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Abstract. This paper presents a moment method approach to solve the
null boundary controllability problem for a fourth-order parabolic equa-
tion subject to Samarskii–Ionkin-type boundary conditions. The prob-
lem is solved in two stages. First, we demonstrate that the eigenfunc-
tions of the system, which are not self-adjoint under these boundary
conditions, form a Riesz basis in L2 space. Using Fourier’s method, we
construct a biorthonormal system of functions to express the series so-
lution. In the second stage, we use these spectral results to show that
the system is null boundary controllable for a specific class of initial
data. Our approach extends the existing literature on null boundary
controllability of parabolic equations and provides new insights into the
properties of systems subject to Samarskii–Ionkin-type boundary con-
ditions.
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1. Introduction

Null boundary controllability for parabolic equations has been the subject of
much research in recent years. A considerable amount of attention has been
paid to the null boundary controllability problem with classical boundary
conditions, as evidenced by numerous publications (see, for example, [1–8]).
However, the literature on null boundary controllability of fourth-order lin-
ear parabolic equations remains limited. Some progress has been made in
this direction. For instance, Guo [9] converted the control problem to two
well-posed problems to solve the null boundary controllability problem for a
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fourth-order parabolic equation. Yu [10] used the method based on Lebeau–
Rabbino inequality to solve the null interior controllability problem for a
fourth-order parabolic equation with Dirichlet boundary conditions. Zhou [11]
derived observability inequalities for a one-dimensional linear fourth-order
parabolic equation with potential and obtained null controllability results for
the one-dimensional fourth-order semi-linear equation. Recently, Guerrero
and Kassab [12] obtained null controllability results for higher dimensional
fourth-order parabolic equations.

In this paper, we focus on the null controllability problem for a fourth-
order parabolic equation with Samarskii–Ionkin-type boundary conditions.
To the best of our knowledge, this problem has not been studied before in the
literature. The eigenfunctions of the auxiliary spectral problem of the system
under these boundary conditions do not form a basis in L2. Therefore, we
first find associated eigenfunctions and complete the eigenfunctions of the
system using the method developed by Ionkin in [13]. We also prove the
completeness of the system using general theory. Then, using these spectral
properties, we solve the null boundary controllability problem by reducing
it to moment problems using the Riesz basis. Our main contribution is to
provide a complete solution to this previously unstudied problem.

This paper is structured as follows: in Sect. 2, we introduce the problem
and present some initial results. Section 3 is devoted to solving the auxiliary
spectral problem, where we obtain the Fourier series representation of the
solution of the adjoint system, find associated eigenfunctions and determine
a biorthonormal system. Moreover, we prove that this biorthonormal system
forms a Riesz basis in L2. In Sect. 4, we show the existence and uniqueness
of the solution of the adjoint system. Finally, in Sect. 5, we address the null
boundary controllability problem, where we first determine the initial data
class that guarantees the null boundary controllability of the system. Then,
we show how the problem can be reduced to moment problems using the
Riesz basis. Section 6 concludes with a discussion of conclusions and future
work.

2. Problem Formulation

In this work, we are concerned with the null boundary controllability of the
following system:

ut + uxxxx + cu = 0, in D (1a)
u(0, t) − u(1, t) = 0, in [0, T ] (1b)

ux(0, t) = v(t), in [0, T ] (1c)
uxx(0, t) − uxx(1, t) = 0, in [0, T ] (1d)

uxxx(0, t) = 0, in [0, T ] (1e)
u(x, 0) = u0(x), in Ω. (1f)

Here, D = Ω × [0, T ], Ω = [0, 1], u0(x) ∈ L2(Ω), v(t) ∈ L2[0, T ], and c is
any positive real number. We will later show in the paper that system (1)
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is not always controllable. Therefore, we aim to prove that the system is
controllable for a certain initial data class, which we will specify in Remark 1
after solving the spectral problem of the adjoint system. For now, we denote
this class of initial data by F1. With this in mind, we can define the null
controllability of the system (1) as follows.

Definition 1. System (1) is null boundary controllable at time T > 0 from
the class F1 if for every initial condition u0 ∈ F1 there exists a control
v(t) ∈ [0, T ] such that u(x, T ) = 0, x ∈ Ω.

