0.

Now we prove that sup∂M(u0) Jρ(u) ≤ 0. For u0 ∈ X\X−, since R
+u0 ⊕

X− = R
+u+

0 ⊕X−, we may assume that u0 ∈ X+. Arguing indirectly, assume
that for some sequence {un} ⊂ R

+u0 ⊕ X− with ‖un‖ → +∞ such that
Jρ(un) > 0. Let zn = un

‖un‖ = snu0 + z−
n , then ‖snu0 + z−

n ‖ = 1. Passing to
a subsequence, we assume that sn → s, z−

n ⇀ z− and z−
n → z− pointwise in

V. Hence,

0 <
Jρ(un)
‖un‖2

=
1
2
(s2

n‖u0‖2 − ‖z−
n ‖2 −

∫
V

ρ

(|x|2 + 1)
|zn|2 dμ) −

∫
V

F (x, un)
|un|2 z2

n dμ

≤ 1
2
(s2

n‖u0‖2 − ‖z−
n ‖2) −

∫
V

F (x, un)
|un|2 z2

n dμ. (9)

If s = 0, then it follows from (9) that

0 ≤ 1
2
‖z−

n ‖2 +
∫
V

F (x, un)
|un|2 z2

n dμ ≤ 1
2
s2

n‖u0‖2 → 0,

which yields that ‖z−
n ‖ → 0, and hence 1 = ‖snu0 + z−

n ‖2 → 0. This is a
contradiction.

If s �= 0, since ‖un‖ → +∞, by (9) and (F4), we get that

0 ≤ lim sup
n→+∞

[
1
2
s2

n‖u0‖2 −
∫
V

F (x, un)
|un|2 z2

n dμ]

≤ 1
2
s2‖u0‖2 − lim inf

n→+∞

∫
V

F (x, un)
|un|2 z2

n dμ

≤ 1
2
s2‖u0‖2 −

∫
V

lim inf
n→+∞

F (x, un)
|un|2 z2

n dμ

→ −∞.

This is impossible. Hence we complete the proof.
�

Lemma 3.3 implies that the Nehari Manifold Nρ �= ∅.

Corollary 3.4. If 0 ≤ ρ < ρ̃+

κ , then for any u0 ∈ X\X−, there exist t > 0
and v ∈ X− such that tu0 + v ∈ Nρ.
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Proof. For u0 ∈ X\X−, since R
+u0 ⊕ X− = R

+u+
0 ⊕ X−, we may assume

that u0 ∈ X+, then tu0 ∈ X+. Consider a map ξ : R+ × X− → R in the
form

ξ(t, v) = −Jρ(tu0 + v),

where

Jρ(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 − 1

2

∫
V

ρ

(|x|2 + 1)
|u|2 dμ −

∫
V

F (x, u) dμ.

Observe that ξ is bounded from below, coercive and weakly lower semi-
continuous for ρ ≥ 0. Hence there exist t ≥ 0 and v ∈ X− such that
Jρ(tu0 + v) = sup

R+u0⊕X− Jρ(u). By Lemma 3.3, one gets that t > 0, and
hence tu0 + v ∈ Nρ.

�

The following lemma implies the condition (A5).

Lemma 3.5. Let ρ ≥ 0. For any u ∈ X\X−,

Jρ(u) ≥ Jρ(tu + v) − 〈J ′
ρ(u), (

t2 − 1
2

u + tv)〉, t ≥ 0, v ∈ X−.

Proof. For u ∈ X\X−, v ∈ X− and t ∈ [0,+∞), we have that tu + v =
tu+ + (tu− + v), where tu+ ∈ X+ and (tu− + v) ∈ X−. Direct calculation
yields that

Jρ(tu + v) − Jρ(u) −
〈

J ′
ρ(u),

(
t2 − 1

2
u + tv

)〉

= −1
2
‖v‖2 − 1

2

∫
V

ρ

(|x|2 + 1)
|v|2 dμ +

∫
V

ϕ(t, x) dμ

≤
∫
V

ϕ(t, x) dμ,

where ϕ(t, x) := ( t2−1
2 u + tv)f(x, u) + F (x, u) − F (x, tu + v). We only need

to prove, for any x ∈ V, that

F (x, u) − F (x, tu + v) ≤ −
(

t2 − 1
2

u + tv

)
f(x, u), t ≥ 0, v ∈ R, (10)

since this implies that ϕ(t, x) ≤ 0 for t ≥ 0 and x ∈ V.
Now we prove (10). In fact, for any x ∈ V and u �= 0, the condition (F5)

implies that

f(x, s) ≥ f(x, u)
|u| |s|, s ≥ u. (11)

