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Global Numerical Bounds for the
Number-Theoretic Omega Functions
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Abstract. We obtain global explicit numerical bounds, with best possible
constants, for the differences 1

n

∑
k�n ω(k)−log log n and 1

n

∑
k�n Ω(k)−

log log n, where ω(k) and Ω(k) refer to the number of distinct prime di-
visors, and the total number of prime divisors of k, respectively.
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1. Introduction

For the fixed complex number s, the generalized omega function Ωs(k) is
defined by Ωs(k) =

∑
p�‖k �s, where p�‖k means that � is the largest power of

p, such that p�|k. The cases s = 0 and s = 1 coincide, respectively, with the
well-known number-theoretic omega functions ω(k) =

∑
p|k 1, the number

of distinct prime divisors of the positive integer k, and Ω(k) =
∑

p�‖k �, the
total number of prime divisors of k. Duncan [3] proved that for each arbitrary
integer s � 0

1
n

∑

k�n

Ωs(k) = log log n + Ms + O

(
1

log n

)

, (1.1)

where Ms is a constant depending on s, given by Ms = M + M ′
s, with M

referring to the Meissel–Mertens constant (see Remark 2.11 for more infor-
mation), and

M ′
s =

∑

p

∑

��2

�s − (� − 1)s

p�
.

Here and through the paper,
∑

p means that the sum runs over all primes.
Note that M0 = M . Also, we let M ′ = M1 and M ′

1 = M ′′ =
∑

p
1

p(p−1) . Thus,
M ′ = M + M ′′. Approximation (1.1) is a generalization of the previously
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known result of Hardy and Ramanujan [5] concerning the average of the
functions ω and Ω.

Based on Dirichlet’s hyperbola method and prime number theorem for
arithmetic progressions with error term, Saffari [12] obtained a full asymp-
totic expansion for the average of ω(n) where n runs over the arithmetic
progression a modulo q with gcd(a, q) = 1. For a = q = 1, his result reads as
follows:

1
n

∑

k�n

ω(k) = log log n + M +
m∑

j=1

aj

logj n
+ O

( 1
logm+1 n

)
, (1.2)

where m � 1 is any fixed integer, and the coefficients aj are given by

aj = −
∫ ∞

1

{t}
t2

logj−1 t dt =
(−1)j−1

j

dj

dsj

(
1
s
(s − 1)ζ(s)

)

s=1

. (1.3)

In the above integral representation and what follows in the paper, the ex-
pression {t} stands for the fractional part of t. Diaconis [2] reproved (1.2)
using Dirichlet series of ω, Perron’s formula, and complex integration meth-
ods. One may obtain similar expansion for the average of generalized omega
function Ωs for each fixed real s � 0, replacing M by Ms (see [9, Theorem 1]
for more details).

Explicit versions of (1.1) for s = 0 and s = 1 are obtained in [8] and [6],
respectively, and then both improved in [7, Theorem 1.2], where it is showed
that for each n � 2, the following double-sided approximation holds:

− 1.133
log n

<
1
n

∑

k�n

ω(k) − log log n − M <
1

2 log2 n
. (1.4)

Also

− 1.175
log n

<
1
n

∑

k�n

Ω(k) − log log n − M ′ <
1

2 log2 n
, (1.5)

where the left-hand side is valid for each n � 24 and the right-hand side is
valid for each n � 2.

2. Summary of the Results

2.1. Unconditional Results

In the present paper, we are motivated by finding global numerical lower and
upper bounds for the differences A0(n) and A1(n), where As(n) defined for
any fixed complex number s as follows:

As(n) =
1
n

∑

k�n

Ωs(k) − log log n.

The problem for the case A0(n) is an easy corollary of the inequalities (1.4).
More precisely, we prove the following.
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Theorem 2.1. For all natural numbers n � 2, we have

α0 � A0(n) � β0 (2.1)

with the best possible constants α0 = 45
32 − log log 32 and β0 = 1

2 − log log 2,
and the equality in the left-hand side only for n = 32, and in the right-hand
side only for n = 2.

Similarly, to get a global numerical lower bound for A1(n), we can use
the inequalities (1.5) to show the following result.