As you will see in Sect. 4, to establish the existence of a solution for the
adjoint system, we need to impose conditions on the ϕ0, and we define the
following class:

F2 =
{
ϕ0(x) ∈ C8(Ω) | ϕ0(1) = ϕ0

xx(1) = ϕ0
xxxx(1) = 0, ϕ0

x(0) = ϕ0
x(1),

ϕ0
xxx(0) = ϕ0

xxx(1), ϕ0
xxxxx(0) = ϕ0

xxxxx(1), ϕ0
xxxxxxx(0) = ϕ0

xxxxxxx(1).
}

(2)

Next, we will present a lemma that plays a crucial role in the proof of
the main results.

Lemma 1. The system (1) is null controllable in time T > 0 if and only if
for any u0 ∈ F1 there exists v(t) ∈ L2[0, T ] such that

∫ 1

0

u0(x)ϕ(x, 0)dx +
∫ T

0

v(t)ϕxx(0, t)dt = 0 (3)

holds for any ϕ0 ∈ F2, where ϕ(x, t) is a classical solution of the backward
adjoint problem given by

ϕt − ϕxxxx − cϕ = 0, in D (4a)
ϕ(1, t) = 0, in [0, T ] (4b)

ϕx(0, t) − ϕx(1, t) = 0, in [0, T ] (4c)
ϕxx(1, t) = 0, in [0, T ] (4d)

ϕxxx(0, t) − ϕxxx(1, t) = 0, in [0, T ] (4e)
ϕ(x, T ) = ϕ0(x), in Ω. (4f)

Proof. Let v be arbitrary in L2[0, T ], and let ϕ be the solution of (4). If
we multiply (1a) by ϕ and integrate the obtained result on D using the
integration by parts, we get

0 =
∫ T

0

∫ 1

0

(ut + uxxxx + cu)ϕdxdt

=
∫ T

0

∫ 1

0

u(−ϕt + ϕxxxx + cϕ)dxdt

+
∫ 1

0

uϕ |T0 dx +
∫ T

0

[ϕuxxx − ϕxuxx + ϕxxux − uϕxxx] |10 dt.

Using the given initial condition and boundary conditions, we have
∫ 1

0

u(x, T )ϕ0(x)dx −
∫ 1

0

u0(x)ϕ(x, 0)dx −
∫ T

0

v(t)ϕxx(0, t)dt = 0. (5)
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If Eq. (3) holds, it follows that
∫ 1

0
u(x, T )ϕ0(x)dx = 0 for all ϕ0(x) ∈ F2

and u(x, T ) = 0. Consequently, system (1) is null-controllable. On the con-
trary, suppose that v(t) is a control for system (1). Then, u(x, T ) = 0, and
substituting this into (5), we conclude that (3) holds. �

Lemma 1 states that system (1) is null boundary controllable if and only
if Eq. (3) holds. Therefore, it is necessary to find a solution of the system (4)
to determine the null boundary controllability of the system. In the following
sections, we will solve the auxiliary spectral problem of system (4).

3. Auxiliary Spectral Problem

To find the solution of system (4), we will apply the method of separation of
variables by letting ϕ(x, t) = X(x)T (t). With the help of this expression, we
obtain ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X
′′′′

(x) = (λ − c)X, in Ω
X(1) = 0, in [0, T ]
Xx(0) − Xx(1) = 0, in [0, T ]
Xxx(1) = 0, in [0, T ]
Xxxx(0) − Xxxx(1) = 0, in [0, T ].

(6)

This boundary value problem is a non-self-adjoint and it has the following
conjugate problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Y
′′′′

(x) = (λ − c)Y, in Ω
Y (1) = Y (0), in [0, T ]
Yx(0) = 0, in [0, T ]
Yxx(1) = Yxx(0), in [0, T ]
Yxxx(0) = 0, in [0, T ].

(7)

Spectral problem (6) has the eigenvalues

λ0 = c and λn = (2nπ)4 + c

and the eigenfunctions

X̂0(x) = 1 − x and X̂n(x) = sin(2nπx), n = 1, 2, . . .