To show (10), without loss of generality, we assume that u ≤ tu + v. Note
that

F (x, tu + v) − F (x, u) =
∫ tu+v

u

f(x, s) ds,



78 Page 14 of 28 L. Wang MJOM

if 0 < u ≤ tu + v or u ≤ tu + v ≤ 0, by (3) and (11),∫ tu+v

u

f(x, s) ds ≥ f(x, u)
|u|

∫ tu+v

u

|s| ds ≥ (
t2 − 1

2
u + tv)f(x, u);

if u < 0 ≤ tu + v, by (3) and (11),∫ tu+v

u

f(x, s) ds ≥
∫ 0

u

f(x, s) ds ≥ f(x, u)
|u|

∫ 0

u

|s|ds ≥ (
t2 − 1

2
u + tv)f(x, u).

Hence (10) holds. The proof is completed. �

4. The Behavior of Cerami Sequences

In this section, we study the behavior of Cerami sequences, which are useful
in the proof of Theorems 1.1 and 1.3.

Lemma 4.1. Let {ρn} ⊂ [0,+∞), ρn ≤ ρ < ρ̃+

κ . If {un} ⊂ X\X− satisfies
(1 + ‖un‖)J ′

ρn
(un) → 0 and Jρn

(un) is bounded from above, then {un} is
bounded. In particular, any Cerami sequence of Jρ at level c ≥ 0 is bounded
for 0 ≤ ρ < ρ̃+

κ .

Proof. Let Jρn
(un) ≤ M . Suppose that ‖un‖ → +∞ as n → +∞. Let

vn := un

‖un‖ , then up to a subsequence, we have that

vn ⇀ v, in X, and vn → v, pointwise in V.

We first claim that {v+
n } does not converge to 0 in �q(V) with q > 2. In

fact, by contradiction, we assume that v+
n → 0 in �q(V). Then it follows from

Lemma 2.2 that, for any s > 0,∫
V

F (x, sv+
n ) dμ → 0.

Moreover, by (3) and the fact that 〈J ′
ρn

(un), un〉 → 0 as n → +∞, we have
that

‖u+
n ‖2 − ‖u−

n ‖2 ≥ 〈J ′
ρn

(un), un〉,
and hence

2‖u+
n ‖2 ≥ ‖u+

n ‖2 + ‖u−
n ‖2 + 〈J ′

ρn
(un), un〉 = ‖un‖2 + 〈J ′

ρn
(un), un〉.

Since v+
n = u+

n

‖un‖ , passing to a subsequence if necessary, one gets thatpg
lim infn→∞ ‖v+

n ‖2 = C > 0. As a consequence, by Lemmas 2.3 and 3.5,

M ≥ lim sup
n→∞

Jρn
(un) ≥ lim sup

n→∞
Jρn

(sv+
n )

=
s2

2
lim sup

n→∞
‖v+

n ‖2
ρn

≥ s2

4
(ρ̃+ − ρκ) lim sup

n→∞
‖v+

n ‖2

≥ s2

4
C(ρ̃+ − ρκ). (12)
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We obtain a contradiction since s is arbitrary. We complete the claim.
Then by Lions Lemma 2.7, there exist a sequence {yn} ⊂ V and a

positive constant c such that |v+
n (yn)| ≥ c > 0. Let wn(x) = vn(x+yn). Then

for some w ∈ X,

wn ⇀ w, in X, and wn → w, pointwise in V,

where |w+(0)| ≥ c > 0. This implies that w �= 0.
Denote ũn(x) = un(x + yn), then |ũn(x)| = |wn(x)|‖un‖ → +∞ since

w(x) �= 0. It follows from (F4) that

F (x, ũn(x))
‖un‖2

=
F (x, ũn(x))

|ũn(x)|2 |wn(x)|2 → +∞.

Since 〈J ′
ρn

(un), un〉 → 0 as n → +∞, for n large enough,

‖u+
n ‖2 − ‖u−

n ‖2 −
∫
V

ρn

(|x|2 + 1)
|un|2 dμ ≥ 0.

This implies that 0 ≤ 1
‖un‖2

∫
V

ρn

(|x|2+1) |un|2 dμ ≤ 1 for n large enough. There-
fore by the periodicity of F in x ∈ V and the Fatou lemma,

0 = lim sup
n→∞

Jρn(un)

‖un‖2
= lim sup

n→∞

[
1

2

(
‖v+

n ‖2 − ‖v−
n ‖2 − 1

‖un‖2

∫
V

ρn

(|x|2 + 1)
|un|2 dμ

)

−
∫
V

F (x, ũn(x))

‖un‖2
dμ

]

= −∞.