Theorem 2.2. For all natural numbers n � 2, we have

α1 � A1(n) (2.2)

with the best possible constant α1 = 8
7 − log log 7 and the equality only for

n = 7.

The problem of obtaining a global numerical upper bound for A1(n)
is quite different from the above ones. Although, computations show that
A1(n) < β1 for any n � 2 with the best possible constant β1 = M ′, but the
inequalities (1.5) are not sharp enough to show this fact. To deal with this
difficulty, we made explicit all steps of the proof of (1.2) by following Saffari’s
argument in [12], and hence, we could to prove the following result.

Theorem 2.3. For all natural numbers n � e14167
� 4.466 × 106152, we have

A1(n) < β1 (2.3)

with the best possible constant β1 = M ′. Moreover, if we assume that the
Riemann hypothesis is true, then (2.3) holds for all natural numbers n �
1400387903260.

To prove Theorem 2.3, we use explicit forms of the prime number theo-
rem with error term. Let π(x) =

∑
p�x 1 be the prime counting function, and

li(x) =
∫ x

0
1

log t dt be the logarithmic integral function, defined as the Cauchy
principle value of the integral. By f = O∗(g), we mean |f | � g, providing an
explicit version of Landau’s notation. It is known [15, Theorem 2] that

π(x) = li(x) + O∗
(
0.2795x(log x)− 3

4 e−
√

(log x)/6.455
)

(x � 229).

Modifying the above to the classical form, for any x > 1.2, we have

π(x) = li(x) + O∗(R(x)), R(x) = x e− 1
3

√
log x. (2.4)

This is, however, a weaker approximation, but it is suitable for our argu-
ments because of its global validity. We will use it to prove the following
unconditional results.

Theorem 2.4. For any fixed integer m � 1 and for any x � e, we have

∑

n�x

ω(n) = x log log x + Mx + x

m∑

j=1

aj

logj x
+ O∗ (Eω(x,m)) , (2.5)
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where

Eω(x,m) = 2m+1m!
x

logm+1 x
+ (2m+1 + 1) em!

√
x

log x

+x e−
√

2
6

√
log x

(
1
2

log x + 3
√

2
√

log x + 21
)

+
√

x.

Corollary 2.5. For x � e14167
� 4.466 × 106152, we have

∑

n�x

ω(n) = x log log x + Mx − (1 − γ)
x

log x
+ O∗

(
5x

log2 x

)

, (2.6)

and consequently, 1
x

∑
n�x ω(n) − log log x < M .

To transfer an average result on the function ω to an average result on
the function Ω, we may consider the average difference J (x) :=

∑
n�x(Ω(n)

− ω(n)), for which it is known [7, Theorem 1.1] that for each integer n � 1

nM ′′ − 25
√

n

log n
< J (n) < nM ′′ −

√
n

log n

(
2 − 20

log n

)
. (2.7)

Modifying the above approximation, we will prove in Lemma 3.4 that J (x) =
M ′′x+O∗( 33

√
x

log x ) for any x � 2. Thus, Theorem 2.4 and Corollary 2.5 transfer
to the following results.

Theorem 2.6. For any fixed integer m � 1 and for any x � e, we have

∑

n�x

Ω(n) = x log log x + M ′x + x

m∑

j=1

aj

logj x
+ O∗ (EΩ(x,m)) , (2.8)

where

EΩ(x,m) = Eω(x,m) +
33

√
x

log x
.

Corollary 2.7. For x � e14167
� 4.466 × 106152, we have

∑

n�x

Ω(n) = x log log x + M ′x − (1 − γ)
x

log x
+ O∗

(
6x

log2 x

)

, (2.9)

and consequently, 1
x

∑
n�x Ω(n) − log log x < M ′.

