
Mediterr. J. Math. (2023) 20:282
https://doi.org/10.1007/s00009-023-02477-0
1660-5446/23/050001-17
published onlineAugust 18, 2023
c© The Author(s), under exclusive licence to Springer
Nature Switzerland AG 2023

Existence and Uniqueness of Periodic
Solutions for a Class of Higher Order
Differential Equations

Hujun Yang and Xiaoling Han

Abstract. In this paper, we study the existence, non-existence and unique-
ness of periodic solutions for a class of higher order differential equations.
The proof is based on the Mawhin’s continuation theorem and averaging
method. Finally, two examples are given to illustrate the applicability
of the conclusions of this paper.
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1. Introduction

In recent years, the existence of periodic solutions of second-order differential
equations have received extensive attention, see for instance the papers [1,
2,4,8,11,12,19,26–28]. In Ref. [21], Morris studied the existence of periodic
solutions of differential equation

x′′ + 2x3 = p(t), (1)

where p(t) is a continuous periodic function. Furthermore, the authors studied
the existence and stability of periodic solution of Eq. (1) in Ref. [7,23].

In Ref. [18], Llibre and Makhlouf extended the second-order differential
Eq. (1) to the second-order differential equations of the form

x′′ ± xn = μf(t), (2)

where n = 4, 5, . . ., f(t) is a continuous T -periodic function with
∫ T

0
f(t)dt �=

0, μ is a positive small parameter, the authors using averaging theory es-
tablished the existence and stability of T -periodic solutions of Eq. (2). In
Ref. [20], Makhlouf and Djamel extended the second-order Eq. (2) to the
third order, and obtained the existence and stability of periodic solutions.
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Furthermore, in Ref. [3], Cen, Llibre and Zhang extended the equations in
Refs. [18,20] to more general higher order differential equations:

x(m) + fn(x) = μh(t), (3)

where the integers m,n � 2, fn(x) = δxn or fn(x) = δ|x|n with δ = ±1,
h(t) is a continuous T -periodic function with

∫ T

0
h(t)dt �= 0, and μ is a

positive small parameter. The authors obtained the existence and stability of
T -periodic solutions of Eq. (3). At the same time, the existence, uniqueness
and stability of periodic solutions of higher order differential equations have
been extensively studied; see Refs. [13–16,22,24,25].

In Refs. [3,18], if μ = 1, the studied problem degenerates to the case
without parameters, for example, if μ = 1, then Eq. (2) degenerates to Eq. (1).
However, in Refs. [3,18], the authors studied the differential equation with
small parameters, that is, μ < 1, at this time, the studied equation cannot
degenerate to the case without parameters. Therefore, it is meaningful to
consider the periodic solutions of differential equations without parameters.
At the same time, an interesting problem is to consider the periodic solution of
differential equations when the parameters are large enough or small enough.
To the best of our knowledge, there is no references discuss this issue.

The purpose of the current article is to investigate the existence of
periodic solutions and non-existence of positive periodic solutions of higher
order differential equations:

x(n) + a(t)xβ = h(t), (4)

where n � 1 is integer, β > 0, a(t) and h(t) are T -periodic L1-functions. We
also consider the uniqueness and non-existence of positive periodic solutions
to higher order differential equations with parameters:

x(n) + a(t)xβ = νh(t), (5)

where n � 1 is integer, β > 0, ν > 0, a(t) and h(t) are continuous T -periodic
functions.

The remainder part of this paper is organized as follows. In Sect. 2,
we collected some general results, given some notations and assumptions.
In Sect. 3, we first apply the Mawhin’s continuation theorem to obtain the
existence of T -periodic solutions of Eq. (4). Then, inspired by Ref. [5], we
establish the result that there is no positive T -periodic solution for Eq. (4).
Further, we use averaging method to obtain the uniqueness of positive T -
periodic solutions of Eq. (5). In Sect. 4, we apply the previous result to some
examples to demonstrate the applicability of our main results.

