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Abstract. In this paper, a new class of Sobolev spaces with kernel func-
tion satisfying a Lévy-integrability-type condition on compact Riemann-
ian manifolds is presented. We establish the properties of separability,
reflexivity, and completeness. An embedding result is also proved. As
an application, we prove the existence of solutions for a nonlocal elliptic
problem involving the fractional p(·, ·)-Laplacian operator. As one of the
main tools, topological degree theory is applied.

Mathematics Subject Classification. Primary 58J10; Secondary 58J20,
35J66.

Keywords. Nonlinear elliptic problem, fractional Sobolev space, kernel
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1. Introduction

Let (M, g) be a compact Riemannian manifold of dimension N. The purpose
of this paper is to present fundamental properties of a new class of Sobolev
spaces with general kernel on (M, g). In addition, we shall solve the following
equation:{

(LK
g )p(y,·)w(y) = λβ(y)|w(y)|r(y)−2w(y) + f(y, w(y)) in U ,

w = 0 in M\U .
(1.1)

Here, s ∈ (0, 1) is fixed, r ∈ C(U , (1,∞)), λ > 0, U ⊂ M is an open bounded
subset of M, β is a suitable potential function in R

+ with β ∈ L∞(U),
p ∈ C(U × U , (1,∞)) satisfies the following conditions:

p(z, a) = p(a, z), for every (z, a) ∈ M2, (1.2)
1 < p− = min

(y,z)∈M2
p(y, z) ≤ p(y, z) < p+ = sup

(y,z)∈M2
p(y, z), (1.3)
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and f : M × R → R is a Carathéodory function, such that:
(B1) There exist α > 0 and a continuous function q : M → (1,+∞),

such that

1 < q(y) < p�
s(y) =

Np(y, y)
N − sp(y, y)

and

f(y, z) ≤ α
(
1 + |z|q(y)−1

)
, a.e. y ∈ M, z ∈ R,

r+ = sup
y∈M

r(y) ≤ q− = min
y∈M

q(y) ≤ p�
s(y)

and the operator (LK
g )p(y,·) is defined by

(LK
g )p(y,·)w(y) = 2 lim

ε→0+

∫
M\Bε(y)

|w(y)

−w(z)|p(y,z)−2(w(y) − w(z))K(y, z)dvg(z),

for every z ∈ M, where

Bε(y) = {z ∈ M : dg(y, z) < ε} and dvg(z) = |gij | 1
2 dz.

(see Definition 2.1). Furthermore, K : U ×U → (0,+∞) is a symmetric kernel
function satisfying the following variant of Lévy-integrability type condition:

gK ∈ L1 (M × M,dvg(y)dvg(z)) , where g(y, z) = min{dg(y, z), 1}(1.4)

and the following coercivity condition for some α0 > 0
α0

dg(y, z)N+sp(y,z)
≤ K(y, z), a.e. (y, z) ∈ M2, y �= z. (1.5)

We give examples of symmetric kernel functions that satisfy Lévy-integrability
and coercivity type conditions.

Example. The following functions satisfy conditions (1.4)–(1.5).

♣ K(y, z) = dg(y, z)−N−sp(y,z)).
♣ K(y, z) = α0

dg(y,z)N+sp(y,z)) , where α0 is a positive real.

♣ K(y, z) = exp
(

1
dg(y,z)N+sp(y,z))

)
.

♣ K(y, z) = exp
(−δdg(y, z)2

)
, where δ is a positive real.

Recently, results on fractional Sobolev spaces and problems involving
the p(y, ·)-operator and their applications have received a lot of attention. For
example, Kaufmann et al. [27] first introduced the new class W s,q(y),p(y,z)(U)
defined by

W s,q(y),p(y,z)(U) = {w ∈ Lq(y)(U) :
∫

M×M

|w(y) − w(z)|p(y,z)

K(y, z)
dydz < +∞},

where q ∈ C(U , (1,∞)) and K(y, z) = |y − z|N+sp(y,z), and they proved the
existence of a compact embedding

W s,q(y,p(y,z)(U) ↪→ Lr(y)(U), for every r ∈ C(U)
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such that 1 < r(y) < p�
s(y), for every y ∈ U . They also studied solvability of

the following fractional p(y, ·)-Laplacian problem:{Lw(y) + |w(y)|q(y)−2w(y) = h(y) in Q,
w = 0 in ∂Q,

(1.6)

with h ∈ La(y)(Q), a(y) > 1.
For more results on the functional framework, we refer to Bahrouni and

Rădulescu [9] who proved the solvability of the following problems:{Lw(y) + |w(y)|q(y)−2w(y) = λ|w(y)|r(y)−2w(y) in U ,
w = 0 in R

N\U ,
(1.7)

using Ekeland’s variational method, where U is an open bounded subset of
R

N , λ > 0, r(y) < p− = min(y,z)∈U×U p(y, z), and Lw is the fractional p(y, ·)
Laplacian operator.

Bahrouni [8] continued to study the space W s,q(y,p(y,z)(U). More spe-
cially, he proved the strong comparison principle for (−Δ)s

p(y,.) and by using
the sub-supersolution method, he showed the solvability of the following non-
local equation: {

(−Δ)s
p(y) w(·) = h(y, w(·)) in U ,

w = 0 in R
n\U ,

(1.8)

where U is an open bounded domain, s ∈ (0, 1), p is a continuous function,
and h satisfies the following growth:

|h(y, z)| ≤ A1|z|r(y)−1 + A2, for every (y, z) ∈ R
N+1,

where r ∈ C(RN ,R), 1 < r(y) < p�
s(y), for every y ∈ R

N .
The generalized fractional Sobolev space was studied in [8,9,27] and

further developed in [26]. They proved a fundamental compact embedding
for this space and investigated the multiplicity and boundedness of solutions
to the following problem:{

(−Δ)s
p(y) w(·) = f(·, w(·)) in U ,

w = 0 in R
N\U ,

(1.9)

where p ∈ C(RN × R
N , (1,+∞)) is such that p satisfies the following condi-

tions:

p(y, z) = p(z, y), for every (y, z) ∈ R
2N , (1.10)

1 < inf
(y,z)∈RN ×RN

p(y, z) ≤ p(y, z) < sup
(y,z)∈RN ×RN

p(y, z) <
N

s
, (1.11)

f : RN × R → R is a Carathéodory function, and
(−Δp(y)

)s is an operator
defined by

(−Δ)s
p(y) w(y) = 2 lim

ε→0+

∫
RN \Bε(y)

|w(y) − w(z)|p(y,z)−2(w(y) − w(z))
|y − z|N+sp(y,z)

dz,

where Bε(y) = {z ∈ R
N : |z − y| < ε}.

The approaches for ensuring the existence of weak solutions for a class
of nonlocal fractional problems with variable exponents were addressed in
greater depth in [1,2,6,8–11,17,18,26,27,29,31,33] and the references therein.