2.2. Conditional Results

As we observe in Corollary 2.5, approximation (2.5), even with its initial
parameter m = 1, gives explicit bounds for

∑
n�x ω(n) for large values of

x. The reason is using approximation (2.4) with the remainder term R(x),
and appearing the term x e−

√
2

6

√
log x in Eω(x,m). This term comes essen-

tially from the classical zero-free regions for the Riemann zeta function ζ(s).
The situation changes as well, when we use approximations for π(x) under
assuming the Riemann hypothesis (RH), which asserts that �(s) > 1

2 is a
zero-free region, and indeed, it is the best possible zero-free region, for ζ(s).
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Accordingly, it is known [13, Corollary 1] that if the Riemann hypothesis is
true, then

π(x) = li(x) + O∗
(

1
8π

√
x log x

)

(x � 2657).

By computation, we observe that one may drop the coefficient 1
8π and get an

easy to use bound for global range x � 2, as follows:

π(x) = li(x) + O∗
(
R̂(x)

)
, R̂(x) =

√
x log x. (2.10)

Note that the above approximations are close to optimal, because on one hand
von Koch [16] showed that the Riemann hypothesis is equivalent to π(x) =
li(x)+O(

√
x log x), and on the other hand, Littlewood [11] proved that letting

b(x) = log log log x
log x , there are positive constants c1 and c2, such that there are

arbitrarily large values of x for which π(x) > li(x) + c1
√

x b(x) and that
there are also arbitrarily large values of x for which π(x) < li(x)− c2

√
x b(x).

Using conditional approximation (2.10), we obtain the following analogs of
Theorems 2.4, 2.6, and Corollaries 2.5, 2.7.

Theorem 2.8. Assume that the Riemann hypothesis is true. For any fixed
integer m � 1 and for any x � e, we have

∑

n�x

ω(n) = x log log x + Mx + x

m∑

j=1

aj

logj x
+ O∗

(
Êω(x,m)

)
, (2.11)

and
∑

n�x

Ω(n) = x log log x + M ′x + x

m∑

j=1

aj

logj x
+ O∗

(
ÊΩ(x,m)

)
, (2.12)

where

Êω(x,m) =
(

3
2

)m+1

m!
x

logm+1 x
+ 4x

2
3 log x + 9x

2
3

+

((
3
2

)m+1

+ 1

)

em!
x

2
3

log x
+ 15

√
x log x,

and ÊΩ(x,m) = Êω(x,m) + 33
√

x
log x .

Corollary 2.9. Assume that the Riemann hypothesis is true, and let x0 =
1400387903260. Then, for x � x0, we have

∑

n�x

ω(n) = x log log x + Mx − (1 − γ)
x

log x
+ O∗

(
11x

log2 x

)

, (2.13)

and
∑

n�x

Ω(n) = x log log x + M ′x − (1 − γ)
x

log x
+ O∗

(
12x

log2 x

)

, (2.14)

and consequently, 1
x

∑
n�x ω(n)−log log x < M and 1

x

∑
n�x Ω(n)−log log x <

M ′.



319 Page 6 of 17 M. Hassani MJOM

Remark 2.10. According to partial computations we could run, it seems that
the inequality A0(n) < M holds for n � 16; however, it fails for n = 15. Also,
as we mentioned above, the inequality A1(n) < M ′ holds for any integer
n � 2. A computational challenge is to check validity of them up to x0, and
hence, we will get a global conditional bound under RH. More generally, we
ask about finding bounds for the difference As(n) for any fixed real s > 0.
A strategy to attack this problem is to make explicit the argument used in
[9] to approximate the average difference Js(n) :=

∑
k�n (Ωs(k) − ω(k)), for

which it is proved that

2s

√
n

log n
� nM ′

s − Js(n) � (2 + ε)s

√
n

log n
,

holds for each pair of fixed real numbers s > 0 and ε > 0, and for n sufficiently
large.

Remark 2.11. The Meissel–Mertens constant M [4, pp. 94–98] is determined
by

M = γ +
∑

p

(
log

(
1 − p−1

)
+ p−1

)
,

where γ is the Euler–Mascheroni constant [4, pp. 24–40]. Also, see the im-
pressive survey [10] for more information about γ. Among several properties
of the constants M and M ′, we have the following rapidly converging series:

M = γ +
∞∑

k=2

μ(k) log ζ(k)
k

, and M ′ = γ +
∞∑

k=2

ϕ(k) log ζ(k)
k

,

where μ is the Möbus function and ϕ is the Euler function. Computations
based on the above series representations yield that

M � 0.26149721284764278375542683860869585905156664826120,

M ′
� 1.03465388189743791161979429846463825467030798434439.