2. Preliminaries

Throughout this paper, let Banach spaces CT = {x ∈ C(R,R) : x(t + T ) ≡
x(t), ∀ t ∈ R} with the norm |x|∞ = maxt∈[0,T ]|x(t)|. For a given L1-function
w : [0, T ] → R, we denote w̄ = 1

T

∫ T

0
w(s)ds, when w(t) does not change the

sign, we stands for
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w+ = max
t∈[0,T ]

|w(t)|, w− = min
t∈[0,T ]

|w(t)|.

When w(t) changes sign, we represent

w∗ = max{w(t) : t ∈ [0, T ]}, w∗ = min{w(t) : t ∈ [0, T ]}.

Now, we give expressions of constants C1 and C2. Let

C1 =
(

πn−2N3

a+Nβ
3 + h+

) 1
n

,

C2 = min
{(

πn−2N4

a+Nβ
4 + h∗

) 1
n

,

(
πn−2N4

a+Nβ
4 − h∗

) 1
n
}

,

where n > 1 is even integer, N3 > 2
(

h+

a−
) 1

β , N4 > max{2
(

h∗
a−

) 1
β , 2

( − h∗
a−

) 1
β }

are constants.
In order to study the existence of T -periodic solutions to Eq. (4), we

list the following assumptions:
(H1) Suppose a(t) is a T -periodic L1-function and does not change the sign

on [0, T ], h(t) is a T -periodic L1-function with h(t) �≡ 0;
(H2) Suppose β ∈ { l

k}, where k, l are positive odd integers.
For convenience, we introduce some notations and an abstract existence

theorem about coincidence degree theory. For more details, see Ref. [9].
Let X,Y be two Banach spaces, L : Dom L ⊂ X → Y be linear mapping

and N : X → Y be continuous mapping. The mapping L is said to be
a Fredholm mapping of index zero if ImL is closed in Y and dim KerL =
codim Im L < +∞. If L is a Fredholm mapping of index zero, then there exist
continuous projectors P : X → X and Q : Y → Y such that Im P = Ker L
and KerQ = Im L = Im(I − Q). It follows that the restriction LP of L to
Dom L∩Ker P : (I −P )X → Im L is invertible. We denote the inverse of LP

by KP . If Ω is a bounded open subset of X, N is called L-compact on Ω if
QN(Ω) is bounded and KP (I − Q)N : Ω → X is compact.

Lemma 2.1. (Mawhin’s Continuation Theorem) Let X and Y be two Banach
spaces, L be a Fredholm mapping of index zero, Ω ⊂ X is an open bounded
set and N is L-compact on Ω. If all the following conditions hold:
1. Lx �= λNx for all x ∈ ∂Ω ∩ Dom L, and all λ ∈ (0, 1);
2. QNx �= 0, for all x ∈ ∂Ω ∩ Ker L;
3. deg{JQN,Ω ∩ Ker L, 0} �= 0, where J : Im Q → Ker L is an isomor-

phism.
Then, the equation Lx = Nx has at least one solution in Dom L ∩ Ω.

Next, we introduce an abstract averaging method. For more details, see
Ref. [6].

Put m � 1 is an integer, T > 0, ε1 > 0 and I ⊂ R is an open interval,
let

f : [0, T ] × I × R × · · · × R × (−ε1, ε1) → R,

(t, u0, u1, . . . , um−1, ε) 
→ f(t, u0, u1, . . . , um−1, ε)
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is continuous and, for any k = 0, . . . , m − 1, ∂f
∂uk

exists and continuous.
Let a1, a2, . . . , am−1 ∈ R, we consider the following problem:

⎧
⎨

⎩
x(m) +

m−1∑

j=1

am−jx
(m−j) = εf(t, x, x′, . . . , x(m−1), ε),

x(j)(0) = x(j)(T ), (j = 0, . . . , m − 1),
(6)

and define the periodic averaged function

F : I → R, c 
→ F (c) :=
1
T

∫ T

0

f(s, c, 0, . . . , 0, 0)ds. (7)