6 Page 4 of 24 A. Aberqi et al. MJOM

In the non-Euclidean case, classical Sobolev spaces on Riemannian manifolds
have been investigated for more than seventy years [5,25,30]. The theory of
these spaces has been applied to isoperimetrical inequalities [25] and the Yam-
abe problem [35]. In [22] the authors investigated the theory of generalized
Sobolev spaces on compact Riemannian manifolds. Moreover, they proved
the compact embeddability of these spaces into the Hölder space. They also
studied a PDE problem involving p(·)-Laplacian operator.

In addition, the authors in [21] studied variable exponent function spaces
on complete non-compact Riemannian manifolds. They used classical as-
sumptions on the geometry to establish compact embeddings between Sobolev
spaces and the Hölder function space. Finally, they also showed the existence
of solutions to the p(·)-Laplacian problem. The authors in [24] introduced the
fractional Sobolev spaces on Riemannian manifolds. As a consequence, they
investigated fundamental properties, such as compact embeddings, complete-
ness, density, separability, and reflexivity. They also investigated the existence
of solutions to the following equation:

{
(−Lg)

s
p w(y) = f(y, w(y)) in U ,

w = 0 in M\U ,
(1.12)

where M is a compact manifold of dimension d, U ⊂ M is an open bounded
subset of M, s ∈ (0, 1), p > 1 with d > ps, f : M×R → R is a Carathéodory
function, and the operator (−Lg)

s
p w(y), y ∈ M is defined by

(−Lg)
s
p w(y) = 2 lim

ε→0+

∫
M\Bε(y)

|w(y) − w(z)|p−2(w(y) − w(z))

(dg(y, z))d+ps
dvg(z).

Aberqi et al. [2] introduced the space W s,p(y,z)(M) and proved some
important properties of this space and studied the following problem:

(P)
{

(−Lg)
s
p(y,.) w(y) + V(y)|w(y)|q(y)−2w = h(y, w(y)) in U

w|∂U = 0.

Fractional Sobolev spaces and problems involving the p(·, ·)-Laplacian
operator have attracted significant attention in recent decades. This class
of operators appears rather naturally in a variety of applications, including
optimization and financial mathematics, we cite the well-known example by
Carbotti et al. [16] who obtained the following equation:

∂V

∂t
(St, t) + AV (St, t) = rV (St, t) − r

∂V

∂t
(0, t)St,

where A := a∂2 − b(−Δ)s with a, b � 0 and r ∈ R. Here, St is the price at
time t and V the value of option. They are also useful in optimal control, engi-
neering, quantum mechanics, obstacle problems, elasticity, image processing,
minimal surfaces, stabilization of Lévy processes, game theory, population
dynamics, fluid filtration, and stochastics, see for example [4,7,15,17,19,20,
23,32,33] and the references therein.
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Our work’s novelty is extending general Sobolev spaces to Sobolev spaces
W

q(y),p(y,z)
K (U) with kernel function K on M. We shall prove important prop-

erties of this new class of spaces. In particular, we shall investigate the ex-
istence of solutions to problem (1.1) using the topological degree method.
This work generalizes previous results [1,2,8,9,12,24,26,27]. However, the
main difficulty is presented by the fact that the p(·, ·)-Laplacian operator has
a more complicated nonlinearity than the p-Laplacian operator. For exam-
ple, it is non-homogeneous. Other complications are due to the non-Euclidean
framework of our problem. Also checking for example the density of the space
C∞(M) in W

q(y),p(y,z)
K (U), because the notion the translation in Riemannian

manifolds is not defined. To the best of our knowledge, there were no such
results prior to this work.

Our first major result is the following theorem.

Theorem 1.1. Suppose that (M, g) is a compact N -dimensional Riemannian
manifold, U is a smooth open subset of M, K : U × U → (0,+∞) is a
symmetric function satisfying Lévy-integrability and coercivity conditions, q ∈
C+(M), p : U × U → (1,+∞) satisfies conditions (1.2)–(1.3) and

sp(y, z) < N, p(y, y) < q(y), for every (y, z) ∈ U2,

and 	 : M → (1,+∞) is a continuous variable exponent, such that

p∗
s(y) =

Np(y, y)
N − sp(y, y)

> 	(y) ≥ 	− = min
y∈M

	(y) > 1.

Then, the space W
q(y),p(y,z)
K (U) is continuously embeddable in L�(y)(U) and

there exists a positive constant C = C(N, s, p, q,U) such that

|w|Ll(y)(U) ≤ ‖w‖
W

q(y),p(y,z)
K (U)

, for every w ∈ W
q(y),p(y,z)
K (U).

Moreover, this embedding is compact.

Our second main result is related to the investigation of the following
fractional p(y, ·)-Laplacian problem with a general kernel K:

(1.1)
{

(LK
g )p(y,·)w(y) = λβ(y)|w(y)|r(y)−2w(y) + f(y, w(y)) in U ,

w = 0 in M\U .

Using Berkovits’ topological degree, we study the existence of solutions and
prove the following theorem.

Theorem 1.2. Suppose that (M, g) is a compact N -dimensional Riemann-
ian manifold, U is a smooth open subset of M, K : U × U → (0,+∞) is
a symmetric function satisfying Lévy-integrability and coercivity conditions.
Assume that assumption (B1) holds. Then, problem (1.1) has at least one
weak solution w ∈ W

q(y),p(y,z)
K (U).

This paper is organized as follows: in Sect. 2, we collect the main defi-
nitions and properties of generalized Lebesgue spaces and generalized Sobolev
spaces on compact manifolds and provide crucial background on recent
Berkovits degree theory. In Sect. 3, we establish completeness, separability,
and reflexivity properties of our spaces (Lemmas 3.2, 3.3, and 3.5). In Sect. 4,
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we prove our first main result (Theorem 1.1). In Sect. 5, we prove our sec-
ond main result (Theorem 1.2). Finally, in Appendix, we prove some lemmas
needed for the proofs of our main results.

2. Preliminaries

2.1. Generalized Lebesgue Spaces on Compact Manifolds

Throughout this section, (M, g) will be a compact Riemannian manifold
of dimension N. To start, we briefly review some fundamental Riemannian
geometry concepts that will be needed. For more details see [5,24,25].

A local chart on M is a pair (U , ϕ), where U is an open subset of M
and ϕ is a homeomorphism of U onto an open subset of RN . Furthermore,
a collection (Ui, ϕi)i∈J of local charts, such that M =

⋃
j∈J Uj , is called an

atlas of manifold M. For some atlas (Uj , ϕj)j∈Jof M, we say that a family
(Uj , ϕj , βj)j∈J is a partition of unity subordinate to the covering (Uj , ϕj)j∈J

if the following holds:
(1)

∑
j∈J βj = 1,

(2) (Uj , ϕj)j∈J is an atlas of M,
(3) supp(βj) ⊂ Uj , for every j ∈ J.