We have used these values in our numerical verifications of the results of the
present paper. All of computations have been done over Maple software.1

3. Proof of Unconditional Approximations

Proof of Theorem 2.1. Considering the left-hand side of (1.4), we observe
that the inequalities

A0(n) > M − 1.133
log n

> α0

1We mention that the Maple command to compute Ω(n) is bigomega(n) and accordingly,
a Maple code to compute ω(n) is given by

with(numtheory):

rad:= n -> convert(numtheory:-factorset(n), ‘*‘):

smallomega:=n->bigomega(rad(n));
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hold when n > e1.133/(M−α0) � 102841.56. Thus, we obtain the left-hand
side of (2.1) for any integer n � 102842. By computation, it holds also for
2 � n � 102841 with equality only for n = 32. Also, considering the right-
hand side of (1.4), we observe that the inequalities

A0(n) < M +
1

2 log2 n
< β0

hold when n > e1/
√

2(β0−M)
� 2.48. This completes the proof. �

Proof of Theorem 2.2. Since e1.175/(M ′−α1) � 8.23, for any integer n � 9, we
have n > e1.175/(M ′−α1), or equivalently M ′ − 1.175/ log n > α1. Using this
inequality, and the left-hand side of (1.5), we deduce that A1(n) > α1 holds
for n � 24. By computation, it holds also for 2 � n � 24 with equality only
for n = 7. This completes the proof. �

Proof of Theorems 2.4 and 2.6 and their corollaries are based on a series
of lemmas. As in [12], we start by using Dirichlet’s hyperbola method [14,
Theorem 3.1] to get the following result.

Lemma 3.1. For any x and y satisfying 1 � y � x, we have
∑

n�x

ω(n) =
∑

p�y

[
x

p

]

+
∑

n� x
y

π
(x

n

)
−

[
x

y

]

π(y). (3.1)

Proof. Let 1(n) = 1 be the unitary arithmetic function, and �(n) be the
characteristic function of primes; that is, �(n) = 1, when n is prime, and
�(n) = 0 otherwise. We consider Dirichlet convolution of these two functions

1 ∗ �(n) = � ∗ 1(n) =
∑

d|n
�(d)1

(n

d

)
=

∑

d|n
�(d) =

∑

p|n
1 = ω(n).

Note that [x] =
∑

n≤x 1(n), and π(x) =
∑

n�x �(n). Thus, using Dirichlet’s
hyperbola method, for any y satisfying 1 � y � x, we deduce that

∑

n�x

ω(n) =
∑

n�x

1 ∗ �(n) =
∑

n�y

[x

n

]
�(n) +

∑

n� x
y

π
(x

n

)
−

[
x

y

]

π(y).

This gives (3.1). �

Lemma 3.2. For any x and y satisfying 1.2 < y � x, we have
∑

p�y

[
x

p

]

= x log log y + Mx + O∗ (h1(x, y)) , (3.2)

where
h1(x, y) = x e− 1

3

√
log y

(
6
√

log y + 19
)

+ y.

Proof. We have
∑

p�y

[
x

p

]

=
∑

p�y

(
x

p
−

{
x

p

})

= x
∑

p�y

1
p

+ O∗(y).
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The Stieltjes integral and integration by parts gives

∑

p�y

1
p

=
∫ y

2−

dπ(t)
t

=
π(y)

y
+

∫ y

2

li(t)
t2

dt +
∫ y

2

π(t) − li(t)
t2

dt

=
li(y)

y
+ O∗

(
R(y)

y

)

+
∫ y

2

li(t)
t2

dt +
∫ y

2

π(t) − li(t)
t2

dt.

The last integral is dominated by
∫ ∞
2

R(t)
t2 dt, so it is convergent as y → ∞.

Thus, we have
∫ y

2

π(t) − li(t)
t2

dt =
∫ ∞

2

π(t) − li(t)
t2

dt + O∗
(∫ ∞

y

R(t)
t2

dt

)

.

