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Abstract. In this paper, we find a full description of concircular hy-
persurfaces in space forms as a special family of ruled hypersurfaces.
We also characterize concircular helices in 3-dimensional space forms
by means of a differential equation involving the concircular factor and
their curvature and torsion, and we show that the concircular helices
are precisely the geodesics of the concircular surfaces.
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1. Introduction

Generalized helices, slant helices, and rectifying curves are well-known exam-
ples of curves satisfying a certain condition with respect to a special vector
field. Generalized helices are defined by the property that their tangents make
a constant angle with a fixed direction. Slant helices are defined by the prop-
erty that their principal normals make a constant angle with a constant vector
field, [5], and rectifying curves are defined as the curves whose position vec-
tor is orthogonal to its principal normal vector field (i.e., the position vector
lies in the rectifying plane), [1]. Moreover, these curves are characterized as
the geodesics of some special ruled surfaces: generalized helices in cylinders,
slant helices in helix surfaces, [8], and rectifying curves in conical surfaces, [2].
Motivated by these examples of curves and surfaces, the authors in [9] have
extended the above conditions, and have introduced the notion of concircu-
lar submanifold in the Euclidean space R

n. In particular, they characterize
concircular helices in R

3 by means of a differential equation involving their
curvature and torsion. Moreover, they also find a full description of concir-
cular surfaces in R

3 as a special family of ruled surfaces and characterize the
concirculares helices in R

3 as the geodesics of these surfaces.
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In this paper, we generalize the results obtained in [9] to space forms
of nonzero constant curvature. Recall that a vector field V ∈ X(M) on a
Riemannian manifold M , with Levi–Civita connection ∇, is said to be con-
circular if ∇V = μI, where μ ∈ C∞(M) is a differentiable function called
the concircular factor, [3,4,10]. We denote by Con(M) the set of concircular
vector fields of M . The following definition extends the one given in [9]:

Definition 1. Let M
n(C) be an n-dimensional space form of constant curva-

ture C. A submanifold Mm ⊂ M
n(C) is said to be a concircular submanifold

if there exists a concircular vector field V ∈ Con(Mn(C)) (called the axis of
Mm) such that 〈n, V 〉 is a constant function along Mm, n being any unit
vector field in the first normal space of Mm.

In the particular case of a hypersurface, Mn−1 is said to be a concircular
hypersurface (with axis V ) if 〈N,V 〉 is a constant function along Mn−1,
N being a unit normal vector field. Another very interesting case appears
when m = 1: a (non-geodesic) unit speed curve γ in M

n(C) is said to be a
concircular helix (with axis V ) if 〈Nγ , V 〉 is a constant function along γ, Nγ

being the principal normal vector field of γ.
This paper is organized as follows: In Sect. 2, we characterize concircular

vector fields in M
n(C), see Theorem 1. In Sect. 3, we present several proper-

ties of concircular hypersurfaces in M
n(C), see Propositions 4 and 5, and we

finish this section with the characterization of all concircular hypersurfaces
in M

n(C), see Theorem 6. Section 4 contains a characterization of all concir-
cular helices in M

3(C), see Proposition 9 and Theorem 10. Finally, Sect. 5
contains the characterization of geodesics curves of concircular surfaces, see
Proposition 11, and this characterization is used to show that concircular he-
lices in M

3(C) can be described as the geodesics of the concircular surfaces,
see Theorem 12.

2. Concircular Vector Fields in Space Forms

Let M
n(C) denote the n-dimensional space form of nonzero constant curva-

ture C. Then M
n(C) stands for a sphere S

n ⊂ R
n+1 or a hyperbolic space

H
n ⊂ R

n+1
1 according to C > 0 or C < 0, respectively. Put C = ε/R2, with

ε = (−1)ν , where ν ∈ {0, 1} is the index of the ambient space R
n+1
ν that

contains M
n(C). Mn(C) can be described as follows:

M
n(C) = {p = (x1, x2, . . . , xn+1) ∈ R

n+1
ν | 〈p, p〉 = 1/C},

where as usual Rn+1
ν is the space R

n+1 endowed with the flat metric

〈, 〉 = ε dx2
1 + dx2

2 + · · · + dx2
n+1,

(x1, x2, . . . , xn+1) being the usual rectangular coordinates of Rn+1.
Let us write ∇0 and ∇ to denote the Levi–Civita connections of Rn+1

ν

and M
n(C), respectively. If φ : Mn(C) → R

n+1
ν denotes the usual isometric

immersion (the position vector), then the Gauss formula is

∇0
XY = ∇XY − C 〈X,Y 〉 φ, (1)
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for any vector fields X and Y tangent to M
n(C).