Definition 2.1. (See [25]) Suppose that w : M → R is a continuous function
with compact support, (Uj , ϕj)j∈J is an atlas of M, and (Uj , ϕj , βj)j∈J is
a partition of unity subordinate to (Uj , ϕj)j∈J . We define the Riemannian
measure of w in M as follows:∫

M
w(y)dvg(y) =

∑
j∈J

∫
ϕj(Uj)

(|gij | 1
2 βjw) ◦ ϕ−1

j (y)dy,

where dvg(y) = |gij | 1
2 dy is the Riemannian volume element on (M, g), gij

are the components of the metric g in the local chart (Uj , ϕj)j∈J , and dy is
the Lebesgue volume of RN .

Definition 2.2. (See [5]) Let γ : [a, b] → M be a differentiable curve in M
such that γ ∈ C1([a, b],M). Then the length of γ is given by

L(γ) =
∫ b

a

(g(γ′(t), γ′(t)))
1
2 dt.

Definition 2.3. (See [5]) For any (y, z) ∈ M2, we define the distance dg(y, z)
between y and z as follows

dg(y, z) = inf{L(γ) : γ(a) = y, γ(b) = z}.

Theorem 2.4. (Stine’s theorem [5]) For any (a, b) ∈ M2, dg(a, b) defines a
distance on (M, g), and the topology determined by dg(a, b) is equivalent to
the topology of M as a manifold.

Next, we recall basic definitions and preliminary facts on the generalized
Lebesgue spaces Lq(x)(U) on compact manifolds, where U is an open subset
of manifold M. For more background, we refer to [2,5,25]. We need to recall
the notion of the covariant derivative.
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Definition 2.5. (See [25]) Let ∇ be the Levi–Civita connection. For w ∈
C∞(M), ∇kw denotes the kth covariant derivative of w. In local coordinates,
the pointwise norm of ∇kw is given by∣∣∇kw

∣∣ = gi1j1 · · · gikjk(∇kw)i1i2...ik
(∇kw)j1j2...jk

.

When k = 1, the components of ∇w in local coordinates are given by (∇w)i =
∇iw. By definition, one has that

|∇w| =
∞∑

i,j=1

gij∇i w∇jw.

We consider the set:

C+(M) = {q : M → R
+ : q is continuous and 1 < q− < q(y) < q+ < +∞},

for every y ∈ M, q− = miny∈M q(y), q+ = maxy∈M q(y).

Definition 2.6. (See [21]) Let q ∈ C+(M) and k ∈ N. We define the Sobolev
space L

q(y)
k (M) as the completion of C

q(y)
k (M) with respect to the norm

|w|
L

q(y)
k

(M), where

C
q(y)
k (M) = {w ∈ C∞(M) :

∣∣∇jw
∣∣ ∈ Lq(y)(M), for every j = 1, 2, . . . , k},

and

|w|Lq(y)(M) =
k∑

j=0

|∇jw|Lq(y)(M),

where |∇jw| is the kth covariant derivative of w.

Lemma 2.7. (See [1]) For every w ∈ Lq(y)(M), the following properties hold:

(i) If |w|Lq(y)(M) < 1, then |w|q−

Lq(y)(M)
≤ ρq(y)(w) ≤ |w|q+

Lq(y)(M)
.

(ii) If |w|Lq(y)(M) > 1, then |w|q+

Lq(y)(M)
≤ ρq(y)(w) ≤ |w|q−

Lq(y)(M)
.

(iii) |w|Lq(y)(M) < 1,= 1, > 1 if only if ρq(y)(w) < 1,= 1, > 1,

where ρq(y) : Lq(y)(M) → R is the mapping defined as follows

ρq(y)(w) =
∫

M
|w(y)|q(z)dvg(z).

Proposition 2.8. (See [2]) For every w and wn ∈ Lq(y)(M), the following
statements are equivalent:

(i) limn→+∞ |wn − w|Lq(y)(M) = 0,

(ii) limn→+∞ ρq(y)(wn − w) = 0,
(iii) wn → w in measure on M and limn→+∞ ρq(y)(wn) − ρq(y)w) = 0.

Lemma 2.9. (Hölder’s inequality, see [1]) For every q ∈ C+(M), the following
inequality holds:∣∣∣∣

∫
M

v(y)w(y)dvg(y)
∣∣∣∣ ≤

(
1
q− +

1
q′−

)
|v|Lq(y)(M)|w|Lq′(y)(M),

for every (v, w) ∈ Lq(y)(M) × Lq′(y)(M), where 1
q(y) + 1

q′(y) = 1.
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Lemma 2.10. (Simon’s inequality, see [34]) For every y, z ∈ R
N , the following

holds:{
|y − z|n ≤ cn

(|y|n−2y − |z|n−2z
) · (y − z), n ≥ 2

|y − z|n ≤ Cn

[(|y|n−2y − |z|n−2z
) · (y − z)

]n
2 (|y|n + |z|n)

2−n
2 , 1 < n < 2

where cn =
(
1
2

)−n and Cn = 1
n−1 .

2.2. Topological Degree Theory

Let E be a real separable Banach space and E∗ its dual. Given a non-empty
set U ⊂ E, denote by Ū and by ∂U its closure and boundary, respectively.

Definition 2.11. (See [13]) Let f : U ⊂ E → E∗ be an operator.

(1) We say that f is an (S+)-map if for {{zn}n∈N, z} ⊂ U, we have

zn
weakly

⇀ z weakly and lim sup
n→∞

〈fzn, zn − z〉 ≤ 0 ⇒ zn → z·

(2) We say that f is a quasi-monotone operator if for every {{zn}n∈N, z} ⊂
U, we have

zn
weakly

⇀ z ⇒ lim sup
n→∞

〈fzn, zn − z〉 ≥ 0.

Definition 2.12. (Condition (S+)B , see [28]) Suppose that U1 ⊂ E is such
that U ⊂ U1, B : U1 → E∗ is a bounded operator, and f : U ⊂ E → E is an
operator.

(1) We say that f satisfies condition (S+)B if for every {{zn}n∈N, z} ⊂ U,
the following combined properties⎧⎪⎪⎨

⎪⎪⎩
zn

weakly
⇀ z

an = B(zn)
weakly

⇀ a

lim supn→+∞ 〈fzn, an − a〉 ≥ 0

(2.1)

imply zn → z.
(2) (Property (QM)B). We say that f satisfies condition (QM)B if for every

{{zn}n∈N, z} ⊂ U, we have

zn
weakly

⇀ z and an = Bzn
weakly

⇀ a ⇒ lim sup
n→∞

〈fzn, a − an〉 ≥ 0·

We consider the following sets

F�
0 (U)
= {g : U ⊂ E → E∗ | g is demi-continuous, of type (S+), and is bounded}.

FB,1(U)
= {g : U ⊂ E → E | g is demi-continuous, bounded, of type (S+)B} .