Note that
∫ ∞

y

R(t)
t2

dt = e− 1
3

√
log y

(
6
√

log y + 18
)

.

Also, integration by parts implies
∫ y

2

li(t)
t2

dt = − li(t)
t

∣
∣
∣
y

2
+

∫ y

2

dt

t log t
= log log y − li(y)

y
+

li(2)
2

− log log 2.

Combining the above approximations, we deduce that
∑

p�y

1
p

= log log y + C + O∗
(
e− 1

3

√
log y

(
6
√

log y + 19
))

,

where

C =
∫ ∞

2

π(t) − li(t)
t2

dt +
li(2)

2
− log log 2.

Mertens’ approximation concerning the sum of reciprocal of primes [14, The-
orem 1.10] asserts that

∑
p�y

1
p − log log y → M as y → ∞. This implies

that C = M , and concludes the proof. Meanwhile, let us mention that the
equality C = M also implies that

∫ ∞

2

π(t) − li(t)
t2

dt = M + log log 2 − li(2)
2

� −0.62759759779276794.

Hence an additional output of the completed proof. �

Lemma 3.3. Let x and y satisfy x � e and 1.2 < xδ � y � xΔ < x for some
fixed δ, Δ ∈ (0, 1). Then, we have

∑

n� x
y

π
(x

n

)
=

[
x

y

]

li(y) + x(log log x − log log y)

+x
m∑

j=1

aj

logj x
+ O∗ (h2(x, y)) , (3.3)
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where

h2(x, y) =
m!

δm+1

x

logm+1 x

+
(

1 +
1

δm+1

)

em!
xΔ

log x
+ x e− 1

3

√
log y

(

1 + log
x

y

)

.

Proof. For n � x
y , we have x

n � y � xδ > 1.2. Thus, we may use the
approximation (2.4) to get

∑

n� x
y

π
(x

n

)
=

∑

n� x
y

li
(x

n

)
+ O∗

⎛

⎝
∑

n� x
y

R
(x

n

)
⎞

⎠ .

Since d
dt li

(
x
t

)
= − x

t2(log x−log t) , the Stieltjes integral and integration by parts
gives

∑

n� x
y

li
(x

n

)
=

∫ x
y

1−
li

(x

t

)
d[t] =

[
x

y

]

li(y) + x

∫ x
y

1

[t]
t2(log x − log t)

dt.

We write [t] = t − {t} to get

∑

n� x
y

li
(x

n

)
=

[
x

y

]

li(y) + x(log log x − log log y) − E(x, y), (3.4)

with the remainder E(x, y) given by

E(x, y) = x

∫ x
y

1

{t}
t2(log x − log t)

dt.

Letting gx(t) = (1 − log t
log x )−1, we have

E(x, y) =
x

log x

∫ x
y

1

{t}
t2

gx(t) dt = E1(x, y) − E2(x, y),

with

E1(x, y) =
x

log x

∫ ∞

1

{t}
t2

gx(t) dt,

E2(x, y) =
x

log x

∫ ∞

x
y

{t}
t2

gx(t) dt.

Since y � xδ, we have 1 � t � x
y � x1−δ, and consequently, 0 � log t

log x �
1 − δ < 1. We use Taylor’s formula with remainder [1, Theorem 5.19] for the
function u 
→ (1 − u)−1, which asserts that if 0 � u � 1 − δ for some fixed
δ ∈ (0, 1), as in our case, then for any given integer m � 1

(1 − u)−1 =
m−1∑

r=0

ur + O∗
(

1
δm+1

um

)

. (3.5)
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Taking u = log t
log x in (3.5), we get

gx(t) =
m−1∑

r=0

(
log t

log x

)r

+ O∗
(

1
δm+1

(
log t

log x

)m)

. (3.6)

Thus

E1(x, y) =
x

log x

∫ ∞

1

{t}
t2

m−1∑

r=0

(
log t

log x

)r

dt + hδ(x),

where

|hδ(x)| � x

log x

∫ ∞

1

{t}
t2

1
δm+1

(
log t

log x

)m

dt

� 1
δm+1

x

logm+1 x

∫ ∞

1

logm t

t2
dt =

m!
δm+1

x

logm+1 x
.