We get a contradiction. �

Lemma 4.2. Let 0 ≤ ρ < ρ̃+

κ . Assume that {un} ⊂ X is a bounded Palais–
Smale sequence of the functional Jρ at level cρ ≥ 0, that is, J ′

ρ(un) → 0 and
Jρ(un) → cρ. Passing to a subsequence if necessary, there exists some u ∈ X
such that

(i) limn→+∞ Jρ(un − u) = cρ − Jρ(u);

(ii) limn→+∞ J ′
ρ(un − u) = 0, in X.

Proof. Since {un} is bounded in X, we assume that for some u ∈ X,

un ⇀ u, in X, and un → u, pointwise in V.

(i) By the Brézis–Lieb lemma 2.5, we obtain that

‖u+
n ‖2 − ‖u+

n − u+‖2 = ‖ū+‖2 + o(1), ‖u−
n ‖2 − ‖u−

n − u−‖2 = ‖u−‖2 + o(1),

(13)∫
V

|un|2
(|x|2 + 1)

dµ −
∫
V

|un − u|2
(|x|2 + 1)

dµ =

∫
V

|u|2
(|x|2 + 1)

dµ+ o(1).

(14)

We claim that∫
V

F (x, un) dμ =
∫
V

F (x, un − u) dμ +
∫
V

F (x, u) dμ + o(1). (15)
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In fact, direct calculation yields that∫
V

F (x, un) dμ −
∫
V

F (x, un − u) dμ = −
∫
V

∫ 1

0

d
dθ

F (x, un − θu) dθ dμ

=
∫ 1

0

∫
V

f(x, un − θu)u dμdθ.

Since {un − θu} is bounded in X, by (2), we obtain that the sequence
{f(x, un − θu)u} is uniformly summable and tight over V, that is, for
any ε > 0, there is a δ > 0 such that, for any Ω ⊂ V with the measure
μ(Ω) < δ, ∫

Ω

|f(x, un − θu)u|dμ < ε

with any n ∈ N; and there exists Ω0 with μ(Ω0) < +∞ such that, for
any n ∈ N, ∫

V\Ω0

|f(x, un − θu)u|dμ < ε.

Note that

f(x, un − θu)u → f(x, u − θu)u, pointwise in V,

by the Vitali convergence theorem, we get that f(x, u−θu)u is summable
and∫

V

f(x, un − θu)u dμ →
∫
V

f(x, u − θu)u dμ, n → +∞.

Then as n → +∞, we get that
∫
V

F (x, un) dμ −
∫
V

F (x, un − u) dμ →
∫ 1

0

∫
V

f(x, u − θu)u dμ dθ =

∫
V

F (x, u) dμ.

Hence (15) holds. Therefore, by (13)–(15), one has that

Jρ(un) = Jρ(un − u) + Jρ(u) + o(1).

Note that limn→+∞ Jρ(un) = cρ, hence

Jρ(un − u) = cρ − Jρ(u) + o(1).

(ii) For any φ ∈ Cc(V), assume that supp(φ) ⊂ Br, where r is a positive
constant. Since Br+1 is a finite set in V and un → u pointwise in V as
n → +∞, we get that

|〈J ′
ρ(un − u), φ〉| ≤

∑
x∈Br+1

|∇(un − u)||∇φ| +
∑

x∈Br

|V (x)||un − u|φ|

+
∑

x∈Br

ρ

(|x|2 + 1)
|un − u||φ|

+
∑

x∈Br

|f(x, un − u)||φ|

≤ Cξn‖φ‖,
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where C is a constant not depending on n and ξn → 0 as n → +∞.
Hence

lim
n→+∞

‖J ′
ρ(un − u)‖X = lim

n→+∞
sup

‖φ‖=1

|〈J ′
ρ(un − u), φ〉| = 0.

�

We give a decomposition of bounded Palais–Smale sequence of Jρ in
discrete version.