FB(U)
= {f : U ⊂ E → E | f is demi-continuous and satisfies condition (S+)B} .
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Let U ⊂ Df and B ∈ F�
0 (U), where Df denotes the domain of f. We denote

by N the collection of all bounded open sets in E. The following operators
will be considered:

FS+(E) = {f ∈ F�
0 (ω) : ω ∈ N} ,

FB(E) = {f ∈ FB,1(ω) : ω ∈ N ,B ∈ F�
0 (ω)} ,

F(E) = {f ∈ FB(ω) : ω ∈ N ,B ∈ F�
0 (ω)} ·

Lemma 2.13. (See [28]) Let ω be a bounded open set in uniformly convex
Banach space E, B : ω → E∗ a bounded operator, and f : ω → E. Then, we
have
(1) If f is locally bounded and satisfies condition (S+)B and B is continuous,

then f has the property (QM)B.
(2) The operator f has the property (QM)B, if for all {{zn}n∈N, z} ⊂ U

zn ⇀ z and an = Bzn ⇀ a ⇒ lim inf 〈fzn, an − a〉 ≥ 0.

(3) If operators f1, f2 : ω → E satisfy (QM)B condition, then f1 + f2 and
αf1 also satisfy (QM)B condition, for every positive numbers α.

(4) Let f1 : ω → E be an operator of the type (S+)B and f2 : ω → E an
operator satisfying the property (QM)B. Then, f1+f2 satisfies condition
(S+)B .

Lemma 2.14. (See [11]) Let B be a bounded open set in E, B ∈ F�
0 (B)

continuous, and g : Dg ⊂ E∗ → E a demi-continuous operator, such that
B(B̄) ⊂ Dg. Then, the following properties hold:

(a) If g is quasi-monotone operator, then I+g◦B ∈ FB(B̄), where I denotes
the identity operator.

(b) If g is an operator of type (S+) , then g ◦ B ∈ FB(B).

Definition 2.15. (See [14]) Let B ⊂ E be a bounded open set, B ∈ F�
0 (B)

continuous, and f, g ∈ FB(E). Then, the map H : [0, 1] × E → E given by

H(s, w) = (1 − s)fw + sgw, for every (s, w) ∈ [0, 1] × B,

is called an admissible affine homotopy.

Lemma 2.16. (See [11]) Let B ⊂ E be a bounded open set, B ∈ F�
0 (B)

continuous, and f, g ∈ FB(E). Then, the homotopy H(s, ·) satisfies condition
(S+)B .

Theorem 2.17. (See [11]) There exists a unique degree function

d :
{
(f, F, a) : F ∈ N ,B ∈ F�

0 (B), f ∈ FB,1(E), a /∈ f(∂E)
}→ Z

satisfying the following properties:
(1) If a ∈ F, then d(I, F, a) = 1.
(2) If G : [0, 1] × B → F is a bounded admissible affine homotopy with a

common continuous essential inner map and b : [0, 1] → F is a continu-
ous mapping in E, then d(G(x, ·), F, b(x)) is constant for every x ∈ [0, 1]
and b(x) /∈ G(t, ∂F ).
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(3) If F1 and F2 are disjoint open subsets of E with a /∈ f
(
F\ (E1 ∪ E2)

)
,

then

d(f, F, a) = d (f, F1, a) + d (f, F2, a) .

(4) If d(f, F, a) �= 0, then fu = a has a solution in F.

3. Fractional Sobolev Spaces with a General Kernel on
Compact Riemannian Manifolds

In this section, we shall introduce fractional Sobolev spaces with a general
kernel and prove several qualitative lemmas.

Definition 3.1. Suppose that (M, g) is a Riemannian compact manifold of
dimension N, U is a smooth open subset of M, K : U × U → (0,+∞) is
a symmetric function satisfying Lévy-integrability and coercivity conditions,
q ∈ C+(M), and p : U × U → (1,+∞) satisfying conditions (1.2)–(1.3). We
define fractional Sobolev space W

q(y),p(y,z)
K (U) with general kernel K(y, z) on

compact manifold M as the set of all measurable functions w ∈ Lq(y)(U),
such that

∫
M2

|w(y)−w(z)|p(y,z)

λp(y,z) K(y, z)dvg(y)dvg(z) < ∞, for some λ > 0 and
endow it with the natural norm:

‖w‖q(y),p(y,z)
K (U) = [w]K,p(y,z) + |w|q(y),

where

[w]K,p(y,z) = inf
{

λ > 0 :
∫

M2

|w(y) − w(z)|p(y,z)

λp(y,z)
K(y, z)dvg(y)dvg(z) < 1

}
,

is the Gagliardo seminorm of u and (Lq(y)(U), |.|q(y)) is a variable exponent
Lebesgue space.

Lemma 3.2. Suppose that (M, g) is a Riemannian compact manifold of di-
mension N, U is a smooth open subset of M, K : U × U → (0,+∞) is
a symmetric function satisfying Lévy-integrability and coercivity conditions,
q ∈ C+(M), and p : U × U → (1,+∞) satisfies conditions (1.2)–(1.3). Then,

(W q(y),p(y,z)
K (U), ‖ · ‖) is a Banach space.

Proof. Let {wn}n∈N be a Cauchy sequence in W
q(y),p(y,z)
K (U). For any ε > 0,

there exists Nε ≥ 0, such that for every n,m ∈ N, n,m ≥ Nε,

|wn − wm|q(y) ≤ ‖wn − wm‖
W

q(y),p(y,z)
K (U)

≤ ε. (3.1)

Since (Lq(y)(U), |.|q(y)) is a Banach space, there exists w ∈ Lq(y)(U),
such that wn → w strongly in Lq(y)(U) as n → +∞. Thanks to the converse
of the dominated convergence theorem, it follows that for a subsequence still
denoted {wn}, we have that wn → w as n → +∞ a.e on U .

Let 	 be an integer, such that 	 ≥ Nε and w� ∈ W
q(y),p(y,z)
K (U). We use

Fatou’s lemma and inequality (3.1) to get
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∫
U×U

|w(y) − w(z)|p(y,z)K(y, z)dvg(y)dvg(z)

≤ lim inf
n→+∞

∫
U×U

|wn(y) − wn(z)|p(y,z)K(y, z)dvg(y)dvg(z)

≤ 2p+−1 lim inf
n→+∞(|wk(y) − w�(y) − (wk(z) − w�(z)|p(y,z)K(y, z)

+ |w�(y) − w�(z)|p(y,z)K(y, z))dvg(y)dvg(z)

≤ 2p+
lim inf
n→+∞(‖w� − wk‖p+

W
q(y),p(y,z)
K (U)

+ ‖w� − wk‖p−

W
q(y),p(y,z)
K (U)

+ ‖w�‖p−

W
q(y),p(y,z)
K (U)

+ ‖w�‖p+

W
q(y),p(y,z)
K (U))

< +∞.

Thus, w ∈ W
q(y),p(y,z)
K (U). We combine Fatou’s lemma and inequal-

ity (3.1), and obtain

‖wn − w‖p−

W
q(y),p(y,z)
K (U)

≤ lim inf
k→+∞

‖wn − wk‖p−

W
q(y),p(y,z)
K

(U) ≤ ε.

