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Abstract. In this paper we consider the problem of characterizing the
sets of uniqueness for the solutions of the sandwich equation ∂3

xf∂x =
0, where ∂x stands for the Dirac operator in R

m. These solutions are
referred to as infrabimonogenic functions and can be viewed as a non-
commutative version of biharmonic functions. Our main result states
that a pair of distinct spheres is a set of uniqueness for infrabimonogenic
functions in a convex domain of an odd-dimensional space.
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1. Introduction

Let f be a real-valued function defined in a domain Ω of the Euclidean space
R

m. If f is 2k-times continuously differentiable and

Δk f(x) = 0, for all x ∈ Ω,

then f is called polyharmonic of degree k. Here and in the sequel Δk denotes
the k-th iteration of the Laplace operator Δ.

Polyharmonic functions play an important role in pure and applied
mathematics. In particular, for k = 2, biharmonic functions are specially
important in elasticity theory.

The real Clifford algebra, R0,m is generated by the orthonormal basis
vectors e1, e2, . . . em of the Euclidean space R

m; with the relations

e2i = −1, eiej = −ejei, i, j = 1, 2, . . . m, i < j.

We will consider functions defined on subsets of Rm and taking values in
R0,m. An R0,m-valued function f is called left monogenic (right monogenic)
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in Ω if ∂xf = 0 (f∂x = 0) in Ω, where ∂x stands for the so-called Dirac
operator

∂x = ∂x1e1 + ∂x2e2 + · · · + ∂xm
em.

It should be noticed that ∂2
x = ∂x∂x = −Δ.

Functions that are both left and right monogenic are called two-sided
monogenic (see for example [2,7,8]). More generally, an R0,m-valued function
f in Ck(Ω) is called left polymonogenic of order k, or simply k-monogenic
(left) if ∂k

x f = 0 in Ω. With regard to this generalization references may be
made to [3,4,15,18].

As a natural consequence of the non-commutativity of the Clifford prod-
uct, a new class of functions arises, which can be seen as a non-commutative
version of harmonic functions, namely the solutions of the sandwich equation
∂xf∂x = 0. Such functions are termed inframonogenic (see [16,17] ) and rep-
resent a refinement of the much more recognized biharmonic ones. Interesting
connections have been found in [12–14], between them and the solutions of
the Lamé–Navier system in linear elasticity theory. Infrapolymonogenic func-
tions, introduced in [1], are the solutions of the generalized sandwich equation
∂2k−1

x f∂x = 0, with k ∈ N.
Infrabimonogenic functions are, in particular, the R0,m-valued solu-

tions of the fourth-order partial differential equation ∂3
xf∂x = 0 (a non-

commutative version of the biharmonic equation). As easily seen, a function
f is infrabimonogenic if and only if its Laplacian Δf is inframonogenic, or,
equivalently, if and only if ∂xf∂x is harmonic.

In [6], Edenhoffer proved that a polyharmonic function of order k is
completely determined by its values on k concentric spheres. This result was
extended by Hayman and Korenblum, who proved in [9] that the concentric
assumption may be removed.

As proved in [10], one sphere represents a set of uniqueness for infra-
monogenic functions in odd-dimensional spaces. However, in even-dimensional
spaces, it is possible to construct non-zero inframonogenic functions whose
restrictions vanish on a sphere. More recently in [11] has been proved that
k distinct concentric spheres is a set of uniqueness for infrapolymonogenic
functions in odd dimensional spaces. The main result of this article ensures
that, in the case of infrabimonogenic functions, the above concentric require-
ment may be removed in convex domains. Indeed, we prove that two distinct
spheres in a convex domain uniquely determine an infrabimonogenic func-
tion. Incidentally, a characterization of sets of uniqueness for a generalized
Lamé–Navier equation has been derived.