Lemma 4.3. Let 0 ≤ ρ < ρ̃+

κ . Assume that {un} ⊂ X is a bounded Palais–
Smale sequence of Jρ at level cρ ≥ 0. Then there exist sequences {ūi}k

i=0 ⊂ X
and {xi

n}0≤i≤k ⊂ V with x0
n = 0, |xi

n| → +∞, |xi
n − xj

n| → +∞, i �= j,
i, j = 1, 2, . . . , k, such that, up to a subsequence,

(i) J ′
ρ(ū0) = 0;

(ii) J ′
0(ūi) = 0 with ūi �= 0 for i = 1, 2, · · ·, k;

(iii) un − Σk
i=0ūi(x − xi

n) → 0, ‖un‖2 → Σk
i=0‖ūi‖2, n → ∞;

(iv) cρ = Jρ(ū0) + Σk
i=1J0(ūi).

Proof. We assume that for some ū0 ∈ X,

un ⇀ ū0, in X, and un → ū0, pointwise in V.

Similar to the proof of (ii) in Lemma 3.2, we obtain that J ′
ρ(ū0) = 0 since

J ′
ρ(un) → 0 as n → +∞.

Let vn(x) = un(x) − ū0(x). Then, we have that

vn ⇀ 0, in X, and vn → 0, poinwise inV.

By Lemma 4.2, one has that

Jρ(vn) = cρ − Jρ(ū0) + o(1),
J ′

ρ(vn) = o(1), in X.
(16)

For {vn}, we discuss two cases:
Case 1 lim supn→+∞ ‖vn‖∞ = 0. By the boundedness of {vn} in X and
Lemma 2.7, we have that ‖vn‖t → 0 as n → +∞ for t > 2. By Lemma 2.8,
for t > 2, we have that

v+
n → 0, v−

n → 0, in �t(V). (17)



78 Page 18 of 28 L. Wang MJOM

Since J ′
ρ(un) = o(1), J ′

ρ(ū0) = 0, un = vn + ū0 and u+
n = v+

n + ū+
0 , we obtain

that

o(1) = 〈J ′
ρ(un), v+

n 〉

= (u+
n , v+

n ) − ρ

∫
V

unv+
n

(|x|2 + 1)
dμ −

∫
V

f(x, un)v+
n dμ

= ‖v+
n ‖2 − ρ

∫
V

vnv+
n

(|x|2 + 1)
dμ + 〈J ′

ρ(ū0), v+
n 〉 +

∫
V

f(x, ū0)v+
n dμ

−
∫
V

f(x, un)v+
n dμ

= ‖v+
n ‖2 − ρ

∫
V

|v+
n |2

(|x|2 + 1)
dμ − ρ

∫
V

v−
n v+

n

(|x|2 + 1)
dμ

+
∫
V

f(x, u0)v+
n dμ −

∫
V

f(x, un)v+
n dμ

≥ 1
2
(ρ̃+ − ρκ)‖v+

n ‖2 − ρ

∫
V

v−
n v+

n

(|x|2 + 1)
dμ +

∫
V

f(x, ū0)v+
n dμ

−
∫
V

f(x, un)v+
n dμ,

which means that
1
2
(ρ̃+ − ρκ)‖v+

n ‖2 ≤ ρ

∫
V

v−
n v+

n

(|x|2 + 1)
dμ

+
∫
V

f(x, un)v+
n dμ −

∫
V

f(x, ū0)v+
n dμ + o(1). (18)

Similarly, we have that

o(1) = 〈J ′
ρ(un), v−

n 〉

= −‖v−
n ‖2 − ρ

∫
V

|v−
n |2

(|x|2 + 1)
dμ − ρ

∫
V

v−
n v+

n

(|x|2 + 1)
dμ

+
∫
V

f(x, ū0)v−
n dμ −

∫
V

f(x, un)v−
n dμ

≤ −‖v−
n ‖2 − ρ

∫
V

v−
n v+

n

(|x|2 + 1)
dμ +

∫
V

f(x, ū0)v−
n dμ −

∫
V

f(x, un)v−
n dμ,

which yields that

‖v−
n ‖2 ≤ −ρ

∫
V

v−
n v+

n

(|x|2 + 1)
dμ +

∫
V

f(x, ū0)v−
n dμ −

∫
V

f(x, un)v−
n dμ + o(1).

(19)

Then it follows from (17)–(19) that

1
2
(ρ̃+ − ρκ)‖vn‖2 ≤

∫
V

f(x, ū0)v−
n dμ −

∫
V

f(x, un)v−
n dμ +

∫
V

f(x, un)v+
n dμ

−
∫
V

f(x, ū0)v+
n dμ + o(1)

→ 0,
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that is vn → 0 in X. Then the proof ends with k = 0.
Case 2 lim infn→+∞ ‖vn‖∞ = δ > 0. Then there exists a sequence {x1

n} ⊂ V

such that |vn(x1
n)| ≥ δ

2 > 0. Denote un,1(x) = vn(x + x1
n) and assume that,

for some ū1 ∈ X,

un,1 ⇀ ū1, in X, and un,1 → ū1, pointwise in V,

where |ū1(0)| ≥ δ
2 > 0. Since vn → 0 pointwise in V, one gets easily that

|x1
n| → +∞ as n → +∞.