The system of eigenfunctions is not a complete system in L2(Ω) and therefore,
they do not form a basis in L2. To complete the eigenfunctions, we use the
associated functions of the spectral problem (6). Using similar approaches
given in [13], let us define the associated functions X̃n(x) for λn corresponding
to X̂n(x), n = 1, 2, . . . Let X̃n(x) be a solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X̃
′′′′
n (x)−(λn − c)X̃n(x) = −PnX̂n(x),

X̃(1) = 0, in [0, T ]
X̃x(0) − X̃x(1) = 0, in [0, T ]
X̃xx(1) = 0, in [0, T ]
X̃xxx(0) − X̃xxx(1) = 0, in [0, T ],

(8)
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where Pn �= 0 is an arbitrary constant and n = 1, 2, . . . For Pn = 4(2nπ)3 with
n = 1, . . . , we find X̃n(x) = (1−x) cos(2nπx). We can rewrite the eigenfunc-
tions and associated functions of the auxiliary spectral problem as follows.

X0(x) = 1 − x, X2n−1 = (1 − x) cos(2nπx), and X2n = sin(2nπx) (9)

for n = 1, 2, . . . Similarly, solving problem (7), we obtain the eigenvalues

λ0 = c and λn = (2nπ)4 + c, n = 1, 2, . . .

and the eigenfunctions Ŷ0(x) = 2 and Ŷn(x) = Sn cos(2nπx), n = 1, 2, . . . .
To obtain biorthonormal system, we choose Sn = 4 for n = 1, 2, . . . . Simi-
larly, we find the associated functions of the conjugate problem (7) as follows:

Y0(x) = 2, Y2n−1 = 4 cos(2nπx), Y2n = 4x sin(2nπx), (10)

for n = 1, 2, . . .

Lemma 2. The system of functions given in (9) and (10) are biorthonormal
on Ω, namely, for all i, j = 0, 1, . . .

(Xi, Yj) =
∫ 1

0

Xi(x)Yj(x)dx = δij =

{
0, i �= j

1, i = j.

Proof. The proof is trivial. �

Lemma 3. The systems of functions given in (9) and in (10) are complete in
L2(Ω).

Proof. We will give the proof only for the system of functions in (9), but note
that the same argument applies to the system of functions in (10). Suppose
f(x) is a function in L2(Ω) that is orthogonal to the functions in the system
(9), i.e., (f,Xm) = 0 for m = 0, 1, 2, . . .. Then we have

∫ 1

0

f(x)(1 − x)dx = 0,

∫ 1

0

f(x)(1 − x) cos(2nπx)dx = 0, and
∫ 1

0

f(x) sin(2nπx)dx = 0.

Since the functions {1,
√

2 cos(2nπx),
√

2 sin(2nπx)}∞
n=1 form an orthonormal

basis for L2(Ω), we can represent f(x) as a series

f(x) =
a0

2
+

∞∑

n=1

an cos(2nπx) (11)

which converges in L2(Ω). Since f(x) is orthogonal to the functions in (9),
we obtain

0 =

∫ 1

0

f(x)(1 − x) cos(2kπx)dx

=

∫ 1

0

a0

2
(1 − x) cos(2kπx)dx +

∞∑

n=1

an

∫ 1

0

(1 − x) cos(2nπx) cos(2kπx) =
ak

4

k = 0, 1, 2, . . . Substituting ak = 0 for k = 0, 1, 2, . . . in (11), we obtain
f(x) ≡ 0. Therefore, the system of functions in (9) is complete in L2(0, 1). �
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To verify that the systems of functions (9) and (10) are Riesz bases in
L2(Ω), we will employ the following lemma.

Lemma 4. (Theorem 2.1 in [14]) For a sequence (fk)∞
k=1 in a Hilbert space

H, the following conditions are equivalent:
(1) (fk)∞

k=1 forms a Riesz basis for H.
(2) (fk)∞

k=1 is complete in H and it has a complete biorthogonal sequence
(gk)∞

k=1 so that

∞∑

k=1

|(f, fk)|2 < ∞ and
∞∑

k=1

|(f, gk)|2 < ∞

for every f ∈ H.

Lemma 5. The systems of functions (9) and (10) are Riesz bases in L2(Ω).