Then, F ∈ C1(I,R) and, for ∀c ∈ I, we have

F ′(c) =
1
T

∫ T

0

∂f

∂u0
(s, c, 0, . . . , 0, 0)ds. (8)

Lemma 2.2. (Averaging method) Assume that the linear problem

x(m) +
m−1∑

j=1

am−jx
(m−j) = 0, x(j)(0) = x(j)(T ), j = 0, . . . , m − 1,

has only constant solutions. Then, for every c0 ∈ I such that

F (c0) = 0, F ′(c0) �= 0,

where F is given by (7), there exists ε0 ∈ [−ε1, ε1]\{0} such that, for 0 < |ε| <
ε0, the problem (6) has a unique solution x(t, ε) such that lim

ε→0
x(t, ε) = c0

uniformly in t ∈ [0, T ].

Below we introduce two commonly used inequalities.

Lemma 2.3. [10, Lemma 5.2] Let x : [0, T ] → R be an arbitrary absolutely
continuous function with x(0) = x(T ). Then, the inequality

(

max
t∈[0,T ]

x(t) − min
t∈[0,T ]

x(t)
)2

� T

4

∫ T

0

|x′(t)|2dt

holds.

Lemma 2.4. [17, Lemma 2.3] Let T > 0 be a constant, x ∈ Cm(R,R),m � 2,
and x(t + T ) ≡ x(t). Then,

∫ T

0

|x(i)(t)|pdt �
(

T

πp

)p ∫ T

0

|x(i+1)(t)|pdt, i = 1, 2, . . . ,m − 1,

where πp = 2
∫ p−1

p

0
ds

(1− sp
p−1 )

1
p

= 2π(p−1)
1
p

p sin(π
p ) .
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3. Main Results

In this section, we will state and prove the main results of this article.

Theorem 3.1. Suppose that assumptions (H1) and (H2) hold.
If n = 1. Then, Eq. (4) has at least one T -periodic solution.
If n > 1 is even integer and the period T satisfies 0 < T � C, where

C = min{C1, C2}. Then, Eq. (4) has at least one T -periodic solution.

Remark 3.1. In Theorem 3.1, when n > 1 is even integer, we take C =
min{C1, C2}. In fact, the value of C is related to sign a(t), h(t), for example,
if a(t) > 0 and h(t) > 0, take C = C1; if a(t) > 0 and h(t) changes sign, take
C = C2, we will give the reasons in the proof of Theorem 3.1.

Proof. Let Banach spaces X = Y = CT . Define linear operator L : Dom L ⊂
X → Y :

Lx = x(n), x ∈ Dom L,

where Dom L = {x|x ∈ X,x(n) ∈ C(R,R)}. It is easily seen that Ker L = R

and ImL = {y | y ∈ Y,
∫ T

0
y(s)ds = 0}, hence dim Ker L = codim Im L = 1.

It is easy to verify that ImL is a closed set in Y . Thus the operator L is a
Fredholm operator with index zero.

From (H2), we can define nonlinear operator N : X → Y :

Nx = h(t) − a(t)xβ .

Now, we define the projectors P : X → Ker L and Q : Y → Y :

Px(t) = x(0),

Qx(t) =
1
T

∫ T

0

x(s)ds.

Clearly, ImP = Ker L, Ker Q = Im L. Then, KP : Im L → Dom L ∩ Ker P
can be given by

KP y(t) =
∫ T

0

G(s, t)y(s)ds,

where G(t, s) be the Green’s function of
{

x(n) = 0, t ∈ [0, T ],
x(0) = 0, x(i)(0) = x(i)(T ), i = 0, 1, . . . , n − 1.