That is, wn → w in W
q(y),p(y,z)
K (U) as n → +∞. �

Lemma 3.3. Suppose that (M, g) is a compact Riemannian manifold with
dim M = N, U is a smooth open subset of M, K : U × U → (0,+∞) is
a symmetric function satisfying Lévy-integrability and coercivity conditions,
q ∈ C+(M), and p : U × U → (1,+∞) satisfies conditions (1.2)–(1.3). Then,

(W q(y),p(y,z)
K (U), ‖ · ‖) is a uniformly convex space.

Proof. Let w, v ∈ W
q(y),p(y,z)
K (U), and η ∈ (0, 2), such that

1 = ‖v‖
W

q(y),p(y,z)
K (U)

= ‖w‖
W

q(y),p(y,z)
K (U)

and ‖w − v‖
W

q(y),p(y,z)
K (U)

≥ η.

Case 1: p− ≥ 2. Thanks to [3, Inequality 28], we get∥∥∥∥w − v

2

∥∥∥∥
p(y,z)

W
q(y),p(y,z)
K (U)

+
∥∥∥∥w + v

2

∥∥∥∥
p(y,z)

W
q(y),p(y,z)
K (U)

≤ 1
2

(
‖w‖p(y,z)

W
q(y),p(y,z)
K (U)

+ ‖v‖p(y,z)

W
q(y),p(y,z)
K (U)

)
. (3.2)

Thanks to (3.2), it follows that
∥∥∥∥w + v

2

∥∥∥∥
p(y,z)

W
q(y),p(y,z)
K (U)

≤ 1 −
(

1
η

)p+

.

We take δ = δ(η), such that

1 −
(η

2

)p(y,z)

= (1 − δ)p(y,z)

and get ∥∥∥∥w + v

2

∥∥∥∥
p(y,z)

W
q(y),p(y,z)
K (U)

≤ 1 − η.
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Case 2: 1 < p(y, z) < 2. Note that

‖w‖p′(y,z)

W
q(y),p(y,z)
K (U)

=
[∫

M2
(|w(y) − w(z)|K(y, z))p′(y,z)(p(y,z)−1)dvg(y)dvg(z)

] 1
p(y,z)−1

,

with, 1
p(y,z) + 1

p′(y,z) = 1. By the reverse Minkowski’s inequality [3, Theo-
rem 2.13] and [3, Inequality 27], we have that∥∥∥∥w + v

2

∥∥∥∥
p′(y,z)

W
q(y),p(y,z)
K (U)

+
∥∥∥∥w − v

2

∥∥∥∥
p′(y,z)

W
q(y),p(y,z)
K (U)

≤
{∫

M2

[
|w(y) − w(z) + (v(y) − v(z))|p′(y,z) + |w(y)

−w(z) + (v(y) − v(z))|p′(y,z)
]

×
(

1
2
K(y, z)

)p′(y,z)(p(y,z)−1)

dvg(y)dvg(z)} 1
p(y,z)−1

}

≤ 1
2
‖w‖p(y,z)

W
q(y),p(y,z)
K (U)

) +
1
2
‖v‖p(y,z)

W
q(y),p(y,z)
K (U)

)p′(y,z)−1 = 1,

therefore ∥∥∥∥w + v

2

∥∥∥∥
p′(y,z)

W
q(y),p(y,z)
K (U)

≤ 1 −
(

1
ε

)p′(y,z)

.

To complete the argument, choose δ = δ(η), such that 1 − (η
2 )p′(y,z) =

(1 − δ)p′(y,z)· �

Remark 3.4. According to the Milman–Petits theorem [3], W
q(y),p(y,z)
K (U) is

a reflexive space.

Lemma 3.5. Suppose that (M, g) is a compact Riemannian manifold with
dim M = N, U is a smooth open subset of M, K : U × U → (0,+∞) is
a symmetric function satisfying conditions Lévy-integrability and coercivity
conditions, q ∈ C+(M), and p : U × U → (1,+∞) satisfies conditions (1.2)–
(1.3). Then, (W q(y),p(y,z)

K (U), ‖ · ‖) is a separable space.

Proof. Let L : W
q(y),p(y,z)
K (U) → Lq(y)(M)×Lp(y,z)(M×M) be the operator

defined by

L(w) =
(
w(y), (w(y) − w(z))K

1
p(y,z) (y, z)

)
.

L is clearly well-defined and is an isometry. By [13, Proposition 3.17], the
space (W q(y),p(y,z)

K (U), ‖ · ‖) is indeed separable. �

4. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1, establishing an embedding of
W

q(y),p(y,z)
K (U) into L�(y)(U).
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Proof. Let p, q, and 	 be continuous functions and U an open subset of M.
There exist two positive constants α1 and α2, such that

q(y) ≥ p(y, y) + α1 > 0 (4.1)

and
Np(y, y)

N − sp(y, y)
≥ 	(y) + α2 > 0, (4.2)

for every y ∈ U . Let t ∈ (0, s). We use the continuity of p, q, 	, (4.1), and (4.2)
to find a constant ε = ε(p, q, 	, α1, α2) and a finite family of disjoint Lipschitz
sets Uj , such that U =

⋃N
j=1 Uj and diam(Uj) < ε,

Np(m, z)
N − tp(m, z)

≥ 	(y) +
α2

2
> 0, q(y) ≥ p(m, z) +

α1

2
> 0, ∀(y, z,m) ∈ U3

j .

Put pj = inf(y,z)∈Uj×Uj
{p(y, z) − δ}. By the continuity of the involved

exponents, we can choose δ = δ(α2), with p− − 1 > δ > 0, such that
Npj

N − tpj
≥ 	(y) +

α2

3
, for every y ∈ Uj .

Therefore, we have the following
Npj

N − tpj
≥ 	(y) +

α2

3
, for every y ∈ Uj . (4.3)

pj +
α1

2
≤ q(y), for every y ∈ Uj . (4.4)

By [24, Lemma 2.4 ], there exists a constant C = C(N, t, ε, pj ,Uj), such
that (see [24] for more details):

‖w‖
L

p∗
j (Uj)

≤ C(‖w‖Lpj (Uj) + [w]t,pj (Uj)) for every w ∈ W s,pj (Uj).(4.5)

Now, we shall prove the following three inequalities.

(a) There exists a constant c1 > 0, such as: c1|w|L�(y)(U) ≤∑N
j=0 ‖w‖

L
p∗

j (Uj)
.

(b) There exists a constant c2 > 0, such as:
∑N

j=0 ‖w‖Lpj (Uj) ≤ c2|w|Lq(y)(U).

(c) There exists a constant c3 > 0, such as:
∑N

j=0[w]t,pj (Uj)) ≤ c3[w]s,p(y,z)(U).