Proof. Since the systems of functions given in (9) and (10) are complete in
L2(Ω), and

∞∑

k=0

| (f, Xk) |2 =

(∫ 1

0

(1 − x)f(x)dx

)2

+
1

2

∞∑

k=1

(∫ 1

0

f(x)(1 − x)
√

2 cos(2kπx)dx

)2

+
1

2

∞∑

k=1

(∫ 1

0

f(x)
√

2 sin(2kπx)dx

)2

≤ 1

2
‖f‖2

L2(Ω) < ∞,

∞∑

k=0

| (f, Yk) |2 = 4
(∫ 1

0

f(x)dx

)2

+ 8
∞∑

k=1

(∫ 1

0

f(x)
√

2 cos(2kπx)dx

)2

+ 8
∞∑

k=1

(∫ 1

0

f(x)x
√

2 sin(2kπx)dx

)2

≤ 12‖f‖2
L2(Ω) + 8‖xf‖2

L2(Ω) < ∞,

are convergent for each f(x) ∈ L2(Ω) using classical Bessel’s inequality. Thus,
from Lemma 4, we obtain the systems of functions (9) and (10) form Riesz
bases in L2(Ω). �

Then, the solution of (4) can be represented by the sum of the series as
follows:

ϕ(x, t) = β0(1 − x)e−λ0(T−t) +
∞∑

n=1

e−λn(T−t)[β2n−1(1 − x) cos(2nπx)

+ (β2n + 4(2nπ)3(T − t)β2n−1) sin(2nπx)]

(12)

where βn = (ϕ0(x), Yn(x)) for n = 0, 1, 2, . . .
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4. Existence and Uniqueness of the Solution

The existence and uniqueness for a fractional partial differential equation
with this type of boundary conditions were demonstrated in [15]. In this
section, we will show the existence and uniqueness of (4). To achieve this, we
need to begin by proving the following lemma.

Lemma 6. Assuming that the function ϕ0(x) ∈ F2. Then, the following series
are convergent:

∞∑

n=1

n7 | β2n−1 |,
∞∑

n=1

n4 | β2n | .

Proof. Let ϕ0(x) satisfy the assumptions of the Lemma 6. From (12), it can be
observe that β2n−1 = (ϕ0(x), Y2n−1(x)) =

∫ 1

0
ϕ0(x)4 cos(2nπx)dx. Applying

integration by parts eight times and utilizing the assumptions of the Lemma,
we obtain

β2n−1 =
∫ 1

0

ϕ0(x)4 cos(2nπx)dx =
4

(2nπ)8

∫ 1

0

(ϕ0(x))xxxxxxxx cos(2nπx)dx.

Using this equation, one can get
∞∑

n=1

n7 | β2n−1 |=
∞∑

n=1

4
(2π)8n

∣
∣
∣
∣

∫ 1

0

(ϕ0(x))xxxxxxxx cos(2nπx)dx

∣
∣
∣
∣ .

By utilizing the Cauchy–Schwartz and Bessel inequalities, we arrive at:
∞∑

n=1

n7 | β2n−1 |≤ 1
(2π)7

√
3
‖(ϕ0(x))xxxxxxxx‖L2(Ω).

Similarly,

β2n =
∫ 1

0

ϕ0(x)x sin(2nπx)dx =
4

(2nπ)5

∫ 1

0

[
xϕ0

xxxxx + 5ϕ0
xxxx

]
cos(2nπx)dx

and
∞∑

n=1

n4 | β2n |=
∞∑

n=1

4
(2π)5n

|
∫ 1

0

[
xϕ0

xxxxx + 5ϕ0
xxxx

]
cos(2nπx) | .

Applying Cauchy–Schwartz and Bessel inequalities again shows that
∞∑

n=1

n4 | β2n |≤ 1
(2π)4

√
3
‖xϕ0

xxxxx + 5ϕ0
xxxx‖L2(Ω).

�

Lemma 7. Suppose ϕ0(x) satisfies the conditions stated in Lemma (6). Then,
the system (4) has a unique solution ϕ(x, t) ∈ C8,1(D) as described by the
form (12).

Proof. Given the basis {Xn(x)}n≥0 in the Hilbert space L2(Ω), we express
ϕ(x, t) using Eq. (12). To establish that the solution for system (4) is valid, we
need to confirm the continuity of both the first partial derivative of ϕ(x, t)
with respect to t and the fourth partial derivative with respect to x. In
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addition, this solution should adhere to (4a) within D. Furthermore, it is
essential for the function defined in equation (12) and its spatial derivatives
up to the third order, as well as its first partial derivative with respect to
time, to exhibit continuity at the boundary points. To this end, we need to
show that the following series converge uniformly for t ≥ 0.