Given a point p ∈ M
n(C) and a unit vector w ∈ TpM

n(C), the expo-
nential map expp is given by

expp(tw) = f
( t

R

)
p + Rg

( t

R

)
w, (2)

where functions f and g are given by f(t) = cos t and g(t) = sin t when
C > 0, or f(t) = cosh t and g(t) = sinh t when C < 0. Note that f2+εg2 = 1,
f ′ = −εg and g′ = f .

The following result characterizes the concircular vector fields.

Theorem 1. A vector field V ∈ X(Mn(C)) is concircular if and only if V is
the tangential part of a constant vector field p0 in R

n+1
ν . Moreover, if μ is

the concircular factor of V , then V = p0 + μφ, where μ = −C 〈p0, φ〉.
Proof. The curvature tensor of Mn(C) is given by

RXY Z = ∇[X,Y ]Z − ∇X(∇Y Z) + ∇Y (∇XZ).

Then, if V is a concircular vector field with concircular factor μ, we have

RXV V = V (μ)X − X(μ)V. (3)

On the other hand, since M
n(C) is a space of constant curvature C, its

curvature tensor is given by

RXV V = C{〈V,X〉 V − 〈V, V 〉 X}. (4)

By assuming that X and V are two linearly independent vector fields, from
(3) and (4), we get −C 〈V,X〉 = X(μ) and −C 〈V, V 〉 = V (μ), and therefore

− CV = ∇μ. (5)

Take the vector field ψ = V − μφ, then

∇0
Xψ = ∇XV − C 〈X,V 〉 φ − X(μ)φ − μX.

From here and again (5) we get ψ is constant, and so there exists a constant
vector field p0 ∈ R

n+1
ν such that

p0 = V − μφ, with μ = −C 〈p0, φ〉 . (6)

Conversely, let V = {p0}� be the tangential part of a constant vector
in R

n+1
ν . Then we have (6), and by derivating there, we get 0 = ∇XV −

C 〈X,V 〉 φ − X(μ)φ − μX, where X is any tangent vector field in M
n(C).

Hence ∇XV = μX for any X, so that V is a concircular vector field with
concircular factor μ. �

As a consequence of (5), we have the following result:

Corollary 2. In a space form M
n(C) of nonzero curvature C, the concircular

factor is a nonconstant function.

Proposition 3. The set Con(Mn(C)) of all concircular vector fields of Mn(C)
is a real vector space of dimension n + 1.
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Proof. It is sufficient to show that each concircular vector field V is deter-
mined by one, and only one, constant vector p0. Let us suppose that V
is determined by two constant vectors p0 and q0, that is, V = p0 + μ1φ
and V = q0 + μ2φ, for certain differentiable functions μ1 and μ2. Then
p0 − q0 = (μ2 − μ1)φ, and so μ1 = μ2 and p0 = q0. �

3. Concircular Hypersurfaces

To begin with, let us show some examples of concircular hypersurfaces in
M

n(C).

Example 1. A totally umbilical hypersurface Qn−1(c) in M
n(C) can be ob-

tained as the intersection M
n(C) ∩ H(p0), where H(p0) is a hyperplane in

R
n+1
ν orthogonal to a constant vector p0 ∈ R

n+1
ν . If N denotes the unit

vector field normal to Qn−1(c) in M
n(C), then 〈N,V 〉 = 〈N, p0〉, where

V = p0 − C 〈p0, φ〉 φ. By derivating here, we get X 〈N, p0〉 = 〈−AX, p0〉 = 0,
for any vector field X tangent to Qn−1(c), where A denotes the shape opera-
tor associated to N . Hence 〈N,V 〉 is constant and so Qn−1(c) is a concircular
hypersurface. We will say a totally umbilical hypersurface is a trivial concir-
cular hypersurface.