It is immediate to prove that KP : Im L → Dom L ∩ Ker P is a linear com-
pletely continuous operator and N : X → Y is continuous bounded operator,
therefore, N is L-compact on Ω with any open bounded subset Ω ⊂ X.

Next, we will discuss the cases where n = 1 and n > 1 is even integer,
respectively.

Case 1: When n = 1. From the assumption (H1), we know that the
function a(t) has two cases: a(t) > 0 or a(t) < 0, and function h(t) has three
cases: h(t) > 0, h(t) < 0 or h(t) changes sign. Without loss of generality, for
the function a(t), we only discuss the case of a(t) > 0, a(t) < 0 is similar.
Next, we classify and discuss the three cases of function h(t).
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Case 1.1: If a(t) > 0 and h(t) > 0, then Eq. (4) is equivalent to equation

x′ + a(t)xβ − h(t) = 0, (9)

where 0 < a− � a(t) � a+, 0 < h− � h(t) � h+.
Let

Ω0 := {x ∈ X | M0 < x(t) < N0}, (10)

where N0 >

(
h+

a−

) 1
β

, 0 < M0 <

(
h−
a+

) 1
β

are constants. For ∀t ∈ [0, T ], we

have

0 < M0 <

(
h−

a+

) 1
β

�
(

h(t)
a(t)

) 1
β

�
(

h+

a−

) 1
β

< N0. (11)

Obviously, M0 and N0 are well defined and Ω0 ⊂ X is a bounded open set.
Now, we prove that condition (1) of Lemma 2.1 holds. Suppose the

converse: there exist 0 < λ < 1 and x ∈ ∂Ω0 ∩ Dom L such that

x′ + λa(t)xβ − λh(t) = 0. (12)

Let t and t̄, respectively, denote the global minimum and maximum points
x(t) on t ∈ [0, T ], that is

x(t̄) = max
t∈[0,T ]

x(t), x(t) = min
t∈[0,T ]

x(t).

Obviously, we have

x′(t̄) = 0, x′(t) = 0.

Suppose x(t) is arbitrary T -periodic solution of Eq. (9), we claim that

M0 < x(t) � x(t) � x(t̄) < N0. (13)

In fact, if (13) does not hold, then x(t̄) � N0 or x(t) � M0 at least one holds.
If x(t̄) � N0, we get

0 =x′(t̄) + λa(t̄)x(t̄)β − λh(t̄)

=λ(a(t̄)x(t̄)β − h(t̄))

�λ(a−x(t̄)β − h+)
>0.

When x(t) � 0, obviously, we have

0 = x′(t) + λa(t)x(t)β − λh(t) = λ(a(t)x(t)β − h(t)) < 0.

When 0 < x(t) � M0, we obtain

0 = x′(t) + λa(t)x(t)β − λh(t)

= λ(a(t)x(t)β − h(t))

� λ(a+x(t)β − h−)
< 0.
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But these are contradiction with Eq. (12). Therefore, each possible periodic
solution x(t) of Eq. (12) satisfies M0 < x(t) < N0. Hence, the condition (1)
of Lemma 2.1 holds.

Next, we prove that condition (2) of Lemma 2.1 holds. For ∀t ∈ [0, T ],
we obtain

a(t)Mβ
0 − h(t) � a+Mβ

0 − h− < 0, (14)

a(t)Nβ
0 − h(t) � a−Nβ

0 − h+ > 0. (15)

Take x ∈ ∂Ω0 ∩ Ker L, then we have x = M0 or x = N0, by (14) and (15),
for ∀x ∈ ∂Ω0 ∩ Ker L, we get

QNx =
1
T

∫ T

0

(

h(t) − a(t)xβ

)

dt

�=0.

Hence, condition (2) of Lemma 2.1 holds.
Finally, we prove that condition (3) of Lemma 2.1 holds. Define a con-

tinuous function

G(x, θ) = (θ − 1)
(

x − M0 + N0

2

)

+ θ
1
T

∫ T

0

(

h(t) − a(t)xβ

)

dt, θ ∈ [0, 1].