We shall first prove (a). We have that

w(y) =
N∑

j=0

|w(y)|χUj
,

where χUj
is a characteristic function. Hence, we have

|w|L�(y)(U) ≤
N∑

j=0

|w|L�(y)(Uj).

Combining the statement (4.3) with the Hölder inequality, we obtain

|w|L�(y)(Uj) ≤ C‖w‖
L

p∗
j (Uj)

|1|
Laj(y)(Uj)

≤ C(Uj , aj)‖w‖
L

p∗
j (Uj)

,

where
1

	(y)
+

1
p∗

j

=
1

aj(y)
, for every y ∈ Uj . (4.6)
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Similarly, by using the fact that q(y) > pj for every y ∈ Uj , we get (b).
Now, we show (c). Put

G(y, z) =
|w(y) − w(z)|

dg(y, z)s
.

We use the Hölder inequality and the definition of pj , to get

[w]t,pj (Uj) =

(∫
Uj×Uj

|w(y) − w(z)|pj

dg(y, z)N+tpj
dvg(y)dvg(z)

) 1
pj

=

(∫
Uj×Uj

( |w(y) − w(z)|
dg(y, z)s

)pj dvg(y)dvg(z)
dg(y, z)N+(t−s)pj

) 1
pj

≤ C|G|Lp(y,z)(μg,Uj×Uj
|1|

LBj (y,z)(μg,Uj×Uj)

= C(Uj ,Bj)|G|Lp(y,z)(μg,Uj×Uj),

where

1
pj

=
1

p(y, z)
+

1
Bj(y, z)

and dμg(y, z) =
dvg(y)dvg(z)

dg(y, z)N+(t−s)pj
.

Next, we prove that |G|Lp(y,z) ≤ C[w]s,p(y,z)(Uj). Let λ > 0 be such
that ∫

Uj×Uj

|w(y) − w(z)|p(y,z)

λp(y,z)dg(y, z)N+sp(y,z)
dvg(y)dvg(z) < 1.

Put k = sup{1, sup(y,z)∈U×U dg(y, z)s−t} and λ̆ = λk. Then we have
∫

U2
j

|w(y) − w(z)|p(y,z)

((dg(y, z)sλ̆)p(y,z)

dvg(y)dvg(z)
dg(y, z)N+(t−s)pj

≤
∫

U2
j

|w(y) − w(z)|p(y,z)

dg(y, z)N+sp(y,z)λp(y,z)
< 1,

(4.7)

therefore

|G|Lp(y,z)(μg(Uj×Uj) ≤ λk.

It now follows from (1.5), inequalities (a), (b), (c), and [24, Lemma 2.4] that

|w|L�(y)(U) ≤ c

N∑
j=0

‖u‖
L

p∗
j (U)

≤ c

N∑
j=0

(‖w‖Lpj (Uj) + [w]t,pj (Uj)
)

≤ c
(
|w|Lq(y)(U) + [w]s,p(y,z)(U)

)

≤ cα0

(
|w|Lq(y)(U) + [w]K,p(y,z)(U)

)
= cα0‖w‖

W
q(y),p(y,z)
K (U)

·
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We show that this embedding is compact. Let {wn} be a bounded sequence
in W

q(y),p(y,z)
K (U), we need to prove that there exists w ∈ L�(y)(M), such

that for every 	(y) ∈ (1, p∗
s) :

wn → w in L�(y)(M) as n → +∞.

Since M is a compact Riemannian N-manifold, we can cover M by a finite
number of charts (Uj , ϕj)j=1,...,m satisfying

1
Q

δij ≤ gs
ij ≤ Qδij ,

where gs
ij are bilinear forms and Q > 1. Let ηj be a smooth partition of unity

subordinate to the chart (Uj , ϕj)j=1,...,m. Let wn ∈ W
q(y),p(y,z)
K (M). Then

ηjwn ∈ W
q(y),p(y,z)
K (M) and (ηjwn) ◦ ϕ−1

j ∈ W
q(y),p(y,z)
K (B0(1)),

where B0(1) is an open unit ball of RN . By [27, Theorem 1.1], there exists
wj ∈ L�(y)(ϕj(Uj)), such that

(ηjwn) ◦ ϕ−1
j → wj strongly in L�(y)(ϕj(Uj)) as n → +∞.

Hence

ηjwn → wj ◦ ϕj = aj strongly in L�(y)(ϕj(Uj)) as n → +∞.

Finally, we put

w =
m∑

j=1

aj =
m∑

j=1

wj ◦ ϕj ∈ L�(y)(M).

�

5. Proof of Theorem 1.2

In this section, we shall prove our existence result stated in Theorem 1.2.

Definition 5.1. We say that w ∈ W
q(y),p(y,z)
K (U) is a weak solution of prob-

lem (1.1) if for every h ∈ (W q(y),p(y,z)
K (U))∗ we have,∫

M×M
|w(y) − w(z)|p(y,z)−2(w(y) − w(z))(h(y) − h(z))K(y, z)dvg(y)dvg(z)

= λ

∫
M

β(y)|w(y)|r(y)−2w(y)h(y)dvg(y) +
∫

M
f(y, w(y))h(y)dvg(y).

We consider the functional ζ : W
q(y),p(y,z)
K (U) → R defined by

ζ(w) =
∫

M×M

1
p(y, z)

|w(y) − w(z)|p(y,z)K(y, z)dvg(y)dvg(z)

− λ

∫
M

1
r(y)

β(y)|w(y)|r(y)dvg(y) −
∫

M
F (y, w(y))dvg(y).
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Then it follows from [9,27] that ζ ∈ C1(W q(y),p(y,z)
K (U),R) and

〈ζ ′(w), h〉

=
∫

M2
|w(y) − w(z)|p(y,z)−2(w(y) − w(z))(h(y) − h(z))K(y, z)dvg(y)dvg(z)

− λ

∫
M

β(y)|w(y)|r(y)−2w(y)h(y)dvg(y) −
∫

M
f(y, w(y))h(y)dvg(y)

= 〈L(w), h〉 − 〈S1(w), h〉 − 〈S2(w), h〉.
Proof. Let w ∈ W

q(y),p(y,z)
K (U). Then w is a weak solution of problem (1.1)

if and only if

Lw + Sw = 0, (5.1)

where L, S are the operators defined in Lemmas 6.1 and 6.2. Since S is
bounded, continuous, and quasi-monotone (see Lemma 6.1) and L is strictly
monotone, thanks to the Minty–Browder Theorem [36, Theorem 26 A], we
have that L−1 = G is bounded continuous of type (S+).

