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A Quadratic B-Spline Collocation Method
for a Singularly Perturbed Semilinear
Reaction–Diffusion Problem with
Discontinuous Source Term
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Abstract. In this paper, a quadratic B-spline collocation method is devel-
oped to solve a singularly perturbed semilinear reaction–diffusion prob-
lem with a discontinuous source term. The discontinuous source term
leads to a jump in the second-order derivative of the exact solution at
the discontinuous point. A quadratic B-spline collocation method on a
Shishkin-type mesh is used to discretized the singularly perturbed prob-
lem on the left and right sides of the discontinuous point, respectively.
The collocation equations at the discontinuous point are obtained using
the conditions satisfied at the discontinuous point. It is shown that the
scheme is stable and almost second-order uniformly convergent. Numer-
ical experiments support the theoretical results.
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1. Introduction

B-Spline collocation methods are a family of important methods for solv-
ing singularly perturbed initial/boundary value problems. These methods
not only give the numerical solutions of singular perturbation problems, but
also give the continuously differentiable approximate solutions. There are
many literatures using B-spline methods to solve singularly perturbed ini-
tial/boundary value problems, such as Blatov et al. [2], Kadalbajoo et al.
[8–11], Lodhi and Mishra [15], Luo et al. [16], Shivhare et al. [18,19], Singh
et al. [20]. However, as far as we know, there is no literature using B-spline
collocation method to solve singular perturbation problems with non-smooth
data (discontinuous source term/convection coefficient).
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In this paper, we present a quadratic B-spline collocation method to
solve the following singularly perturbed semilinear reaction–diffusion problem
with a discontinuous source term:

⎧
⎪⎪⎨

⎪⎪⎩

Tu(x) ≡ −εu′′(x) + b(x, u) = f(x), x ∈ (0, d) ∪ (d, 1),
u (x−) = u (x+) , x = d,√

ε (u′ (x−) − u′ (x+)) = 0, x = d,
u(0) = γ0, u(1) = γ1,

(1.1)

where 0 < ε � 1 is a small parameter, γ0 and γ1 are two constants, b is a
sufficiently smooth function satisfying bu ≥ β > 0 on [0, 1] × R, f(x) is a
smooth function on [0, d) ∪ (d, 1] while it has a discontinuity at x = d. It is
shown in [3] that the problem (1.1) has a unique solution u(x) ∈ C1[0, 1] ∩
Cn+2((0, d) ∪ (d, 1)) if f(x) ∈ Cn((0, d) ∪ (d, 1)) for n ≥ 0. The semilinear
problem (1.1) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

Lu(x) ≡ −εu′′(x) + bu(x, θ(x)u)u(x) = f(x) − b(x, 0), x ∈ (0, d) ∪ (d, 1),
u (x−) = u (x+) , x = d,√

ε
(
u′ (x−) − u′ (x+)

)
= 0, x = d,

u(0) = γ0, u(1) = γ1,

(1.2)

where 0 < θ(x) < 1. It has been proved in [3] that the maximum principle
for (1.2) holds true. The stability result is derived in [3] using the maximum
principle as follow

max
0≤x≤1

|u(x)| ≤ β−1

(

max
0≤x≤1

|b(x, 0)| + max
0≤x≤1

|f(x)|
)

.

Furthermore, using the maximum principle and the inequality estimation
techniques, it is proved in [3, Lemma 1] that the exact solution u(x) and its
derivatives satisfy the following bounds

∣
∣
∣u

(k)
(x)

∣
∣
∣ ≤

⎧
⎨

⎩

C
[
1 + ε−k/2e−βx/

√
ε + ε−k/2e−β(d−x)/

√
ε
]

, x ∈ (0, d), k = 0, 1, . . . , q,

C
[
1 + ε−k/2e−β(1−x)/

√
ε + ε−k/2e−β(x−d)/

√
ε
]

, x ∈ (d, 1), k = 0, 1, . . . , q,

(1.3)

where C is a sufficiently large positive constant, the maximal order q depends
on the smoothness of function f(x) on [0, d) ∪ (d, 1].