For any φ ∈ X, by the Hölder inequality, Lemma 2.4 and (5), we get
that ∫

V

1
(|x|2 + 1)

vn(x)φ(x − x1
n) dμ → 0, as n → +∞.

Therefore, by the periodicity of f in x ∈ V, we obtain that

o(1) = 〈J ′
ρ(vn), φ(x − x1

n)〉

= (v+
n , φ(x − x1

n)) − (v−
n , φ(x − x1

n)) −
∫
V

ρ

(|x|2 + 1)
vnφ(x − x1

n) dμ

−
∫
V

f(x, vn)φ(x − x1
n) dμ

= (u+
n,1, φ) − (u−

n,1, φ) −
∫
V

f(x, un,1)φ dμ + o(1)

= 〈J ′
0(un,1), φ〉 + o(1). (20)

This means that 〈J ′
0(ū1), φ〉 = 0 and ū1 is a nontrivial critical point of J0.

Let

zn(x) = un(x) − ū0(x) − ū1(x − x1
n). (21)

Then we have that

zn ⇀ 0, in X, and zn → 0, pointwise in V.

Observe that vn(x) = ū1(x−x1
n)+zn(x), by (13) and the Brézis–Lieb lemma,

‖u+
n ‖2 = ‖ū+

0 ‖2 + ‖ū+
1 ‖2 + ‖z+

n ‖2 + o(1),
‖u−

n ‖2 = ‖ū−
0 ‖2 + ‖ū−

1 ‖2 + ‖z−
n ‖2 + o(1).

Then one has that

‖un‖2 = ‖ū0‖2 + ‖ū1‖2 + ‖zn‖2 + o(1).

By (16), one sees that {vn} is a Palais–Smale sequence of Jρ at level cρ −
Jρ(ū0). Then it follows from Lemma 4.2 that

lim
n→+∞

Jρ(zn) = lim
n→+∞

(cρ − Jρ(ū0) − Jρ(ū1(x − x1
n)),

lim
n→+∞

J ′
ρ(zn) = 0, in X.
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Note that limn→+∞ |x1
n| = +∞, by the invariance of ‖ · ‖ with respect to

translations, Lemma 2.4 and the periodicity of F in x ∈ V, we have that

lim
n→+∞

Jρ(ū1(x − x1
n)) = lim

n→+∞
[
1
2
(‖ū+

1 (x − x1
n)‖2 − ‖ū−

1 (x − x1
n)‖2

−
∫
V

ρ

(|x|2 + 1)
|ū1(x − x1

n)|2 dμ)

−
∫
V

F (x, ū1(x − x1
n)) dμ]

=
1
2
(‖ū+

1 ‖2 − ‖ū−
1 ‖2) −

∫
V

F (x, ū1) dμ

= J0(ū1).

Hence we obtain that

Jρ(zn) = cρ − Jρ(ū0) − J0(ū1) + o(1),
J ′

ρ(zn) = o(1), in X.

This implies that {zn} is a Palais–Smale sequence of Jρ at level cρ −Jρ(ū0)−
J0(ū1).

For {zn}, if the vanishing case occurs for ‖zn‖∞, by similar arguments
as in Case 1, we obtain that zn → 0 in X, and the proof ends with k = 1.

If the non-vanishing occurs for ‖zn‖∞, by analogous discussions as in
Case 2, there exists a sequence {x2

n} ⊂ V such that |zn(x2
n)| ≥ δ

2 > 0. If we
denote un,2(x) = zn(x + x2

n) and assume that

un,2 ⇀ ū2, in X, and un,2 → ū2, pointwise in V.

Then one gets that |ū2(0)| > 0. This implies that |x2
n| → +∞. In fact, we

also have that |x2
n − x1

n| → +∞ as n → +∞. By contradiction, assume that
{x2

n − x1
n} is bounded in V. Thus there exists a point x0 ∈ V such that

(x2
n − x1

n) → x0 as n → +∞. For x0 ∈ V, it follows from (21) that

un,2(x0 + x1
n − x2

n) = un,1(x0) − ū1(x0).