2. Auxiliary Results

In this section, some definitions and basic properties of a Clifford algebra
will be recalled. Besides, we will provide some auxiliary results before stating
the main theorems. The elements of R0,m will be described in the form a =∑

A aAeA, where as indices the elements A of the set containing the ordered
subsets of {1, 2, . . . ,m} will be used, with the empty subset corresponding to
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the index 0. An arbitrary element a ∈ R0,m may be written in a unique way
as

a = [a]0 + [a]1 + · · · + [a]m, (1)

where [ ]p denotes the projection of R0,m onto the subspace R
(p)
0,m of p-vectors

defined by

R
(p)
0,m = span

R
(eA : |A| = p).

We will make repeated use of the operator Ψ : R0,m �→ R0,m given by

Ψ(a) =
m∑

j=1

ejaej ,

for a ∈ R0,m.
The operator Ψ keeps the subspace R

(p)
0,m invariant and, moreover, we

have (see [16])

Ψ(Y p) = (−1)p+1(m − 2p)Y p, (2)

for a p-vector Y p.
When restricting to odd dimension m, the operator Ψ becomes a bijec-

tion and its inverse is given by

Ψ−1(a) =
m∑

p=0

(−1)p+1

m − 2p
[a]p.

We will also deal with R0,m-valued homogeneous polynomials of degree k
given by

Pk =
∑

|k|=k

akxk,

where k = (k1, k2, . . . , km) denotes a multiindex, |k| = k1 +k2 + · · ·+km and
xk = xk1

1 xk2
2 · · · xkm

m .

Lemma 1. Let f be a two-sided 3-monogenic function in a convex set Ω, and
y ∈ Ω. Then, there exists a unique harmonic function h, and a unique two-
sided monogenic function φ, such that

f(x) = h(x) + |x − y|2φ(x).

Proof. The Almansi-type decomposition obtained in [15, Theorem 2.1] en-
ables us to infer the following representation (uniquely determined)

f(x) = f ′
1(x) + xf ′

2(x) + x2f ′
3(x), (3)

with f ′
1(x), f ′

2(x) and f ′
3(x) monogenic in Ω. Moreover from [14, Proposition

2] it follows that xf ′
2(x) is harmonic, then also f1(x) = f ′

1(x)+xf ′
2(x). Hence

(3) can be rewritten as

f(x) = f1(x) + |x|2f2(x), (4)

where f1, and f2 are harmonic, and left monogenic, respectively.
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It will be proved that f2 is also right monogenic. If we apply (on the
left) the Dirac operator ∂x to both sides of (4), we get

∂xf(x) = ∂xf1(x) + 2xf2(x), (5)

where ∂xf1 and f2 are both left monogenic functions.
Since, by assumption ∂xf is bimonogenic (harmonic), the uniqueness of

the above representation is guaranteed by [15, Theorem 2.1].
On the other hand, by assumption we have that ∂xf is also inframono-

genic and so, we can apply [5, Corollary 2.5] to yield the alternative (but
unique!) representation

∂xf(x) = f∗
1 (x) + xf∗

2 (x), (6)

where f∗
1 and f∗

2 are left and two-sided monogenic, respectively.
The uniqueness of (5) and (6) yields 2f2 = f∗

2 and hence f2 is two-sided
monogenic.

Then, due to the translation invariance of monogenic functions, f(x+y)
is a two-sided 3-monogenic function as well, and

f(x + y) = f∗
1 (x) + |x|2f∗

2 (x),

with ∂2
xf∗

1 = 0, and ∂xf∗
2 = f∗

2 ∂x = 0.
Hence

f(x) = f∗
1 (x − y) + |x − y|2f∗

2 (x − y).

The proof is completed by defining h(x) = f∗
1 (x − y), and φ(x) = f∗

2 (x − y).
�

Lemma 2. Suppose that Ω is a star-like domain with center 0, if f is two-sided
5-monogenic then f admits in Ω the unique representation

f(x) = h(x) + |x|4ψ(x),

where h is 4-monogenic and ψ is two-sided monogenic in Ω.