Obviously, we obtain

G(x, θ) �= 0, ∀x ∈ ∂Ω0 ∩ Ker L.

Using the homotopy invariance theorem, we get

deg(QN,Ω0 ∩ Ker L, 0) = deg (G(x, 1),Ω0 ∩ Ker L, 0)
= deg (G(x, 0),Ω0 ∩ Ker L, 0)
�= 0.

Therefore, condition (3) of Lemma 2.1 holds.
Therefore, we conclude from Lemma 2.1 that Eq. (9) has a T -periodic

solution in Ω0.
Case 1.2: If a(t) > 0 and h(t) changes sign, in this case, Eq. (4) is

equivalent to equation

x′ + a(t)xβ − h(t) = 0, (16)

where 0 < a− � a(t) � a+, h∗ � h(t) � h∗. Obviously, h∗ � 0, h∗ � 0 and
h∗, h∗ are not zero at the same time.

Let

Ω1 := {x ∈ X | M1 < x(t) < N1}, (17)

where N1 >
(

h∗
a−

) 1
β and M1 <

(
h∗
a−

) 1
β are constants. Obviously, Ω1 ⊂ X is a

bounded open set.
The following proof is similar to the proof of Case 1.1, and so we omit

it.
Case 1.3: If the function a(t) > 0 and h(t) < 0. Let h̃(t) = −h(t), then

Eq. (4) is equivalent to equation

x′ + a(t)xβ + h̃(t) = 0, (18)
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where 0 < a− � a(t) � a+, 0 < h− � h̃(t) � h+. Let

Ω2 := {x ∈ X | M2 < x(t) < N2},

where 0 > N2 >

(

− h−
a+

) 1
β

, M2 <

(

− h+

a−

) 1
β

are constants. Obviously,

M2 < N2 < 0 and Ω2 ⊂ X is a bounded open set.
The following proof is similar to the proof of case 1.1, and so we omit

it.
When a(t) < 0 and h(t) > 0, the prove is the same as when a(t) > 0

and h(t) < 0; similarly, when a(t) < 0 and h(t) < 0 the proof is the same as
when a(t) > 0, h(t) > 0; when h(t) changes sign and a(t) < 0 the proof is
the same as case 1.2.

Next, we discuss the case of n > 1 is even integer.
Case 2: When n > 1 is even integer. Analogously, we classify and discuss

three cases of function h(t).
Case 2.1: If functions a(t) > 0 and h(t) > 0, in this case, Eq. (4) is

equivalent to equation

x(n) + a(t)xβ − h(t) = 0, (19)

where 0 < a− � a(t) � a+, 0 < h− � h(t) � h+.
Let

Ω3 := {x ∈ X | |x|∞ < N3}, (20)

where N3 > 2
(

h+

a−
) 1

β is constant.
Now, we prove that condition (1) of Lemma 2.1 holds. Suppose the

converse: there exist 0 < λ < 1 and x ∈ ∂Ω0 ∩ Dom L such that

x(n) + λa(t)xβ − λh(t) = 0. (21)

If n > 1 is even integer, then
∫ T

0
x(n)xdt = (−1)

n
2

∫ T

0
(x(n

2 ))2dt. Multiplying
(21) by x and the integrating from 0 to T , we have

∫ T

0

(x(n
2 ))2dt + (−1)

n
2

∫ T

0

[λa(t)xβx − λh(t)x]dt = 0. (22)

By (20) we know that for ∀x ∈ ∂Ω3, there is |x|∞ = N3. For |x|∞ = N3, we
have |xmax−xmin| � N3

2 or |xmax−xmin| < N3
2 . Further, when |xmax−xmin| <

N3
2 , we also have N3

2 < x � N3 or −N3 � x < −N3
2 . Next, we will discuss

these situations in categories. When N3
2 < x � N3, integrating (21) from 0

to T ,

0 =
∫ T

0

[λa(t)xβ − λh(t)]dt

>

∫ T

0

(a−(
N3

2
)β − h+)dt

> 0.
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When −N3 � x � −N3
2 , integrating (21) from 0 to T ,

0 =
∫ T

0

[λa(t)xβ − λh(t)]dt < 0.