Since (x2
n − x1

n) → x0 as n → +∞ and |ū2(0)| > 0, one sees that un(2)(x0 −
x2

n +x1
n) �→ 0 in the left hand side of the above equality. While the right hand

side tends to zero as n → +∞. We get a contradiction.
Since 〈J ′

ρ(zn), φ(x−x2
n)〉 = o(1), similar arguments to (20), we can prove

that 〈J ′
0(ū2), φ〉 = 0, and hence ū2 is a nontrivial critical point of J0.

Let

wn(x) = un(x) − ū0(x) − ū1(x − x1
n) − ū2(x − x2

n).

Then we have that

wn ⇀ 0, in X, and wn → 0, pointwise in V.

Note that zn(x) = ū2(x − x2
n) + wn(x), similarly, we have that

‖un‖2 = ‖ū0‖2 + ‖ū1‖2 + ‖ū2‖2 + ‖wn‖2 + o(1),
Jρ(wn) = cρ − Jρ(ū0) − J0(ū1) − J0(ū2) + o(1),
J ′

ρ(wn) = o(1).
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We repeat the process again. We claim that the iterations must stop after
finite steps.

We only need to prove that, for any u �= 0 with J ′
0(u) = 0, there exist

ε1 > 0 and ε2 > 0 such that ‖u‖ ≥ ε1 and J0(u) ≥ ε2.
In fact, for u �= 0 satisfying 〈J ′

0(u), u+〉 = 0, by (F2), (F3) and the
fact ‖u‖p ≤ ‖u‖2 ≤ C‖u‖ for p > 2, we have that for any ε > 0, there is a
constant C1 > 0 such that

‖u+‖2 =
∫
V

f(x, u)u+ dμ ≤ ε‖u+‖‖u‖ + C1‖u+‖‖u‖p−1.

Analogously, for 〈J ′
0(u), u−〉 = 0, we get a constant C2 > 0 such that

‖u−‖2 = −
∫
V

f(x, u)u− dμ ≤ ε‖u−‖‖u‖ + C2‖u−‖‖u‖p−1. (22)

The above two inequalities yield that

‖u‖2 ≤ 2ε‖u‖2 + 2max{C1, C2}‖u‖p.

Let ε be small enough, then there exists ε1 > 0 such that ‖u‖ ≥ ε1.
By Lemma 2.2 and (22), we get that

J0(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 −

∫
V

F (x, u) dμ

=
1
2
‖u‖2 − ‖u−‖2 −

∫
V

F (x, u) dμ

≥ 1
2
‖u‖2 − ε‖u‖2 − C‖u‖p − ε‖u‖2 − C‖u‖p

=
1
2
‖u‖2 − ε‖u‖2 − C‖u‖p.

Since p > 2, there exists ε2 > 0 small enough such that J0(u) ≥ ε2 > 0.
The proof is completed. �

5. Proofs of Theorems 1.1 and 1.3

In this section, we are devoted to prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1. It follows from Theorem 3.1 and Lemma 4.1 that
there exists a bounded Cerami sequence {un} of Jρ at level cρ > 0 in X.
If ρ = 0, by Theorem 3.1, we obtain that

inf
N0

J0 ≥ c0 > 0.

Lemma 4.3 implies that there is a nontrivial critical point u0 ∈ N0 of J0 such
that J0(u0) = c0. Hence u0 is a ground state solution of J0, i.e. J0(u0) =
infN0 J0. In the following, we assume that 0 < ρ < ρ̃+

κ and consider

M(u0) = {u = tu0 + v ∈ X|v ∈ X−, ‖u‖ ≤ R(u0), t ≥ 0} ⊂ R
+u+

0 ⊕ X−.

For un = tnu0 + vn ∈ M(u0), let un ⇀ u = t0u0 + v0 in X. Passing to a
subsequence if necessary, we may assume that

tn → t0, in R
+, vn ⇀ v0, in X−, vn → v0, pointwise in V.(23)
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Then we have that u ∈ M(u0), which implies that M(u0) is weakly closed.
By (23) and the Fatou lemma, we can prove that Jρ is weakly upper semi-
continuous. Then Jρ attains its maximum in M(u0), namely, there exists
t0u0 + v0 ∈ M(u0) such that

Jρ(t0u0 + v0) ≥ Jρ(w)

for any w ∈ M(u0). By Lemma 3.3, we have that Jρ(t0u0 + v0) > 0 and
t0u0 + v0 �= 0. Define h(u, s) = u for u ∈ M(u0) and s ∈ [0, 1]. Note that
(h1)-(h4) in Theorem 3.1 are satisfied, that is h ∈ Γ(u0). Then by Theorem
3.1 and Lemma 3.5, we have that

c0 = J0(u0) ≥ J0(t0u0 + v0) > Jρ(t0u0 + v0) = max
u∈M(u0)

Jρ(h(u, 1)) ≥ cρ.