ϕt(x, t) ∼ β0λ0(1 − x)e−λ0(T−t) +
∞∑

n=1

λne−λn(T−t)[β2n−1(1 − x) cos(2nπx)

+ (β2n + 4(2nπ)3(T − t)β2n−1) sin(2nπx)]

−
∞∑

n=1

e−λn(T−t)4(2nπ)3β2n−1 sin(2nπx),

(13)

and

ϕxxxx(x, t) ∼
∞∑

n=1

e−λn(T−t)β2n−1

[
(2nπ)4(1 − x) cos(2nπx) − 4(2nπ)3 sin(2nπx)

]

+
∞∑

n=1

e−λn(T−t)(2nπ)4
[
β2n + 4(2nπ)3(T − t)β2n−1

]
sin(2nπx).

(14)

Due to the convergence of the following majorant series from Weierstrass
M-test and Lemma 6, the function ϕ(x, t) becomes continuous over D.

∞∑

n=1

λneλnT
[| β2n−1 | + | β2n | +4(2nπ)3T | β2n−1 |]

+
∞∑

n=1

eλnT 4(2nπ)3 | β2n−1 |

and

∞∑

n=1

eλnT | β2n−1 | [(2nπ)4 + 4(2nπ)3
]

+
∞∑

n=1

eλnT (2nπ)4
[| β2n | +4(2nπ)3T | β2n−1 |] .

The function in Eq. (12) and its first, second, and third partial derivatives
with respect to spatial variable and first partial derivative with respect to
time must be continuous at boundary points. Namely, the series in Eq. (12)
must be continuous at t = T

ϕ(x, T ) = β0(1 − x) +
∞∑

n=1

[β2n−1(1 − x) cos(2nπx) + β2n sin(2nπx)]
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and the following functions must be continuous at boundary points x = 0
and x = 1:

ϕx(x, t) ∼ −β0e
−λ0(T−t)

+
∞∑

n=1

e−λn(T−t) [β2n−1 (− cos(2nπx) − (1 − x)2nπ sin(2nπx))]

+
∞∑

n=1

e−λn(T−t)2nπ
[(

β2n + 4(2nπ)3(T − t)β2n−1

)
cos(2nπx)

]
,

ϕxx(x, t)

∼
∞∑

n=1

e−λn(T−t)
[
β2n−1

(
2(2nπ) sin(2nπx) − (1 − x)(2nπ)2 cos(2nπx)

)]

−
∞∑

n=1

e−λn(T−t)(2nπ)2
[(

β2n + 4(2nπ)3(T − t)β2n−1

)
sin(2nπx)

]
,

ϕxxx(x, t)

∼
∞∑

n=1

e−λn(T−t)
[
β2n−1

(
3(2nπ)2 cos(2nπx) + (1 − x)(2nπ)3 sin(2nπx)

)]

−
∞∑

n=1

e−λn(T−t)(2nπ)3
[(

β2n + 4(2nπ)3(T − t)β2n−1

)
cos(2nπx)

]
.

Applying the Weierstrass M-test and referring to Lemma 6, it becomes evi-
dent that the subsequent majorant series are uniformly convergent.

∞∑

n=1

| β2n−1 | + | β2n |,
∞∑

n=1

| β2n−1 | +
∞∑

n=1

2nπ
[| β2n | +4(2nπ)3T | β2n−1 |] ,

∞∑

n=1

(2nπ)2 | β2n−1 |
∞∑

n=1

| β2n−1 | 3(2nπ)2 +
∞∑

n=1

(2nπ)3
[| β2n | +4(2nπ)3T | β2n−1 | ]

Therefore, these series are continuous at the boundary points. Finally, we
obtain a function ϕ(x, t) ∈ C8,1(D) which is a classical solution of system (4)
given by the biorthonormal series in Eq. (12). To establish the uniqueness of
the solution, consider ϕ1 and ϕ2 as two solutions of the problem (4) within
the domain D. Here, βn = (ϕ1(x, T ), Yn(x)) for n = 0, 1, 2, . . ., and γn =
(ϕ2(x, T ), Yn(x)) for n = 0, 1, 2, . . .. Let ϕ = ϕ1−ϕ2. This function ϕ satisfies
(4). By taking the inner product of both sides of the last equation with the
biorthogonal function Ym(x), where m = 0, 1, 2, . . ., we derive βn = γn for all
n = 0, 1, . . .. Consequently, this implies that the solution is unique. �
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5. Main Result

Before presenting the main theorem, we provide the following remark, which
helps us identify uncontrollable situations.