Example 2. A conical hypersurface M in M
n(C) (with vertex at p0 ∈ M

n(C))
can be described as follows: Let Pn−2 be an (n−2)-dimensional hypersurface
in the unit hypersphere Sn−1(1) of the tangent space Tp0M

n(C). For ε > 0
sufficiently small, the map Ψ : Pn−2 × (−ε, ε) → M

n(C) given by

Ψ(v, t) = expp0
(tv) = f

( t

R

)
p0 + Rg

( t

R

)
v,

defines an immersion. The image M = Ψ(Pn−2 × (−ε, ε)) is said to be a
conical hypersurface in M

n(C) (see [6,7] in the case n = 3). We can identify
in a natural way Pn−2 with Pn−2 × {0} and Pn−2 × (−ε, ε) with M , and
then the unit vector field normal to M in M

n(C) is given without loss of
generality by N(v, t) = η(v), η being the unit vector field normal to Pn−2 in
Sn−1(1). Hence, 〈N,V 〉 = 0, for V = p0 − C 〈p0, φ〉 φ, showing that M is a
concircular hypersurface.

Before addressing the characterization of the concircular hypersurfaces,
we will present a couple of results.

Proposition 4. Given a hypersurface M ⊂ M
n(C), then there exists a con-

circular vector field parallel to its normal vector field along M if and only if
M is a totally umbilical hypersurface in M

n(C).

Proof. Suppose there exists a concircular vector field V such that V |M = λN ,
for a nonzero differentiable function λ. Then we get μX = X(λ)N − λAX,
for any vector field X tangent to M , A being the shape operator associated
to N . From that equation, we have that λ is a nonzero constant and AX =
−(μ/λ)X. Now, from (5), we get X(μ) = 0 for any tangent vector field X,
and so M is a totally umbilical hypersurface.
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Conversely, if M is a totally umbilical hypersurface, then there exists
a constant m such that ∇XN = −AX = −mX, and then the vector field
N+mφ is constant along M . This shows that N is collinear with a concircular
vector field along M . �

Let M ⊂ M
n(C) be a nontrivial concircular hypersurface with axis V ,

and write 〈V,N〉 = λ, λ being a constant. By decomposing V in its tangential
and normal components, we have

V |M = α T + λN, (7)

where T is a unit vector field tangent to M and α 	= 0 (otherwise, M would
be a trivial concircular hypersurface).

Proposition 5. The integral curves of T are geodesics in M
n(C).

Proof. By derivating (7) and using the Gauss and Weingarten equations, we
obtain

μX = X(α)T + α∇XT + ασ(X,T ) − λAX, (8)
where ∇ and σ denote the Levi–Civita connection and the second fundamen-
tal form of M . From here, we get σ(X,T ) = 0, for any tangent vector field
X, or equivalently

AT = 0. (9)
By putting X = T in (8) and using (9), we obtain

∇T T = 0. (10)

From here and (9), we deduce the result. �

In what follows, we will characterize nontrivial concircular hypersurfaces
in M

n(C). Let Qn−1(c) = H(p0)∩M
n(C) be a totally umbilical hypersurface

of constant curvature c, where H(p0) is a hyperplane in R
n+1
ν orthogonal

to a unit vector p0 ∈ R
n+1
ν . Let Pn−2 be a hypersurface of Qn−1(c), and

denote by η1 and η2 the unit vector fields normal to Pn−2 in Qn−1(c) and
normal to Qn−1(c) in M

n(C), respectively. For a real number a, define the
unit vector field Wa(p) = cos(a) η1(p) + sin(a) η2(p), where p ∈ Pn−2. The
map Ψa : Pn−2 × I0 → M

n(C) given by

Ψa(p, z) = expp(zWa(p)) = f
( z

R

)
p + Rg

( z

R

)
Wa(p),

defines an immersion, for an enough small interval I0 around the origin. Let
M denote the ruled hypersurface in M

n(C) given by Ψa(Pn−2 × I0). We can
identify, in a natural way, Pn−2 with Ψa(Pn−2×{0}) and Pn−2×I0 with M .
Without loss of generality, we can assume that the unit vector field normal
to M in M

n(C) is given by

N(p, z) = − sin(a) η1(p) + cos(a) η2(p).