If |xmax − xmin| � N3
2 , by Lemmas 2.3 and 2.4, we get

0 =
∫ T

0

(
x(n

2 )
)2

dt + (−1)
n
2

∫ T

0

[λa(t)xβ+1 − λh(t)x]dt

�
∫ T

0

(
x(n

2 )
)2

dt −
∫ T

0

[a(t)xβ+1 + h(t)x]dt

�
( π

T

)n−2
∫ T

0

(x′)2dt −
∫ T

0

[a+Nβ+1
3 + h+N3]dt

� πn−2

Tn−2

N2
3

T
− T (a+Nβ+1

3 + h+N3)

= N3T

(
πn−2

Tn
N3 − (a+Nβ

3 + h+)
)

> 0.

All of the above situations are contradictory to the facts, so the condition (1)
of Lemma 2.1 holds.

For ∀t ∈ [0, T ], we obtain

a(t)(−N3)β − h(t) < 0, (23)

a(t)Nβ
3 − h(t) � a−Nβ

3 − h+ > 0. (24)

The following proof is similar to the proof of Case 1.1, and so we omit it.
Therefore, we conclude from Lemma 2.1 that Eq. (19) has a T -periodic solu-
tion in Ω3.

Case 2.2: If a(t) > 0 and h(t) changes sign, in this case, Eq. (4) is
equivalent to equation

x(n) + a(t)xβ − h(t) = 0, (25)

where 0 < a− � a(t) � a+, h∗ � h(t) � h∗. Obviously, h∗ � 0, h∗ � 0 and
h∗, h∗ are not zero at the same time.

Let

Ω4 := {x ∈ X | |x|∞ < N4}, (26)

where N4 > max{2
(

h∗
a−

) 1
β

, 2
(− h∗

a−
) 1

β } is constant.

Now, we prove that condition (1) of Lemma 2.1 holds. Let 0 < λ < 1
and ∀x ∈ ∂Ω4 ∩ Dom L such that

x(n) + λa(t)xβ − λh(t) = 0. (27)

Multiplying (27) by x and the integrating from 0 to T , we have
∫ T

0

(
x(n

2 )
)2

dt + (−1)
n
2

∫ T

0

[λa(t)xβ+1 − λh(t)x]dt = 0. (28)
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Similarly, we need to discuss N4
2 < x � N4, −N4 � x < −N4

2 and |xmax −
xmin| � N4

2 , respectively. When N4
2 < x � N4, integrating (28) from 0 to T ,

we obtain

0 =
∫ T

0

[λa(t)xβ − λh(t)]dt

>

∫ T

0

(

a−

(
N4

2

)β

− h∗
)

dt

> 0.

When −N4 � x < −N4
2 , integrating (28) from 0 to T , we get

0 =
∫ T

0

[λa(t)xβ − λh(t)]dt

�
∫ T

0

(

a−

(

−N4

2

)β

− h∗

)

dt

< 0.

When |xmax − xmin| � N4
2 and h∗ � |h∗|, by Lemmas 2.3 and 2.4, we obtain

0 =
∫ T

0

(
x(n

2 )
)2

dt + (−1)
n
2

∫ T

0

[λa(t)xβ+1 − λh(t)x]dt

�
∫ T

0

(
x(n

2 )
)2

dt −
∫ T

0

[a(t)xβ+1 + h(t)x]dt

�
( π

T

)n−2
∫ T

0

(x′)2dt −
∫ T

0

[a+Nβ+1
4 + h∗N4]dt

� πn−2

Tn−1
N2

4 − T (a+Nβ+1
4 + h∗N4)

= N4T

(
πn−2

Tn
N4 − (a+Nβ

4 + h∗)
)

> 0.