Also, we have

x

log x

∫ ∞

1

{t}
t2

m−1∑

r=0

(
log t

log x

)r

dt

=
m∑

j=1

x

logj x

∫ ∞

1

{t}
t2

logj−1 t dt = −x
m∑

j=1

aj

logj x
.

Hence, the following approximation holds for any fixed integer m � 1, with
the coefficients aj given by (1.3):

E1(x, y) = −x
m∑

j=1

aj

logj x
+ O∗

(
m!

δm+1

x

logm+1 x

)

. (3.7)

To deal with E2(x, y) we note that by induction on n � 0, we obtain the
following anti-derivative formula with the coefficients P (n, j) =

(
n
j

)
j!:

∫
logn t

t2
dt = −1

t

n∑

j=0

P (n, j) logn−j t. (3.8)

Since y � xΔ, we get x
y � x1−Δ. Thus, for any integer n � 0, we have

∫ ∞

x
y

{t}
t2

logn t dt �
∫ ∞

x1−Δ

{t}
t2

logn t dt <

∫ ∞

x1−Δ

logn t

t2
dt.

Using (3.8), and assuming that x � e, we get
∫ ∞

x1−Δ

logn t

t2
dt =

logn x

x1−Δ

n∑

j=0

P (n, j)(1 − Δ)n−j 1
logj x

<
logn x

x1−Δ

n∑

j=0

P (n, j) =
logn x

x1−Δ

n∑

j=0

n!
j!

< en!
logn x

x1−Δ
.

Thus, for any integer n � 0, we obtain

In(x, y) :=
∫ ∞

x
y

{t}
t2

logn t dt < en!
logn x

x1−Δ
. (3.9)
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Applying (3.6), we get

log x

x
E2(x, y) =

∫ ∞

x
y

{t}
t2

gx(t) dt

=
m−1∑

r=0

1
logr x

Ir(x, y) + O∗
(

1
δm+1 logm x

Im(x, y)
)

.

Hence, using (3.9), we deduce that

E2(x, y) <

(
em!
δm+1

+ e
m−1∑

r=0

r!

)
xΔ

log x
.

Since
∑m−1

r=0 r! � m!, we obtain

E2(x, y) = O∗
((

1 +
1

δm+1

)

em!
xΔ

log x

)

. (3.10)

Combining (3.4) with approximations (3.7) and (3.10), we obtain

∑

n� x
y

li
(x

n

)
=

[
x

y

]

li(y) + x(log log x − log log y) + x
m∑

j=1

aj

logj x

+O∗
(

m!
δm+1

x

logm+1 x
+

(

1 +
1

δm+1

)

em!
xΔ

log x

)

.

Now, to conclude the proof of (3.3), we just need to approximate the sum∑
n� x

y
R

(
x
n

)
. Since n � x

y , we have x
n � y. Thus

∑

n� x
y

R
(x

n

)
� x e− 1

3

√
log y

∑

n� x
y

1
n

� x e− 1
3

√
log y

(

1 + log
x

y

)

.

This completes the proof. �

Proof of Theorem 2.4. Considering the hyperbolic identity (3.1) and approx-
imations (3.2) and (3.3), we get

∑

n�x

ω(n) = x log log x + Mx + x

m∑

j=1

aj

logj x
+ O∗ (h3(x, y)) , (3.11)

where

h3(x, y) = h1(x, y) + h2(x, y) +
[
x

y

]

(li(y) − π(y)) .

Using (2.4), we deduce that
[
x

y

]

(li(y) − π(y)) =
[
x

y

]

O∗ (R(y))

= O∗
(

x
R(y)

y

)

= O∗
(
x e− 1

3

√
log y

)
.
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Thus, (3.11) holds with h3(x, y) = h1(x, y) + h2(x, y) + x e− 1
3

√
log y, or with

h3(x, y) =
m!

δm+1

x

logm+1 x
+

(

1 +
1

δm+1

)

em!
xΔ

log x

+x e− 1
3

√
log y

(

log
x

y
+ 6

√
log y + 21

)

+ y.