Since Pn−2 ⊂ H(p0) ∩ M
n(C), it is not difficult to see that p0 ∈ span{η2(p),

φ(p)}, for any p ∈ Pn−2, so we can write p0 = Aη2+Bφ, for two differentiable
functions A and B. By taking derivative here, and using that p0 is constant,
we get that A and B are also constants. Let us consider the concircular
vector field in M

n(C) given by V = p0 − C 〈p0, φ〉 φ. It is not difficult to
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see that 〈V,N〉 = 〈p0, N〉 = A cos(a) is constant, and so M is a concircular
hypersurface.

Note that a hypersurface M in M
n(C) is concircular if and only if there

exists a point p0 ∈ R
n+1
ν such that 〈N, p0〉 is constant, N being the unit

normal vector field of M in M
n(C).

The main result of this section is the following. We will show that ev-
ery nontrivial concircular hypersurface in M

n(C) can be obtained by the
construction described above.

Theorem 6. Let M ⊂ M
n(C) be a nontrivial concircular hypersurface with

axis V . Then there exists a hypersurface Pn−2 in a totally umbilical hyper-
surface Qn−1(c) ⊂ M

n(C), such that M can be locally described by

Ψa(p, z) = expp(zWa(p)) = f
( z

R

)
p + Rg

( z

R

)
Wa(p), (11)

where a ∈ R and (p, z) ∈ Pn−2 × I0, I0 being an interval around the origin.

Proof. Let us suppose that the axis V of M is given by V = p0 − C 〈p0, φ〉 φ,
for a constant vector p0 ∈ R

n+1
ν , and assume 〈V,N〉 = λ. Pick a point q in

M and let Qn−1(c) = H(p0) ∩ M
n(C) be a totally umbilical hypersurface

containing q, H(p0) being a hyperplane in R
n+1
ν orthogonal to p0. Since M

is a nontrivial concircular hypersurface, then there is an (n − 2)-dimensional
submanifold Pn−2 ⊂ Qn−1(c) ∩ M with q ∈ Pn−2.

Let T be the unit vector field tangent to M which is collinear with the
tangential component of V . From Proposition 5 we deduce that there exists
a neighborhood U(q) of q in M given by

U(q) = {f
(

z
R

)
p + R g

(
z
R

)
T (p) | p ∈ U1(q), z ∈ (−ε2, ε2)},

where U1(q) is an neighborhood of q in Pn−2. Since T is orthogonal to Pn−2,
but tangent to M , then there exist a differentiable function a ∈ C∞(Pn−2)
such that

T (p) = cos(a(p)) η1(p) + sin(a(p)) η2(p),

and, up to the sign, the unit normal vector field N along Pn−2 is given by

N(p) = − sin(a(p)) η1(p) + cos(a(p)) η2(p).

Then we have λ = 〈V,N〉 (p) = 〈p0, N〉 (p) = A cos(a(p)) is constant and so a
is a constant function. Hence the open set U(q) can be rewritten as in (11).

�

In Example 2, we have seen that the conical hypersurfaces are concircu-
lar hypersurfaces associated to the constant value λ = 0. Now, we will prove
that these hypersurfaces are the only ones that satisfy this property.

Proposition 7. Let M ⊂ M
n(C) be a concircular hypersurface, with axis V ,

such that 〈V,N〉 = 0, N being the unit normal vector field. Then M is a
conical hypersurface.
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Proof. From Theorem 6, we know that M can be locally described by

Ψa(p, z) = f
( z

R

)
p + Rg

( z

R

)
Wa(p), Wa(p) = cos(a) η1(p) + sin(a) η2(p),

where (p, z) ∈ Pn−2 × I0, for certain Pn−2 ⊂ Qn−1(c) ⊂ M
n(C), Qn−1(c) =

H(p0)∩Mn(C) and I0 ⊂ R. Suppose that the interval I0 is the largest possible
interval.