(24)

Then it follows from Lemma 4.3 that k = 0 and Jρ(ū0) = cρ > 0, that is
ū0 is a nontrivial critical point of Jρ. By Theorem 3.1 again, we get that
cρ = infNρ

Jρ.

In order to prove Theorem 1.3, we first prove a crucial lemma for the
relation between cρ and c0 as ρ → 0+.

Lemma 5.1. Let 0 ≤ ρ < ρ̃+

κ . Assume that (H) and (F1)–(F5) hold. If uρ

and u0 are the ground state solutions of Jρ and J0, then we have that

lim
ρ→0+

cρ = c0.

Proof. Let u0 ∈ N0 be a ground state solution of J0. By Corollary 3.4, there
exist t′ > 0 and v′ ∈ X− such that t′u0 + v′ ∈ Nρ. Then it follows from
Lemma 3.5 that

c0 = J0(u0) ≥ J0(t′u0 + v′) = Jρ(t′u0 + v′) +
1
2

∫
V

ρ

(|x|2 + 1)
|t′u0 + v′|2 dμ

≥ cρ +
1
2

∫
V

ρ

(|x|2 + 1)
|t′u0 + v′|2 dμ,

which implies that

c0 ≥ cρ. (25)

Let uρ ∈ Nρ be a ground state solution of Jρ. Similarly, there exist t > 0 and
v ∈ X− such that tuρ + v ∈ N0, and hence

cρ = Jρ(uρ) ≥ Jρ(tuρ + v) = J0(tuρ + v) − 1
2

∫
V

ρ

(|x|2 + 1)
|tuρ + v|2 dμ

≥ c0 − 1
2

∫
V

ρ

(|x|2 + 1)
|tuρ + v|2 dμ. (26)

We claim that as ρ → 0+,∫
V

ρ

(|x|2 + 1)
|tuρ + v|2 dμ → 0. (27)

Then the result of this lemma follows from (25)–(27).



MJOM The Ground State Solutions of Discrete Nonlinear Schrödinger Page 23 of 28 78

Now we prove (27). In fact, by Theorem 3.1 and Lemma 4.1, we have
that {uρ} is bounded if ρ → 0+. Take any sequence ρn → 0+ such that
ρn ≤ ρ < ρ̃+

κ and let un = uρn
.

We first prove that there is a sequence {yn} ⊂ V such that

|u+
n (yn)| > 0.

Otherwise by Lemma 2.7, we get that u+
n → 0 in �t(V) for t > 2. Since

un ∈ Nρn
, by (2) and the Hölder inequality, we have that

‖u+
n ‖2 =

∫
V

ρn

(|x|2 + 1)
unu+

n dμ +
∫
V

f(x, un)u+
n dμ → 0, n → +∞.

Hence lim supn→∞ Jρn
(un) ≤ 0. However, for sufficiently small r > 0,

Jρn
(un) ≥ Jρn

(
r

‖u+
n ‖

u+
n ) ≥ inf

n∈N

inf
u∈X+:‖u‖=r

Jρn
(u) > 0.

This yields a contradiction.
Then passing to a subsequence if necessary, there exists u ∈ X with

u+(0) �= 0 such that

un(x + yn) ⇀ u(x), in X, and un(x + yn) → u(x),
pointwise in V. (28)

Denote ũn(x) = un(x + yn), let tnũn + ṽn ∈ N0 with tn > 0, ṽn(x) =
vn(x + yn) ∈ X−. By (3), we have that

‖ũ+
n ‖2 = ‖ũ−

n +
ṽn

tn
‖2 +

1
t2n

∫
V

f(x, tnũn + ṽn)(tnũn + ṽn) dμ

≥ ‖ũ−
n +

ṽn

tn
‖2 + 2

∫
V

F (x, tn(ũn + ṽn

tn
))

t2n
dμ, (29)

which means that ‖ũ−
n + ṽn

tn
‖ is bounded. We may assume that ũ−

n (x)+ ṽn(x)
tn

→
v(x) pointwise in V for some v ∈ X−. If tn → +∞, then |tnũn + v̄n| =
tn|ũ+

n + (ũ−
n + ṽn

tn
)| → +∞ since u+(x) + v(x) �= 0. By the Fatou lemma and

(F4), we obtain that
∫
V

F (x, tn(ũn + ṽn

tn
)

t2n|ũn + ṽn

tn
|2

|ũn +
ṽn

tn
|2 dμ → +∞,

which contradicts (29). Therefore {tn} is bounded. As a consequence, ‖tnũ+
n ‖

and ‖tnũ−
n + ṽn‖ are bounded. Then by the Hardy inequality (5),

1
2

∫
V

ρn

(|x|2 + 1)
|tnũn + ṽn|2 dμ → 0 as n → +∞.