Proof. By similar arguments to those given in the proof of Lemma 1. It follows
from the Almansi-type decomposition [15, Theorem 2.1] and [14, Proposition
2] that

f = h + |x|4ψ, (7)

f = h∗ + |x|4ψ∗, (8)

with ∂xψ = ψ∗∂x = 0 and ∂4
xh = ∂4

xh∗ = 0. By (7) and (8) we have

∂4
x

(|x|4(ψ∗ − ψ)
)

= 0,

then

∂4
x

(
(|x|2 − r21)(|x|2 − r22)(ψ

∗ − ψ)
)

= 0,

where r1 and r2 have been chosen such that B(0, r1) ∪ B(0, r2) ⊂ Ω. Hence,
ψ∗ − ψ ≡ 0 in Ω, since two distinct spheres is a set of uniqueness for bihar-
monic functions. �
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Lemma 3. Suppose that g is two-sided monogenic in a convex Ω, then

∂4
x(|x|4g) = ∂4

x

(|x|2|x − y|2φ)
,

where φ is two-sided monogenic, and y ∈ Ω.

Proof. We have that |x|4g = |x|2(|x|2g)
, and ∂3

x

(|x|2g)
=

(|x|2g)
∂3

x = 0.
Indeed, from Lemma 1, there exist unique functions h and φ, such that

|x|2g = h(x) + |x − y|2φ(x),

and by direct calculations we obtain the desired result. �

Lemma 4. Let Pk be a two-sided monogenic homogeneous polynomial of de-
gree k in the odd-dimensional space R

m, and let

Q := |x|2|x − y|2Pk.

Then,

∂3
xQ∂x = (−16 + 8αk)Ψ(Pk) − 4∂x

(
yΨ(Pk)

)
.

Proof. First, we consider

∂x(xPk) =
m∑

j=1

ej∂xj
(xPk) = −mPk +

m∑

j=1

ejx∂xj
Pk

= −mPk +
m∑

j=1

(−2xj − xej)∂xj
Pk

= −mPk − x(∂xPk) − 2
m∑

j=1

xj∂xj
Pk

= −mPk − 2kPk = −(m + 2k)Pk,

and for simplicity, in what follows we use the notation αk = −(m + 2k).
Therefore ∂x(xPk) = αkPk, and we have the following chain of identities:

∂xQ =
(
2x|x − y|2 + 2(x − y)|x|2)Pk

= 2x|x − y|2Pk + 2(x − y)|x|2Pk.

∂2
xQ = 4(x − y)xPk + 2|x − y|2αkPk + 4x(x − y)Pk + 2|x|2αkPk − 2|x|2∂x(yPk)

= −8|x|2Pk − 4yxPk + 2αk|x − y|2Pk − 4xyPk + 2αk|x|2Pk − 2|x|2∂x(yPk).

∂3
xQ = −16xPk − 4∂x(yxPk) + 4αk(x − y)Pk − 4∂x(xyPk)

+4αkxPk − 4x∂x(yPk).

Then,

∂3
xQ∂x = −16Ψ(Pk) − 4∂x

(
yΨ(Pk)

)
+ 8αkΨ(Pk) − 4∂x(Ψ(yPk)) − 4Ψ(∂x(yPk))

= (−16 + 8αk)Ψ(Pk) − 4∂x

(
yΨ(Pk)

)
,

where use has been made of [14, Lemma 2.1]. �
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3. Main results

We state and prove our main results in this section. In the sequel, it will
be assumed that one is working in an odd-dimensional Euclidean space R

m.
The standard notations B(0, r) and B(0, r) for the open and closed ball with
radius r centered at the origin will be used, respectively. In a similar manner,
the sphere with radius r centered at the origin is denoted by ∂B(0, r).

Theorem 1. Let B(y, r) ⊂ Ω, A ∈ R, A �= ±1, and [u]k ∈ C2(Ω). If

A �= (−1)k+1 2j + m

m − 2k
, ∀j ∈ (N ∪ {0}), (9)

then the problem

A∂x([u]k)∂x + ∂2
x([u]k) = 0 in Ω,

[u]k = 0 in ∂B(y, r), (10)

has only the trivial solution [u]k ≡ 0.

Proof. Suppose that [u]k is a solution of the above problem. Let R ∈ R, such
that B(y, r) ⊂ B(y,R) ⊂ Ω. It follows from (10) that

A[u]k∂3
x + ∂3

x[u]k = 0,

[u]k∂3
x + A∂3

x[u]k = 0,

and so, we have

(1 − A2)[u]k∂3
x = 0,

(1 − A2)∂3
x[u]k = 0.