When |xmax − xmin| � N4
2 and h∗ < |h∗|, from Lemmas 2.3 and 2.4, we get

0 =
∫ T

0

(
x(n

2 )
)2

dt + (−1)
n
2

∫ T

0

[λa(t)xβ+1 − λh(t)x]dt

�
∫ T

0

(
x(n

2 )
)2

dt −
∫ T

0

[a(t)xβ+1 + h(t)x]dt

�
( π

T

)n−2
∫ T

0

(x′)2dt −
∫ T

0

[a+Nβ+1
4 − h∗N4]dt

� πn−2

Tn−1
N2

4 − T (a+Nβ+1
4 − h∗N4)

= N4T

(
πn−2

Tn
N4 − (a+Nβ

4 − h∗)
)

> 0.
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The following proofs are similar, so we omit it.
Case 2.3: If a(t) < 0 and h(t) < 0, then we have that −a+ � a(t) �

−a− � 0, −h+ � h(t) � h− � 0.
Let ã(t) = −a(t), h̃(t) = −h(t), then Eq. (4) is equivalent to equation

x(n) − ã(t)xβ + h̃(t) = 0, (29)

where 0 < a− � ã(t) � a+, 0 < h− � h̃(t) � h+.
Let

Ω5 := {x ∈ X | |x|∞ < N5},

where N5 = N3 > 2
(

h+

a−
) 1

β is constant.
The following proof is similar to the proof of case 1.1, and so we omit

it.
In view of all the above discussion, we know that Eq. (4) has at least

one T -periodic solutions. This completes the proof. �

Next, we obtain the following result that there is no positive T -periodic
solution to Eq. (4).

Theorem 3.2. Suppose that β > 0 and a(t), h(t) are T -periodic L1-function.
If one of the following conditions hold:
1. a(t) � 0 and h(t) > 0;
2. a(t) < 0 and h(t) � 0;
3. a(t) � 0 and h(t) < 0;
4. a(t) > 0 and h(t) � 0.

Then, Eq. (4) has no positive T -periodic solution under periodic boundary
conditions x(j)(0) = x(j)(T ), j = 0, . . . , n − 1.

Proof. We only prove the result that there is no positive periodic solution to
Eq. (4) under condition (1), the other cases are similar.

Suppose Eq. (4) has positive periodic solution x1(t), then we get

x
(n)
1 + a(t)xβ

1 = h(t). (30)

Integrating on [0, T ] the Eq. (30), and taking into account the periodic bound-
ary conditions x(j)(0) = x(j)(T ), j = 0, . . . , n − 1 and conditions a(t) � 0,
h(t) > 0, we have

0 =
∫ T

0

[x(n)
1 + a(t)xβ

1 − h(t)]dt

=
∫ T

0

[a(t)xβ
1 − h(t)]dt

< 0,

this contradicts the fact. Therefore, when a(t) � 0, h(t) > 0, Eq. (4) has
no positive T -periodic solution under periodic boundary condition x(j)(0) =
x(j)(T ), j = 0, . . . , n − 1. This completes the proof. �

Similarly, we can get the result that Eq. (5) has no positive T -periodic
solution.
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Theorem 3.3. Suppose that ν > 0, β > 0 and a(t), h(t) are T -periodic L1-
function. If one of the following conditions hold:

1. a(t) � 0 and h(t) > 0;
2. a(t) < 0 and h(t) � 0;
3. a(t) � 0 and h(t) < 0;
4. a(t) > 0 and h(t) � 0.

Then Eq. (5) has no positive T -periodic solution under periodic boundary
conditions x(j)(0) = x(j)(T ), j = 0, . . . , n − 1.

Finally, we introduce the result of uniqueness of positive T -periodic
solution of Eq. (5).