Remark 1. System (1) is not always controllable. To verify that, we first
represent u0 ∈ L2(Ω) using the biorthonormal series as follows:

u0(x) = 2η0 +
∞∑

n=1

η2n−14 cos(2nπx) + η2n4x sin(2nπx),

where ηn = (u0(x),Xn(x)). Next, we take the following solution of (4) with
the initial data sin(2nπx) for arbitrary fixed positive integer n:

ϕn(x, t) = sin(2nπx)e−λn(T−t).

From (3), we obtain
∫ 1

0

sin(2nπx)u0(x)dx = 0,

which is equivalent to η2n = 0 for n = 1, . . .. Similarly, it can be seen that if
η0 = 0, then system is also not controllable. Therefore, the null controllability
of the system is possible over the following initial data class:

F1 = {u0(x) ∈ L2(Ω) | η2n = (u0(x),X2n(x)) = 0, n = 0, 1, . . .}.

Next, we state the main theorem of the paper.

Theorem 1. The system (1) is null controllable in time T > 0 from the class
F1 if and only if for any u0 ∈ F1 with Fourier expansion

u0(x) =
∞∑

n=1

η2n−14 cos(2nπx),

there exists a function f ∈ L2(0, T ) such that
∫ T

0

f(t)e−λntdt =
η2n−1e

−λnT

(2nπ)2
, n = 1, 2, . . . , (15)

where λn = (2nπ)4 + c, n ≥ 0 and c is any positive number.

Proof. We observe that v(t) is a control for system (1) if and only if Eq. (3)
holds. We obtain the solution of the backward adjoint problem of the system
(1) using (4), which can be represented by (12). Substituting the values of
ϕ(x, t) and u0(x) into (3), we get the equation

∞∑

n=1

e−λnT β2n−1η2n−1 =
∫ T

0

v(t)
∞∑

n=1

e−λn(T−t)(2nπ)2β2n−1dt. (16)

Since systems of functions (9) and (10) form a biorthonormal system of
functions on L2(Ω), the equation (3) holds if and only if it is verified by
ϕ0

m = Xm(x), m = 0, 1, 2, . . .. If ϕ0
m = Xm(x), then βn = (Xm, Yn) =

δm,n, n,m = 0, 1, 2, . . . and
∫ T

0

v(t)e−λn(T−t)dt =
η2n−1e

−λnT

(2nπ)2
,
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for n = 1, 2, . . .. After replacing T − t by t in the last integrals and choosing
v(T − t) = f(t), we complete the proof. �

We seek to find f(t) that satisfies (15) to determine control v(t). This
is a moment problem in L2[0, T ] with respect to the family Λ = {e−λnt}n≥0.
According to Theorem (1), controllability holds only if the moment problem
(15) is solvable. To solve this moment problem, the general theory developed
by Fattorini and Russell in [16] can be applied. Assuming that {Ψm}m≥0 is a
family of functions biorthogonal to the set Λ in L2[0, T ] can be constructed,
such that

∫ T

0

e−λntΨm(t)dt = δn,m =

{
1, if n = m

0, if n �= m

for all m,n = 0, 1, 2 . . . , then moment problems (15) have solutions by setting

f(t) =
∞∑

m=1

η2m−1e
−λmT

(2mπ)2
Ψm(t).

Muntz’s Theorem shows that the biorthogonal sequence {Ψm}m≥0 exists
since

∞∑

n=0

1
λn

=
∞∑

n=0

1
(2nπ)4 + c

< ∞, (17)

holds. The general estimations of ‖Ψm‖L2(0,∞) were calculated by Fattoroni
and Russell in [2]. They demonstrated that if the λn are real and satisfy the
following asymptotic relationship

λn = K(n + α)ζ + o(nζ−1) (n → ∞),

where K > 0, ζ > 1 and α is real, then there exists constants K̂,Kζ such
that

‖Ψn(t)‖L2(0,∞) ≤ K̂ exp
[
(Kζ + o(1))λ1/ζ

n

]
(n ≥ 1),

where o(1) indicates a term tending to zero as n goes to infinity. The compu-
tation of the constant Kζ is given in [16]. To relate the interval [0,∞] with
the finite interval [0, T ], they used results given in [17].