�

Proof of Theorem 1.3. Let {un} be a sequence of ground state solutions of
Jρn

. By similar arguments as in Lemma 5.1, we can find a sequence {xn} ⊂ V
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such that |u+
n (xn)| > 0. Passing to a subsequence if necessary, there exists

u ∈ X with u+(0) �= 0 such that

un(x + xn) ⇀ u(x), in X, and un(x + xn) → u(x),
pointwise in V. (30)

For (x, u) ∈ V × R, we define

G(x, u) =
1
2
f(x, u)u − F (x, u).

Note that ρn → 0 as n → ∞. Hence for any φ ∈ X,

〈J ′
0(un(x + xn)), φ〉

= 〈J ′
ρn

(un(x)), φ(x − xn)〉 +
∫
V

ρn

(|x|2 + 1)
un(x)φ(x − xn) dμ → 0.

Similar to the proof of (ii) in Lemma 3.2, we get that 〈J ′
0(un(x + xn)), φ〉 →

〈J ′
0(u), φ〉. Then u is a nontrivial critical point of J0, and hence u ∈ N0. By

Lemma 5.1 and the Fatou lemma, we have that

c0 = lim inf
n→∞

Jρn
(un) = lim inf

n→∞
(Jρn

(un) − 1
2
〈J ′

ρn
(un), un〉)

= lim inf
n→∞

∫
V

G(x, un) dμ = lim inf
n→∞

∫
V

G(x, un(x + xn)) dμ

≥
∫
V

G(x, u) dμ = J0(u) ≥ c0. (31)

This implies that u is a ground state solution of J0.
Let us denote wn(x) = un(x + xn) and observe that∫
V

G(x,wn) − G(x,wn − u) dμ =
∫
V

∫ 1

0

d
dt

G(x,wn − u + tu) dt dμ

=
∫ 1

0

∫
V

g(x,wn − u + tu)u dμdt,

where g(x, s) = ∂
∂sG(x, s) for s ∈ R and x ∈ V. Since {wn−u+tu} is bounded

in X, by (F6) and (2), we can prove that the family {g(x,wn − u + tu)u} is
uniformly summable and tight over V. In addition, note that g(x,wn − u +
tu)u → g(tu)u pointwise in V, then by the Vitali convergence theorem, we
get that g(x, tu)u is summable and∫

V

g(x,wn − u + tu)u dμ →
∫
V

g(x, tu)u dμ, n → +∞.

Then we have that∫
V

G(x,wn) − G(x,wn − u) dμ →
∫ 1

0

∫
V

g(x, tu)u dμdt =
∫
V

G(x, u) dμ,

n → +∞.

Combined with (31), we get that limn→∞
∫
V

G(x,wn − u) dμ = 0. By (F6),
we have that wn → u in �q(V) with 2 < q ≤ p. Note that {wn} is bounded
in �2(V), and hence in �∞(V). By interpolation inequality, for p < t < +∞,

‖wn − u‖t
t ≤ ‖wn − u‖p

p‖wn − u‖t−p
∞ → 0.
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Hence, one has that wn → u in �t(V) for 2 < t < +∞. Combined with ρn → 0
as n → ∞., we get that

‖w+
n − u+‖2 = 〈J ′

ρn
(un), (w+

n − u+)(x − xn)〉 − (u+, w+
n − u+)

+
∫
V

ρn

(|x|2 + 1)
un(w+

n − u+)(x − xn) dμ

+
∫
V

f(x,wn)(w+
n − u+) dμ

→ 0,

‖w−
n − u−‖2 = 〈J ′

ρn
(un), (w−

n − u−)(x − xn)〉 − (u−, w−
n − u−)

−
∫
V

ρn

(|x|2 + 1)
un(w−

n − u−)(x − xn) dμ

−
∫
V

f(x,wn)(w−
n − u−) dμ

→ 0.

Therefore, ‖wn − u‖2 = ‖w+
n − u+‖2 + ‖w−

n − u−‖2 → 0, as n → +∞, which
means that wn → u in X. �
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