Equation (5.1) is equivalent to

w = Gh and h + S ◦ Gh = 0. (5.2)

To solve (5.2), we shall use the Berkovits topological degree introduced in
Sect. 2. To this end, we first show that the set

D =
{

h ∈ (W q(y),p(y,z)
K (U))∗ : h + tS ◦ Gh = 0 for some t ∈ [0, 1]

}
,

is bounded. Let h ∈ D and take w = Gh. Using the growth condition
(B1), the Hölder inequality, the Young inequality, and continuous embedding
W

q(y),p(y,z)
K (U) ↪→ Lq(y)(U), we get

‖Gh‖
W

q(y),p(y,z)
K (U)

≤
∫

M×M
|w(y) − w(z)|p(y,z)

K(y, z)dvg(y)dvg(z)

= 〈Lw, h〉 = 〈h,Gh〉
≤ |t| 〈S ◦ Gh,Gh〉

≤ λ

∫
M

β(y)|w(y)|r(y)dvg(y) +
∫

M
f(y, w(y))w(y)dvg(y)

≤ λ‖β‖∞C1‖w‖r+

W
q(y),p(y,z)
K (U)

+ C2

(∫
M

|f(y, w)|q′(y)dvg(y)
) 1

q′(y)

+ C3

(∫
M

|w(y)|q(y)dvg(y)
) 1

q(y)

≤ λ‖β‖∞C1‖w‖r+

W
q(y),p(y,z)
K (U)

+ C2‖β‖∞
∫

M

(
(1 + |w(y)|(q(y)−1)q′(y))

) 1
q′(y)

+ C3

(∫
M

|w(y)|q(y)dvg(y)
) 1

q(y)

≤ λ‖β‖∞C1‖w‖r+

W
q(y),p(y,z)
K (U)

+ 2q+
C4‖β‖∞‖w‖

W
q(y),p(y,z)
K (U)

+ C4‖w‖
W

q(y),p(y,z)
K (U)

.
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Since S is bounded, it follows that D is bounded in (W q(y),p(y,z)
K (U))∗.

As a result, there exists a positive constant η > 0, such that

‖h‖
W

q(y),p(y,z)
K (U)∗ < η, for every h ∈ D.

Furthermore, h + tS ◦ Gh �= 0 for every (h, t) ∈ ∂Bη(0) × [0, 1]. Using
Lemma 2.13, and i + S ◦ G ∈ FB(Bη(0)) and i = L ◦ G ∈ FB(Bη(0)) are
present. Next, i+S ◦G is also bounded because the operators i, S and G are
all bounded. We come to the conclusion that

i + S ◦ G ∈ FB,1(Bη(0)) and i ∈ FB,1(Bη(0)).

We consider the map H : [0, 1] × Bη(0) → (W q(y),p(y,z)
K (U))∗ given by

H(t, w) = w + tS ◦ Lw.

By the statements (1)–(2) in Theorem 2.17, we can deduce

d(i + S ◦ G,Bη(0), 0) = d(i, Bη(0), 0) = 1,

by applying the homotopy invariance and normalization properties of the
degree d from Theorem 2.17. Therefore there exists w ∈ Bη(0), such that
h + S ◦ Gh = 0. We can now deduce that w = Gh is a weak solution to
problem (1.1) in W

q(y),p(y,z)
K (U). This completes the proof. �
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Appendix

Lemma 6.1. Suppose that (M, g) is a compact N -dimensional Riemannian
manifold, U is a smooth open subset of M, K : U × U → (0,+∞) is a sym-
metric function satisfying Lévy-integrability and coercivity conditions. As-
sume that assumption (B1) holds. Then, the operator L : W

q(y),p(y,z)
K (U) →

(W q(y),p(y,z)
K (U))∗ is continuous, bounded and strictly monotone, and

(i) L is an operator of type (S+),
(ii) L : W

q(y),p(y,z)
K (U) → (W q(y),p(y,z)

K (U))∗ is a homeomorphism.

Proof. It is obvious that L is bounded. We show that L is continuous. As-
sume that wn → w in W

q(y),p(y,z)
K (U) and we show that L(wn) → L(w) in

(W q(y),p(y,z)
K (U))∗. Indeed

〈Lwn − Lw,ϕ〉 =
∫

M2

[
(|wn(y) − wn(z)|p(y,z)−2 (wn(y) − wn(z))

− |w(y) − w(z)|p(y,z)−2(w(y) − w(z))
]

× K(y, z)(ϕ(y) − ϕ(z))dvg(y)dvg(z)

=
∫

M2

[
|wn(y) − wn(z)|p(y,z)−2 (wn(y) − wn(z)) K(y, z)

p(y,z)−1
p(y,z)

− |w(y) − w(z)|p(y,z)−2(w(y) − w(z))K(y, z)
p(y,z)−1

p(y,z)

]

× (ϕ(y) − ϕ(z))K(y, z)
1

p(y,z) dvg(y)dvg(z).

Put

Gn(y, z) = |wn(y) − wn(z)|p(y,z)−2(wn(y) − wn(z))K(y, z)
p(y,z)−1

p(y,z)

∈ Lp′(y,z)(U × U),

G(y, z) = |w(y) − w(z)|p(y,z)−2(w(y) − w(z))K(y, z)
p(y,z)−1

p(y,z)

∈ Lp′(y,z)(U × U),

and

F (y, z) = (ϕ(y) − ϕ(z))K(y, z)
1

p(y,z) ∈ Lp(y,z)(U × U),

where, 1
p(y,z) + 1

p′(y,z) = 1. Thanks to the Hölder inequality, we have

〈L (wn) − L(w), ϕ〉 ≤ 2|Gn(y, z) − G(y, z)|Lp′(y,z)(U×U)|F |Lp(y,z)(U×U ).

Thus

‖L (wn) − L(w)‖
(W

q(y),p(y,z)
K (U))∗ ≤ 2|Gn(y, z) − G(y, z)|Lp′(y,z)(U×U).

Let

Vn(y, z) = (wn(y) − wn(z))K(y, z)
1

p(y,z) ∈ Lp(y,z)(U × U),

and

V (y, z) = (w(y) − w(z))K(y, z)
1

p(y,z) ∈ Lp(y,z)(U × U).
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Since wn → w in W
q(y),p(y,z)
K (U), we have Vn → V in Lp(y,z)(U × U).

Therefore, there exists a subsequence of {Vn}n∈N and h(y, z) ∈ Lp(y,z)(U×U),
such that Vn → V a.e in U ×U and |Vn| ≤ h(y, z). Therefore we have Gn → G
a.e in U × U and

|Gn(y, z)| = |Vn(y, z)|p(y,z)−1 ≤ h(y, z)p(y,z)−1.

We use the dominated convergence theorem to get

Gn → G in Lp′(y,z)(U × U).