Since λn = (2nπ)4 + c, using these results it can be seen that

‖Ψm(t)‖L2[0,T ] ≤ Kemρ for m ≥ 0

where K and ρ some positive constants. Let us determine the value of ρ for
the case addressed in this article. Fattorini and Russell [2] shown that

‖Ψm(t)‖L2(0,∞) =
(

λm

2

) 1
2

∏∞
k=0

(
1 + λm

λk

)

∏∞
k=0
k �=m

(
1 − λm

λk

) (18)

for all m ≥ 0.
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Since λn = (2nπ)4 + c, from (18), we obtain

‖Ψm(t)‖L2(0,∞) =
√

2λm

∞∏

k=0
k �=m

k4 + m4 + 2s

| k4 − m4 | . (19)

For the sake of simplicity in computations, we have chosen c = (2π)4s, where
s is any positive number. Now, we prove the following Lemma to estimate
the infinite product which appears in (19).

Lemma 8. There exist two positive constants M and ρ such that for any
m ≥ 0

∞∏

k=0
k �=m

k4 + m4 + 2s

| k4 − m4 | ≤ Meρm.

Proof. To prove this, it is necessary to consider two distinct cases: namely,
when m ≥ 1 and when m = 0. In the first case, we assume that m ≥ 1. Note
that

∞∏

k=0
k �=m

k4 + m4 + 2s

| k4 − m4 | ≤ exp

⎡

⎢
⎣

∞∑

k=0
k �=m

ln
(

1 +
2m4 + 2s

| k4 − m4 |
)
⎤

⎥
⎦ .

Then,
∞∑

k=0
k �=m

ln

(
1 +

2m4 + 2s

| k4 − m4 |
)

≤
∫ m

0

ln

(
1 +

2m4 + 2s

m4 − x4

)
dx

+

∫ 2m

m

ln

(
1 +

2m4 + 2s

x4 − m4

)
dx

+

∫ ∞

2m

ln

(
1 +

2m4 + 2s

x4 − m4

)
dx

= m

[∫ 1

0

ln

(
1 +

c1
1 − x4

)
dx

+

∫ 2

1

ln

(
1 +

c1
x4 − 1

)
dx +

∫ ∞

2

ln

(
1 +

c1
x4 − 1

)
dx

]

= m(I1 + I2 + I3)

,

where c1 = 2 + 2s
m4 . Using integration by parts, these integrals can be calcu-

lated as follows.

I1 =

∫ 1

0

ln

(
1 +

c1

1 − x4

)
dx =

∫ 1

0

ln

(
1 +

c1

(1 − x)(1 + x)(1 + x2)

)
dx

≤
∫ 1

0

ln

(
1 +

c1

(1 − x)

)
dx = (1 − x) ln

(
1 +

c1

(1 − x)

)
|10 +

∫ 1

0

c1

1 + c1 − x
dx

= ln
(1 + c1)

c1+1

cc1
1
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I2 =

∫ 2

1

ln

(
1 +

c1

x4 − 1

)
dx ≤

∫ 2

1

ln

(
1 +

c1

x2 − 1

)
dx ≤

∫ 2

1

ln

(
1 +

c1

(x − 1)2

)
dx

= (x − 1) ln

(
1 +

c1

(x − 1)2

)
|21 +

∫ 2

1

2c1

(x − 1)2 + c1

= ln(1 + c1) + 2
√

c1 arctan

(
1√
c1

)

For the third one, since ln(1 + x) < x for all x > 0 we have

I3 =

∫ ∞

2

ln

(
1 +

c1

x4 − 1

)
dx ≤

∫ ∞

2

ln

(
1 +

c1

x2 − 1

)
dx ≤

∫ ∞

2

ln

(
1 +

c1

(x − 1)2

)
dx

≤
∫ ∞

2

(
c1

(x − 1)2

)
dx = c1.

So, for the case m ≥ 1, it is seen that
∞∏

k=0
k �=m

k4 + m4 + 2s

| k4 − m4 | ≤ Meρm,

where ρ = ln
(

(1+c1)
c1+2

c
c1
1

)
+ 2

√
c1 arctan( 1√

c1
) + c1 and M = 1.

For the second case, we assume that m = 0. Using equation (18), we
obtain

‖Ψm(t)‖L2(0,∞) =
√

2λ0

∞∏

k=1

k4 + 2s

k4

and
∞∏

k=1

k4 + 2s

k4
= exp

[ ∞∑

k=1

ln
(

1 +
2s

k4

)]

.