Now, we take δ = Δ = 1
2 , and hence, y =

√
x. Note that the assumption x � e

covers xδ =
√

x > 1.2. Thus, we obtain (2.5), and the proof is complete. �

Proof of Corollary 2.5. We use (2.5) with m = 1. Letting

h(z) = z4e−
√

2
6 z

(
z2

2
+ 3

√
2z + 21

)

+ z2e− z2
2

(
z2 + 5e

)
,

we have

h(
√

log x) =
log2 x

x

(

Eω(x, 1) − 4x

log2 x

)

.

By computation, we observe that h(z) is decreasing for z > 23.97, and
h(119.02511) < 1 < h(119.02510). When x � e14167, we have

√
log x �

119.02511, and consequently, h(
√

log x) < 1. Also, we note that (1 − γ) x
log x >

5x
log2 x

provided x > e5/(1−γ), and this holds for the values of x we work here.
Hence, we conclude the proof. �

Using the following key result, Theorem 2.4 and Corollary 2.5 imply
Theorem 2.6 and Corollary 2.7, respectively.

Lemma 3.4. For any x � 2, we have

J (x) :=
∑

n�x

(Ω(n) − ω(n)) = M ′′x + O∗
(

33
√

x

log x

)

. (3.12)

Proof. Let κ(x) = 25
√

[x]

log[x] . Using the double sided inequality (2.7), we deduce
that

J (x) =
[x]∑

k=1

(Ω(k) − ω(k))

= M ′′[x] + O∗ (κ(x)) = M ′′x + O∗ (κ(x) + M ′′) .

By computation, we observe that κ(x) + M ′′ < 33
√

x
log x for x � 2. �

Proof of Corollary 2.7. Approximations (2.6) and (3.12) imply
∑

n�x

Ω(n) = x log log x + M ′x − (1 − γ)
x

log x
+ O∗

(
5x

log2 x
+

33
√

x

log x

)

.

We note that
33

√
x

log x
<

x

log2 x
, (x � 155652). (3.13)

This completes the proof. �
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4. Proof of Conditional Approximations

To prove conditional results, under assuming the Riemann hypothesis, we
reconstruct Lemma 3.2 and Lemma 3.3, replacing R(x) by R̂(x).

Lemma 4.1. Assume that the Riemann hypothesis is true. Then, for any x
and y satisfying 2 � y � x, we have

∑

p�y

[
x

p

]

= x log log y + Mx + O∗
(

x√
y

(3 log y + 4) + y

)

. (4.1)

Proof. Note that
∫ ∞

y

R̂(t)
t2

dt =
2 log y + 4√

y
.

Thus, following similar argument as the proof of Lemma 3.2 and using (2.10),
we deduce that assuming RH, for any y � 2, we have

∑

p�y

1
p

= log log y + M + O∗
(

3 log y + 4√
y

)

.

This completes the proof. �

Lemma 4.2. Assume that the Riemann hypothesis is true. Let x and y satisfy
x � e and 1.2 < xδ � y � xΔ < x for some fixed δ,Δ ∈ (0, 1). Then, we
have

∑

n� x
y

π
(x

n

)
=

[
x

y

]

li(y) + x(log log x − log log y)

+x

m∑

j=1

aj

logj x
+ O∗

(
ĥ2(x, y)

)
, (4.2)

where

ĥ2(x, y) =
m!

δm+1

x

logm+1 x
+

(

1 +
1

δm+1

)

em!
xΔ

log x

+
2x√

y
(log y + 2) + 15

√
x log x.

Proof. Following similar argument as the proof of Lemma 3.3, we should
approximate the sum

∑
n� x

y
R̂

(
x
n

)
, for which, we have:

∑

n� x
y

R̂
(x

n

)
=

√
x log x

∑

n� x
y

1√
n

− √
x

∑

n� x
y

log n√
n

. (4.3)

Letting f0(t) = 1√
t

and f1(t) = log t
t , we observe that f0(t) is decreasing for

t � 1, and with t0 = e2
� 7.39, the function f1(t) is increasing for 1 � t � t0

and decreasing for t � t0. Moreover

max
t�1

f1(t) = f1(e2) =
2
e

< 1.
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Thus, comparison of a sum and an integral of a monotonic function [14,
Theorem 0.4] implies that there exists θ0 ∈ [0, 1], such that

∑

n� x
y

1√
n

= 1 +
∫ [ x

y ]

1

f0(t) dt + θ0

(

f0

([
x

y

])

− 1
)

.