Hence [u]k∂3
x = ∂3

x[u]k = 0, since A �= ±1.
Next, by Lemma 1, we have

[u]k = h + |x − y|2φ, x ∈ B(y,R), (11)

where h and φ are harmonic and two-sided monogenic, respectively.
Now, we introduce the auxiliary function G = r2φ which is obviously

harmonic. Then, (11) can be rewritten as

[u]k = h + G + (|x − y|2 − r2)φ.

Since

[u]k = 0 in ∂B(y, r),

thus

h + G = 0 in ∂B(y, r).

The harmonicity of h + G yields h ≡ −G in B(y, r), and so in B(y,R).
Therefore,

[u]k = (|x − y|2 − r2)[φ]k, in B(y,R).
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Since φ = [φ]k is two-sided monogenic it can be expanded into the converging
Taylor series in B(y, r)

[φ]k =
∞∑

j=0

[Pj(x − y)]k,

with [Pj ]k being two-sided monogenic as well.
Consequently,

[u]k =
∞∑

j=0

(|x − y|2 − r2)[Pj(x − y)]k,

and

∂2
x([u]k) =

∞∑

j=0

∂2
x{(|x − y|2 − r2)[Pj(x − y)]k} =

∞∑

j=0

2αj [Pj(x − y)]k.

On the other hand,

∂x([u]k)∂x =
∞∑

j=0

2Ψ([Pj(x − y)]k) =
∞∑

j=0

(−1)k+12(m − 2k)[Pj(x − y)]k,

using [14, Lemma 2.1]. Summarizing, we have

A∂x([u]k)∂x + ∂2
x([u]k) =

∞∑

j=0

{(−1)k+12A(m − 2k) + 2αj}[Pj(x − y)]k = 0.

Under the assumption (9), the last identity yields

[Pj(x − y)]k = 0, ∀ j ∈ {0, 1, 2, . . .},

and hence [u]k ≡ 0. �

A simple corollary is the following.

Corollary 1. Let Ω ⊂ R
3, and suppose that A ∈ N is even. Then a sphere

∂B(y, r) is a set of uniqueness for the vector solutions of the system

A∂x[u]1∂x + ∂2
x[u]1 = 0.

Proof. It follows directly from Theorem 1. Indeed, since in this case m = 3
and k = 1, we have

A �= 2j + 3
3 − 2

= 2j + 3, j ∈ {0, 1, 2, . . .},

for any even number A. �

Remark 1. When u is a bivector, i.e. u = [u]2, an analogous statement holds,
since

A �= −(2j + 3)
3 − 4

= 2j + 3.

It is important to mention that Corollary 1 and Remark 1 can be gen-
eralized in case that m is odd and A is even. We are now in a position to
state and prove our main result.
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Theorem 2. Let Ω be a convex domain containing two distinct balls B1 and
B2, such that B1 ∪ B2 ⊂ Ω. If f is infrabimonogenic in Ω and f |∂B1 =
f |∂B2 = 0, then f = 0 identically in Ω. In other words, two distinct spheres
is a set of uniqueness for infrabimonogenic functions.

Proof. Without loss of generality, assume that one of the balls is centered at
0. The another center will be denoted by y. Since ∂3

xf∂x = 0, it follows that
∂5

xf = f∂5
x = 0. From Lemma 2, there exist h∗ and ψ, such that

f = h∗ + |x|4ψ,

where h∗ is 4-monogenic and ψ is two-sided monogenic.
Then

∂4
xf = ∂4

x(|x|4ψ),

and by Lemma 3, there exists a two-sided monogenic function φ, such that

∂4
x(|x|4ψ) = ∂4

x(|x|2|x − y|2φ).

Therefore,

∂4
xf = ∂4

x(|x|2|x − y|2φ),

and

∂4
x(f − |x|2|x − y|2φ) = 0.

Now let r and R be the radius of the corresponding balls centered at 0 and
y.