Since
∞∑

k=1

ln
(

1 +
2s

k4

)
≤

∫ ∞

1

ln
(

1 +
2s

x4

)
dx ≤

∫ ∞

1

2s

x4
dx =

2s

3
,

, we get
∞∏

k=1

k4 + 2s

k4
≤ M.

where M =
√

2λ0e
2s
3 . �

By means of Lemma 8, we deduce that for all m ≥ 0

‖Ψm(t)‖L2(0,∞) =
√

2λm

∞∏

k=0
k �=m

k4 + m4 + 2s

| k4 − m4 |

≤ Keρm.

where K = M
√

2λm. Fattoroni and Russell [2] proved that if the exponential
moment problem is solvable for T = ∞, then it is solvable for every time
T > 0. Now, we can estimate the norm of Ψm(t) in L2[0, T ] using the result
given in [17].
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Theorem 2. Suppose that
∑

n≥0

1
λn

< ∞. The restriction operator

RT : E(Λ,∞) → E(Λ, T )

RT (v) = v |[0,T ] .

Moreover, there exists a positive constant C which only depends on T such
that ‖(RT )−1‖ ≤ C. Here, E(Λ,∞) = ∪n≥0E

n(Λ,∞) is the space generated
by Λn := {e−λkt}0≤k≤n in L2[0, T ] and E(Λ, T ) is the space generated by Λ
in L2[0, T ].

Proof. The proof of theorem can be found [2] or [17]. �
In view of the above theorem, we see that if pn(t) = e−λnt for t > 0 and

n ≥ 0, then

RT (pn(t)) = pn(t) |[0,T ] .

Also,

δn,m = (pn,Ψm(t))L2(0,∞) = (R−1
T RT pn,Ψm(t))L2(0,∞)

= (pn, (R−1
T )∗Ψm(t))L2[0,T ].

Therefore, the family {(R−1
T )∗Ψm(t)}m≥0 is biorthogonal to {e−λnt}n≥0 in

L2[0, T ]. Together with ‖(R−1
T )∗‖ = ‖R−1

T ‖, this means that

‖Ψm(t))‖L2[0,T ] = ‖(R−1
T )∗Ψm(t)‖L2[0,T ] ≤ ‖R−1

T ‖‖Ψm(t)‖L2(0,∞).

At the end, we can state the following corollary.

Corollary 1. Given any T > 0, suppose that there exists a sequence
{Ψm

(t)}n≥0 in L2[0, T ] biorthogonal to the set Λ such that

‖Ψm‖L2[0,T ] ≤ Kemρ, ∀m ≥ 0 (20)

holds, where K and ρ are some positive constants. Then, system (1) is null-
controllable in time T.

Proof. According to Theorem (1), system (1) is null controllable in time
T > 0 from the class F1 if for any u0 ∈ F1 with Fourier expansion

u0(x) =
∞∑

n=1

η2n−14 cos(2nπx)

there exists a function f ∈ L2[0, T ] which holds (15). Choose

f(t) =
∞∑

m=1

η2m−1e
−λmT

(2mπ)2
Ψm(t). (21)

Since ‖Ψm‖L2[0,T ] ≤ Kemρ, for all m ≥ 0, we deduce that
∥
∥
∥
∥
∥

∞∑

m=1

η2m−1e
−λmT

(2mπ)2
Ψm

∥
∥
∥
∥
∥

L2[0,T ]

≤
∞∑

m=1

| η2m−1 |
(2mπ)2

e−λmT ‖Ψm‖L2[0,T ]

≤ K

∞∑

m=1

| η2m−1 |
(2mπ)2

e−λmT+mρ < ∞,
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i.e., f(t) converges in L2[0, T ]. Hence, (20) implies that f satisfies (15) and
the proof finishes. �

6. Conclusions and Future Work

In this work, we investigated the null boundary controllability for a fourth-
order parabolic equations with Samarkii–Ionkin-type conditions. Due to the
absence of self-adjointness under these boundary conditions, we initially il-
lustrate that the eigenfunctions of the system form a Riesz basis in L2. In
addition, we have established the existence and uniqueness of the adjoint
problem. Furthermore, applying the moment method, we have derived nec-
essary and sufficient conditions for null boundary controllability of the given
system for some classes of initial data.

As a direction for future research, it would be valuable to explore the
cost of controllability for this system. Similar to the approaches introduced
in [18–20] within the existing literature, such an investigation could provide
deeper insights into the controllability aspects of the system.
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