The point p0 can be written as p0 = Aη2 + Bφ, for certain constants
A and B related by Ak − B = 0, where k =

√|c − C|. From the equal-
ity 〈V,N〉 = A cos(a), we get cos(a) = 0 (since A cannot vanish) and then
Wa(p) = η2(p). Take z0 ∈ R such that f(z0/R) = kRg(z0/R), and define a
differentiable function ϕ : Pn−2 → R

n+1
ν by ϕ(p) = Ψa(p, z0). A straightfor-

ward computation yields

dϕp(v) =
[
f
(z0

R

)
− kRg

(z0
R

)]
v = 0,

for any p ∈ Pn−2 and v ∈ TpP
n−2. Hence, ϕ is a constant q0 ∈ R

n+1
ν and

this shows that M is a conical hypersurface with vertex at q0. �

4. Concircular Helices in M
3(C)

We begin this section by showing a couple of examples of concircular helices
in M

3(C). Let γ : I → M
3(C) be an arclength parametrized curve satisfying

the following Frenet–Serret equations:

T ′
γ(s) = ∇0

Tγ
Tγ(s) = −Cγ(s) + κγ(s)Nγ(s),

N ′
γ(s) = ∇0

Tγ
Nγ(s) = −κγ(s)Tγ(s) + τγ(s)Bγ(s),

B′
γ(s) = ∇0

Tγ
Bγ(s) = −τγ(s)Nγ(s), (12)

where ∇0 denotes the Levi–Civita connection on R
4
ν . As usual, κγ and τγ are

called the curvature and torsion of γ.

Example 3. Planar curves, i.e., curves γ with zero torsion. These curves live
in a surface M2(C) totally geodesic in M

3(C). That means there is a constant
vector p0 in R

4
ν such that M2(C) = M

3(C) ∩ H0(p0), where H0(p0) is the
hyperplane through the origin orthogonal to p0. Since 〈Nγ , V 〉 = 0, for V =
p0 − C 〈p0, φ〉 φ, γ is a concircular helix.

Example 4. Rectifying curves, i.e., curves for which there exists a point p0
in M

3(C) such that the geodesics connecting p0 with γ(s) are orthogonal to
the principal normal geodesic starting from γ(s), see [6,7]. The nonplanar
rectifying curves are characterized by the condition 〈Nγ , p0〉 = 0. Then γ is
a concircular helix since 〈Nγ , V 〉 = 0 for the concircular vector field V =
p0 − C 〈p0, φ〉 φ.

In the following result, we show that the restriction to a curve γ of a
concircular vector field V is a vector field along γ satisfying a property similar
to that of concircular vector fields. For this reason, such a vector field will be
called a concircular vector field along a curve.
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Proposition 8. Let γ : I → M
n(C) be a differentiable curve and consider a

vector field v along γ. Then v is the restriction to γ of a concircular vector
field V on M

n(C) if and only if Dv
dt = ω Tγ , where ω : I → R is a differentiable

function with ω′ = −C 〈v, Tγ〉, D being the covariant derivative along γ.

Proof. Let us assume that V is an extension of v to M
n(C) which is a con-

circular vector field. Then there exists a constant vector p0 ∈ R
n+1
ν such that

p0 = V + C 〈p0, φ〉 φ. If X is a local extension of the tangent vector Tγ then

Dv
dt

= ∇XV |γ = (μX)|γ = ωTγ ,

where the differentiable function ω : I → R is the restriction of μ along
γ. On the other hand, from Theorem 1 we have μ = −C 〈p0, φ〉, and then
ω = −C 〈p0, γ〉 and ω′ = −C 〈v, Tγ〉.

To prove the converse, let us consider the vector field Y along γ given by
Y = v−ωγ. By derivating here with the Euclidean derivative, we obtain that
Y is a constant vector p0 ∈ R

n+1
ν along γ. By defining V = p0 − C 〈p0, φ〉 φ

and bearing Theorem 1 in mind, we deduce v is the restriction to γ of a
concircular vector field. �

For simplicity, and since ω(s) = μ(γ(s)), in what follows we will use
μ(s) instead of ω(s). In the following, we will characterize the concircular
helices in M

3(C). Note that γ is a concircular helix if and only if there exists
a point p0 ∈ R

4
ν such that 〈Nγ , p0〉 = λ constant.

Since the case λ = 0 reduces to planar or rectifying curves, we will
exclude this case from our study. A concircular helix γ (with axis V ) in
M

3(C) is said to be proper if γ is a nonplanar curve with λ 	= 0, λ being the
constant function 〈Nγ , V 〉.