Since maxt�1 f0(t) = f0(1) = 1, we get

∑

n� x
y

1√
n

=
∫ [ x

y ]

1

f0(t) dt + O∗(3) =
∫ x

y

1

f0(t) dt + O∗(4). (4.4)

Also, we write
∑

n� x
y

log n√
n

=
∑

1<n�7

log n√
n

+
log 8√

8
+

∑

8<n� x
y

log n√
n

.

There exists θ1, θ2 ∈ [0, 1], such that
∑

1<n�7

log n√
n

=
∫ 7

1

f1(t) dt + θ1f1(7) =
∫ 7

1

f1(t) dt + O∗
(

2
e

)

,

and
∑

8<n� x
y

log n√
n

=
∫ [ x

y ]

8

f1(t) dt + θ2

(

f1

([
x

y

])

− f1(8)
)

=
∫ [ x

y ]

8

f1(t) dt + O∗
(

4
e

)

.

Thus
∑

n� x
y

log n√
n

=
∫ [ x

y ]

1

f1(t) dt + O∗ (η) =
∫ x

y

1

f1(t) dt + O∗
(

η +
2
e

)

,

where η = 6
e + f1(8) +

∫ 8

7
f1(t) dt � 3.68. Since η + 2

e < 5, we get

∑

n� x
y

log n√
n

=
∫ x

y

1

f1(t) dt + O∗(5). (4.5)

By computation, we have

√
x log x

∫ x
y

1

f0(t) dt − √
x

∫ x
y

1

f1(t) dt

=
2x√

y
(log y + 2) − 2

√
x (log x + 2) .

Thus, considering the identity (4.3) and the approximations (4.4) and (4.5),
we deduce that

∑

n� x
y

R̂
(x

n

)
=

2x√
y

(log y + 2) + O∗ (
15

√
x log x

)
.

This completes the proof. �
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Proof of Theorem 2.8. Considering the hyperbolic identity (3.1) and approx-
imations (4.1) and (4.2), we get

∑

n�x

ω(n) = x log log x + Mx + x

m∑

j=1

aj

logj x
+ O∗

(
ĥ3(x, y)

)
, (4.6)

where

ĥ3(x, y) = ĥ1(x, y) + ĥ2(x, y) +
[
x

y

]

(li(y) − π(y)) ,

with ĥ1(x, y) = x√
y (3 log y + 4) + y. Using (2.10), we deduce that

[
x

y

]

(li(y) − π(y)) =
[
x

y

]

O∗
(
R̂(y)

)

= O∗
(

x

y
R̂(y)

)

= O∗
(

x log y√
y

)

.

Thus, (4.6) holds with ĥ3(x, y) = ĥ1(x, y) + ĥ2(x, y) + x log y√
y , or with

ĥ3(x, y) =
m!

δm+1

x

logm+1 x
+

(

1 +
1

δm+1

)

em!
xΔ

log x

+
6x log y√

y
+

8x√
y

+ 15
√

x log x + y.

Now, we take δ = Δ = 2
3 , and hence, y = x

2
3 . Note that the assumption

x � e covers xδ > 1.2. Thus, we obtain (2.11), and consequently, we get
(2.12) using (3.12). The proof is complete. �

Proof of Corollary 2.9. We use (2.11) with m = 1. By computation, we ob-
serve that Êω(x, 1) < 11x

log2 x
for x � x0. Thus, we get (2.13), and consequently

(2.14), using the approximation (3.12) and the inequality (3.13). Also, we
note that

(1 − γ)
x

log x
>

12x

log2 x
>

11x

log2 x
,

provided that x > e12/(1−γ). Since x0 > e12/(1−γ), we conclude the proof. �
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