By Lemma 2.10, L is strictly monotone. Now, we show that L is mapping
of type (S+). Let {wn}n∈N ⊂ W

q(y),p(y,z)
K (U) be a sequence with wn ⇀ w in

W
q(y),p(y,z)
K (U) and lim supn→+∞ 〈L (wn) − L(w), wn − w〉 ≤ 0. Using (i),

we get

0 = lim
n→+∞ 〈Lwn − Lw,wn − w〉 · (6.1)

By Theorem 1.1, we have that wn(y) → w(y) a.e. in U . This, in combi-
nation with Fatou’s lemma, gives us

lim inf
n→+∞

∫
M2

|wn(y) − wn(z)|p(y,z)
K(y, z)dvg(y)dvg(z)

≥
∫

M2
|w(y) − w(z)|p(y,z)K(y, z)dvg(y)dvg(z). (6.2)

On the other hand, we have

lim
n→+∞ 〈L (wn) , wn − w〉 = lim

n→+∞ 〈L (wn) − L(w), wn − w〉 = 0. (6.3)

Using Young’s inequality, we can see there is a positive constant c > 0, such
that

〈L (wn) , wn − w〉

=
∫

M×M
|wn(y) − wn(z)|p(y,z)

K(y, z)dvg(y)dvg(z)

−
∫

M2
|wn(y) − wn(z)|p(y,z)−2

× (wn(y) − wn(z)) (w(y) − w(z))K(y, z)dvg(y)dvg(z)

≥
∫

M2
|wn(y) − wn(z)|p(y,z)

K(y, z)dvg(y)dvg(z)

−
∫

M2
|wn(y) − wn(z)|p(y,z)−1 |w(y) − w(z)|K(y, z)dvg(y)dvg(z)

≥ c

∫
M2

|wn(y) − wn(z)|p(y,z)
K(y, z)dvg(y)dvg(z)

− c

∫
M2

|w(y) − w(z)|p(y,z)K(y, z)dvg(y)dvg(z).
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According to (6.1)–(6.3), we get

lim
n→+∞

∫
M2

|wn(y) − wn(z)|p(y,z)
K(y, z)dvg(y)dvg(z)

=
∫

M2
|w(y) − w(z)|p(y,z)K(y, z)dvg(y)dvg(z)· (6.4)

As a consequence of the Brezis–Lieb Lemma [13], (6.1), and (6.4), L is of
type (S+)·

We show that L is a homeomorphism. It is easy to see that L is co-
ercive and injective. Thanks to the Minty–Browder Theorem [36, Theorem
26 A], L is surjective. Therefore, L is a bijection. There exists a map G :
(W q(y),p(y,z)

K (U))∗ → W
q(y),p(y,z)
K (U), such that G ◦ L = id

W
q(y),p(y,z)
K (U)

and
L ◦ G = id

(W
q(y),p(y,z)
K (U))∗ .

We show that G is continuous. Let gn, g ∈ W
q(y),p(y,z)
K (U) be such that

gn → g in W
q(y),p(y,z)
K (U). Let tn = G(gn), w = G(g). Then L(wn) = gn

and L(w) = g. Since {tn}n∈N is bounded in W
q(y),p(y,z)
K (U), we have tn ⇀ w

in W
q(y),p(y,z)
K (U). It follows that

lim
n→+∞ < L (tn) − L(w), tn − w >= lim

n→+∞ < gn, tn − w >= 0.

Since L is of type (S+), we get tn → w in W
q(y),p(y,z)
K (U). This completes

the proof. �

Lemma 6.2. If f satisfies (B1), then the operator S : W
q(y),p(y,z)
K (U) →

(W q(y),p(y,z)
K (U))∗ defined by

〈Sw,ϕ〉 = −λ

∫
M

β(y)|w(y)|r(y)−2wϕdvg(y) −
∫

M
f(y, w(y))ϕdvg(y),

for every ϕ ∈
(
W

q(y),p(y,z)
K (U)

)∗
is compact.

Proof. Let

S1 : W
q(y),p(y,z)
K (U) → Lq′(y)(U) S2 : W

q(y),p(y,z)
K (U) → Lq′(y)(U)

w �−→ S1w = −λβ(y)|w(y)|r(y)−2w(y) w �−→ S2w = −f(y, w(y)).

We shall show that S1 and S2 are both bounded and continuous. For
every w ∈ W

q(y),p(y,z)
K (U),

|S1w|q′(y) = λ

∫
M

|β(y)|w(y)|r(y)−2w(y)|q′(y)dvg(y)

≤ λ‖β‖∞
∫

M
‖w(y)|r(y)−1|q′(y)dvg(y)

≤ λC‖β‖∞
∫

M
‖w(y)|q(y)−1|q′(ydvg(y)

≤ λC‖β‖∞
∫

M
|w(y)|q(y)dvg(y).
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This implies that S1 is bounded in W
q(y),p(y,z)
K (U). By condition (B1),

there exists α > 0, such that

|f(y, w(y))| ≤ α(1 + |w(y)|q(y)−1).

Therefore

|S2w|q′(y)
q′(y) =

∫
M

|f(y, w(y)|q′(y)dvg(y)

≤
∫

M
α(1 + |w(y)|q(y)−1)q′(y)dvg(y)

≤ 2q
′+

(|M| +
∫

M
|w(y)|(q(y)−1)q′(y)dvg(y)

≤ αc′(M, q(y))
∫

M
|w(y)|(q(y)−1)q′(y)dvg(y)

≤ αc′(U , q(y))|w(y)|Lq′(y) ,

Hence, S2 is bounded in W
q(y),p(y,z)
K (U). Next, we show that S2 is con-

tinuous. Let wn ∈ W
q(y),p(y,z)
K (U), such that wn → w in W

q(y),p(y,z)
K (U).

Then wn → w in Lq(y)(U). Hence, there exists a subsequence, still denoted
by wn, and a measurable function g in Lq(y)(U), such that wn(y) → w and
|wn(y)| ≤ g(y), a.e in U .

Since f is a Carathéodory function, we have

f(y, wn) → f(y, w(y)) a.e. in U . (6.5)

According to condition (B1), we have that

|f(y, wn(y)| ≤ α(1 + g(y))q(y)−1 ∈ Lq′(y)(U).

Using (6.5), we obtain∫
M

|f(y, wn(y)) − f(y, w(y))|q′(y)dvg(y) → 0 as n → ∞.

The dominated convergence theorem implies that S2wn → S2w in Lq′(y)(U),
so S2 is continuous in W

q(y),p(y,z)
K (U). Because the canonical embedding i :

W
q(y),p(y,z)
K (U) ↪→ Lq(y)(U) is compact, its adjoint operator i∗ : Lq′(y)(U) →

(W q(y),p(y,z)
K (U))∗ is also compact. As a result, compositions i∗◦S2 and S2◦i∗

are compact, so we come to the conclusion that the operator S is compact
and this completes the proof. �
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[14] Brouwer, L.E.J.: Über abbildungen von mannigfaltigkeiten. Math. Ann. 71,
97–115 (1912)

[15] Caffarelli, L.A., Golse, F., Guo, Y., Kenig, C.E., Vasseur, A.: Nonlinear Partial
Differential Equations. Springer, Berlin (2012)

[16] Carbotti, A., Dipierro, S., Valdinoci, E.: Local Density of Solutions to Frac-
tional Equations, De Gruyter Studies in Mathematics Vol. 74, De Gruyter,
Berlin (2019)
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