Notice that

∂4
x(|x|2|x − y|2φ) = ∂4

x

(
(|x|2 − r2)(|x − y|2 − R2)φ

)
,

and hence

∂4
x

(
f − (|x|2 − r2)(|x − y|2 − R2)φ

)
= 0.

Since two distinct spheres are a set of uniqueness for biharmonic functions,
one has then

f ≡ (|x|2 − r2)(|x − y|2 − R2)φ in Ω.

On the other hand, direct calculations give

0 = ∂3
x{(|x|2 − r2)(|x − y|2 − R2)φ}∂x = ∂3

x(|x|2|x − y|2φ)∂x,

for x ∈ B(0, δ) ⊂ B(0, r).
Next, we expand the two-sided monogenic function φ in B(0, δ) ⊂

B(0, r) ⊂ Ω, into the converging Taylor series

φ =
∞∑

j=0

Pj .
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Accordingly, we have

0 =
∞∑

j=0

{(8αj − 16)Ψ(Pj) − 4∂x(yΨ(Pj))},

0 = 8
∞∑

j=0

αjΨ(Pj) − 16
∞∑

j=0

Ψ(Pj) − 4∂x

(

y

∞∑

j=0

Ψ(Pj)
)

,

0 = 8∂x

(

x
∞∑

j=0

Ψ(Pj)
)

− 16
∞∑

j=0

Ψ(Pj) − 4∂x

(

y
∞∑

j=0

Ψ(Pj)
)

,

0 = 8∂x(xΨ(φ)) − 16Ψ(φ) − 4∂x(yΨ(φ)),

where use has been made of Lemma 4, the bijectivity of Ψ, and the fact that
∂x(xPj) = αjPj .

Moreover, define G = 8∂x(xΨ(φ)) − 16Ψ(φ) − 4∂x(yΨ(φ)). Of course,
since G represents a real analytic function, which vanishes in the open set
B(0, δ) ⊂ Ω, it follows that G ≡ 0 in the whole domain Ω.

Then, we indeed have in Ω

2∂x(xΨ(φ)) − 4Ψ(φ) − ∂x(yΨ(φ)) = 0,

from this identity and [14, Lemma 2.1] we have

∂2
x[(|x − y/2|2 − ε2)Ψ(φ)] = 4Ψ(φ), (12)

where ε was chosen such that B(y/2, ε) ⊂ Ω. Similarly,

∂x[(|x − y/2|2 − ε2)φ]∂x = 2Ψ(φ),

and so

∂x[(|x − y/2|2 − ε2)[φ]k]∂x = 2Ψ([φ]k) = 2(−1)k+1(m − 2k)[φ]k (13)

after taking the k-vector part.
Applying Ψ−1 to (12), yields

∂2
x[(|x − y/2|2 − ε2)φ] = 4φ,

thus

∂2
x[(|x − y/2|2 − ε2)[φ]k] = 4[φ]k. (14)

Let us denote [ω]k = (|x − y/2|2 − ε2)[φ]k. It follows from (13) and (14) that

(−1)k+1(m − 2k)∂2
x([ω]k) − 2∂x([ω]k)∂x = 0,

or equivalently

∂2
x([ω]k) +

2(−1)k

m − 2k
∂x([ω]k)∂x = 0.

On the other hand,

[ω]k = 0 in ∂B(y/2, ε),

which is obvious from the definition of [ω]k.
Thus by Theorem 1, [ω]k ≡ 0 in Ω for every k. Then φ ≡ 0, and finally

f ≡ 0 in Ω, as desired. �



318 Page 10 of 12 L. M. M. Alvarez et al. MJOM

4. Concluding Remark

In the context of the search for possible generalizations we can ask whether
Theorem 2 remains valid for infrapolymonogenic functions of arbitrary order
k if instead of two distinct spheres we consider k of them. This conclusion
cannot be reached using the inductive method similar to that used in the
proof of [9, Theorem 4], because it is based on a direct application of the
maximum principle for harmonic functions. The above question will inspire
further analysis and researches.
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[8] Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary
Value Problems. Birkhäuser AG, Basel (1990)
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