Theorem 3.4. Suppose that β > 0, β �= 1, h(t), a(t) are continuous T -periodic
functions with ā·h̄ > 0 and h̄

ā �= ββ. Then Eq. (5) has only positive T -periodic
solution x(t, ν) under periodic boundary condition x(j)(0) = x(j)(T ), j =
0, . . . , n − 1, if one of the following conditions hold:

(i) Either β−1
β > 0 and ν > 0 is small enough,

(ii) or β−1
β < 0 and ν > 0 is large enough.

Moreover, the following asymptotic behavior holds in both cases:

lim
ν→0+

1

ν
1
β

x(t, ν) =
(

h̄

ā

) 1
β

uniformly in t ∈ [0, T ].

Proof. Put x = ξ
1

β−1 v, then Eq. (5) becomes

ξ
1

β−1 v(n) = νh(t) − a(t)ξ
β

β−1 vβ ,

and choosing ν = ξ
β

β−1 , we get

v(n) = ξ(h(t) − a(t)vβ). (31)

It is readily seen that the linear problem

v(n) = 0, v(j)(0) = v(j)(T ), j = 0, 1, 2, 3, . . . , n − 1

has only constant solutions. For every c > 0, we get

F (c) = h̄ − ācβ , F ′(c) = h̄ − βācβ−1,

Take c0 =
(

h̄
ā

) 1
β

> 0, according to h̄
ā �= ββ , we obtain

F (c0) = 0, F ′(c0) �= 0.

Therefore, Eq. (31) satisfies the conditions of Lemma 2.2 under periodic
boundary condition v(j)(0) = v(j)(T ), j = 0, 1, 2, 3, . . . , n − 1, then Eq. (5)
has the only solution x(t, ν), and for ∀t ∈ [0, T ], we have
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Figure 1. Periodic solution of Eq. (32)

Figure 2. Periodic solution of Eq. (33)
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lim
ν→0+

1

ν
1
β

x(t, ν) =
(

h̄

ā

) 1
β

.

This completes the proof. �

4. Examples

In this section, we apply the main results of this paper to two concrete ex-
amples, obtain the existence of periodic solutions of equations, and verify the
correctness of the conclusions of this paper through numerical simulations.

Example 4.1. Consider the following second-order equations:

x′′ + (cos 10πt + 3)x3 = sin 10πt + 2. (32)

It is clear that Eq. (32) is the case of Eq. (4) when a(t) = cos 10πt+3, h(t) =
sin 10πt + 2, β = 3, n = 2. Obviously, the functions a(t) > 0, h(t) > 0
and a− = 2, a+ = 4, h− = 1, h+ = 3. It is not difficult to see that functions
a(t), h(t) satisfies assumption (H1) and β satisfies assumption (H2). By simple
calculation, we can take N ′

3 = 2.3 and period T = 0.2.
Then, Theorem 3.1 guarantees that the Eq. (32) has at least one periodic

solutions in Ω′
3, where Ω′

3 := {x ∈ X | |x|∞ < N ′
3}. Next, we use numerical

simulations to show the existence of periodic solutions of Eq. (32).

Example 4.2. Consider Eq. (4) with n = 6, β = 1
3 , a(t) = cos 4t + 2, h(t) =

cos 4t, that is

x(6) + (cos 4t + 2)x
1
3 = cos 4t. (33)

Obviously, the functions h(t) change sign and a(t) > 0, we have a− = 1, a+ =
3, h∗ = −1, h∗ = 1. It is not difficult to see that coefficient functions a(t), h(t)
satisfies assumption (H1) and β satisfies assumption (H2). By simple calcu-
lation, we can take N ′

4 = 2.1 and period T = π
2 .

From Theorem 3.1 we conclude that Eq. (33) has at least one periodic
solutions in Ω′

4, where Ω′
4 := {x ∈ X | |x|∞ < N ′

4}. We also obtain the
existence of periodic solutions of Eq. (33) by numerical simulation.
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