Let γ(s) ⊂ M
3(C) ⊂ R

4
ν be an arclength parametrized concircular helix,

and suppose it is a proper one. From Proposition 8, we can write

v(s) = V (γ(s)) = t(s)Tγ(s) + λNγ(s) + z(s)Bγ(s), (13)

for certain differentiable functions t and z. To simplify the writing, we will
eliminate the s parameter. By derivating in (13), we get

μTγ = (t′ − λκγ)Tγ + (tκγ − zτγ)Nγ + (z′ + λτγ)Bγ ,

and then
t′ − λκγ = μ, tκγ − zτγ = 0, z′ + λτγ = 0. (14)

Note that z 	= 0 since γ is a proper concircular helix. Now we distinguish two
cases, according to t/z (called the rectifying slope of γ) is a constant or not.
Case 1: the rectifying slope t/z of γ is a constant function. Then the Lancret
curvature ρ = τγ/κγ is constant, and using the first and third equations of
(14), we get

κγ =
−1

λ(1 + ρ2)
μ and τγ = ρκγ , (15)

where the function μ satisfies

μ′′ + C
ρ2

1 + ρ2
μ = 0. (16)
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Now we will show that Eqs. (15) and (16) characterize proper concircular
helices with constant rectifying slope. Let γ be a curve satisfying these two
equations. Define a function z by

z = − μ′

Cρ
,

and consider the vector field v = z Dγ + λNγ , where Dγ = ρTγ + Bγ is the
modified Darboux vector and λ = −1/(m(1 + ρ2)). Then

∇Tγ
v =

ρ

1 + ρ2
μ (ρTγ + Bγ) − λmμTγ + λρmμBγ = μTγ .

Since μ′ = −C 〈v, Tγ〉, from Proposition 8 we get γ is a concircular helix.
Hence, we have shown the following result:

Proposition 9. Let γ be an arclength parametrized nonplanar curve in M
3(C).

Then γ is a proper concircular helix with constant rectifying slope if and only
if its curvature and torsion are given by κγ = mμ and τγ = ρκγ , where m
and ρ are nonzero constants and the function μ satisfies (16).

Case 2: the rectifying slope t/z is a nonconstant function. From the first
equation of (14), bearing in mind that μ′ = −C 〈v, Tγ〉, we have

μ′′ + Cμ = −Cλκγ , (17)

and then the second and third equations of (14) lead to
(μ′

ρ

)′
= Cλτγ . (18)

As before, we will show that equations (17) and (18) characterize con-
circular helices (when ρ is a nonconstant function). Let γ be an arclength
parametrized curve satisfying (17) and (18), for a constant λ and a differen-
tiable function μ. Define the functions

t = −μ′

C
and z =

t

ρ
, (19)

and consider the vector field v along γ given by

v = zDγ + λNγ = t Tγ + λNγ + z Bγ . (20)

From (17), we get t′ − λκγ = μ, and from (18), we obtain z′ = −λτγ .
Then by derivating in (20), we have

∇Tγ
v = (t′ − λκγ)Tγ + (tκγ − zτγ)Nγ + (λτγ + z′)Bγ = μTγ .

Therefore, since μ′ = −C 〈v, Tγ〉, from Proposition 8, we deduce γ is a con-
circular helix.

In conclusion, putting cases 1 and 2 together, we have proved the fol-
lowing result. Note that equations (17) and (18) are equivalent to (15) and
(16) in the case ρ constant.

Theorem 10. Let γ be an arclength parametrized nonplanar curve in M
3(C).

Then γ is a proper concircular helix if and only if Eqs. (17) and (18) are
satisfied, for a constant λ ∈ R and a differentiable function μ. Moreover, the
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axis V of γ is the extension of the vector field v given in (20), t and z being
the differentiable functions given in (19).

5. Geodesics of Concircular Surfaces

Let M be a nontrivial concircular surface in M
3(C) with axis V , and let

us consider γ(s) an arclength parametrized geodesic of M . From Theorem
6, we can assume that γ is locally written as X(t(s), z(s)), where X is the
parametrization (11). Here, the submanifold Pn−2 of Theorem 6 is a curve
δ(t). Since the principal normal vector field Nγ of γ is collinear with the unit
normal vector field N of M in M

3(C), then 〈Nγ , V |γ〉 is constant, and then
γ is a concircular helix in M

3(C). The goal of this section is to prove the
converse.

First, we are going to obtain the equations of geodesics in a concircular
surface M . Let γ(s) = X

(
t(s), z(s)

)
be an arclength parametrized geodesic

of M , with κγ > 0. Then Tγ(s) = t′(s)Xt(t(s), z(s))+ z′(s)Xz(t(s), z(s)) and
so there exists a differentiable function θ such that

t′(s)
√

E(t(s), z(s)) = sin θ(s), (21)
z′(s) = cos θ(s). (22)

Hence Tγ(s) = sin θ(s)Tδ(t(s)) + cos θ(s)Xz(t(s), z(s)), and by taking deriv-
ative here, we get

− Cγ(s) + κγ(s) Nγ(s) = θ′(s)
(
cos θ(s)Tδ(t(s)) − sin θ(s)Xz(t(s), z(s))

)

+ sin θ(s)t′(s)
(
kη(t(s)) − Cδ(t(s)) + κδ(t(s))Nδ(t(s))

)

+ cos θ(s)
(
t′(s)Xtz(t(s), z(s)) + z′(s)Xzz(t(s), z(s))

)
.

(23)

Bearing in mind that {Tδ, Xz, N, 1
Rγ} is an orthonormal frame of R4

ν along
γ, we have

δ(t(s)) = f
( z(s)

R

)
γ(s) − Rg

( z(s)
R

)
Xz(t(s), z(s)),

Nδ(t(s)) = − sin(a)N(t(s), z(s)) + cos(a)
(
f
( z(s)

R

)
Xz(t(s), z(s)) +

ε
R

g
( z(s)

R

)
γ(s)

)
,

η(t(s)) = cos(a)N(t(s), z(s)) + sin(a)
(
f
( z(s)

R

)
Xz(t(s), z(s)) +

ε
R

g
( z(s)

R

)
γ(s)

)
,

Xtz(t(s), z(s)) = −
(

ε
R

g
( z(s)

R

)
+ f

( z(s)
R

)(
sin(a)k + cos(a)κδ(t(s))

))
Tδ(t(s)),

Xzz(t(s), z(s)) = −Cγ(s).

From these equations, jointly with (23) and the fact that γ is a geodesic in M
(and so Nγ(s) = N(γ(s)); the case Nγ(s) = −N(γ(s)) is similar), we deduce

θ′(s) = t′(s)
(
CRg

( z(s)
R

)
+ f

( z(s)
R

)(
sin(a)k + cos(a)κδ(t(s))

))
, (24)

κγ(s) = sin θ(s)t′(s)
(
k cos(a) − sin(a)κδ(t(s))

)
. (25)

On the other hand, it is easy to see that Bγ(s) = cos θ(s)Tδ(t(s)) − sin θ(s)
Xz(t(s), z(s)) and by taking derivative here, we have

τγ(s) = cos θ(s)t′(s)
( − cos(a)k + sin(a)κδ(t(s))

)
. (26)
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Hence, we have shown the following result:

Proposition 11. Let M be a nontrivial concircular surface in M
3(C), locally

parametrized by (11). An arclength parametrized curve γ(s) = X
(
t(s), z(s)

)
,

with κγ > 0, is a geodesic if and only if there is a differentiable function θ(s)
such that Eqs. (21), (22) and (24) are satisfied. Moreover, the curvature and
torsion of γ are given by (25) and (26), respectively.

We finish this section with the following characterization of concircular
helices in M

3(C).

Theorem 12. Let γ(s) be an arclength parametrized curve in M
3(C), κγ > 0.

Then γ is a proper concircular helix if and only if γ is (congruent to) a
geodesic of a proper concircular surface.

Proof. We need only prove the direct implication. Let γ(s) be a arclength
parametrized proper concircular helix in M

3(C) with axis V = p0−C 〈p0, φ〉 φ,
such that 〈Nγ , V 〉 = λ is constant along γ. Let M be the ruled surface with
base curve γ and director curve Dγ (the unit Darboux vector field of γ),
which can be parametrized as follows:

X(s, z) = f
( z

R

)
γ(s) + R g

( z

R

) (
ρ(s)√

1 + ρ(s)2
Tγ(s) +

1√
1 + ρ(s)2

Bγ(s)

)
.

(27)
Since Xs ∈ span{Tγ , Bγ} and Xz ∈ span{γ, Tγ , Bγ}, we obtain that the unit
normal vector field N is collinear with the principal normal vector field Nγ .
From here, we conclude that M is a concircular surface in M

3(C) with axis
V , and that γ is a geodesic in M . This concludes the proof. �
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