The existing literatures mainly use the finite difference methods on layer
adapted meshes to solve the singularly perturbed problems with non-smooth
data (see for example [1,4–7,12,13]). So far, the B-spline collocation method
has not been applied to solve the singularly perturbed problem with non-
smooth data.

The aim of this work is to study the possibility of using a quadratic
B-spline collocation method on a Shishkin-type mesh for solving the singu-
larly perturbed problem with a discontinuous source term (1.1). The singular
perturbation parameter and the discontinuous source term lead to the exis-
tence of boundary and interior layers in the exact solution, and a jump in the
second-order derivative of the exact solution at the discontinuous point. Since
the second-order derivative of the exact solution is discontinuous, the colloca-
tion equation at the discontinuous point cannot be obtained directly from the
first equation in (1.1). On a Shishkin-type mesh, we construct the quadratic
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B-spline collocation equations on the left and right sides of the discontinu-
ous point by using the method given in [14], respectively. Then, combined
with the conditions satisfied at the the discontinuous point, the collocation
equations are obtained at the discontinuous point. By solving the collocation
equations, we can get the approximate solution with piecewise quadratic dif-
ferentiability. It is proved that the scheme is stable and almost second-order
uniformly convergent. Numerical experiments support the theoretical results.
As far as we know, this is the first time that the B-spline method is applied
to solve the singularly perturbed problems with non-smooth data.

Notation. Throughout the paper, C stands for a generic positive con-
stant independent of the discretization parameter N and C in different places
can represent different constants. To simplify the notation, gi = g(xi) and
gi−1/2 = g((xi−1 + xi)/2) for any function g are denoted on [0, 1] and ‖·‖ is
denoted as the (pointwise) maximum norm on [0, 1].

2. Discretization Scheme

In this section, we construct a discretization scheme based on a quadratic B-
spline collocation method to solve the singularly perturbed semilinear reaction–
diffusion problem with discontinuous source term. Since problem (1.1) has
boundary and interior layers, we use a Shishkin-type mesh to adapt the
boundary and interior layers. Let N be the discretization parameter divisible
by 8 and the mesh transition parameters σ1 and σ2 be defined as

σ1 = min
{

d

4
,
4
√

ε

β
ln N

}

, σ2 = min
{

1 − d

4
,
4
√

ε

β
ln N

}

.

Then the domain [0, 1] can be divided into six subintervals [0, σ1] , [σ1, d − σ2] ,
[d − σ2, d] , [d, d + σ2] , [d+ σ2, 1 − σ1] and [1 − σ1, 1]. N

8 mesh elements are
placed in each of the subintervals [0, σ1] , [d − σ2, d] ,
[d, d+ σ2] , [1 − σ1, 1] and N

4 mesh elements are placed in each of the subin-
tervals [σ1, d − σ2] , [d + σ2, 1 − σ1] respectively. Let ΩN = {xi |0 ≤ i ≤ N }
be the constructed Shishkin-type mesh. Thus, the mesh sizes hi = xi − xi−1

for 1 ≤ i ≤ N satisfy

hi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

8σ1
N , i = 1, . . . , N

8 , 7N
8 , . . . , N,

4(d−σ1−σ2)
N , i = N

8 + 1, . . . , 3N
8 ,

8σ2
N , i = 3N

8 + 1, . . . , 5N
8 ,

4(1−d−σ1−σ2)
N , i = 5N

8 + 1, . . . , 7N
8 .

(2.1)

The quadratic B-spline basis functions Bi(x), as given in [14], are defined
as
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B0(x) =

{
(x1−x)2

h2
1

, x0 ≤ x ≤ x1,

0, otherwise,
B1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h2
1−(x1−x)2

h2
1

− (x−x0)2

(h1+h2)h1
, x0 ≤ x ≤ x1,

(x2−x)2

(h1+h2)h1
, x1 ≤ x ≤ x2,

0, otherwise,

Bi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x−xi−2)
2

(hi−1+hi)hi−1
, xi−2 ≤ x ≤ xi−1,

(x−xi−2)(xi−x)

(hi−1+hi)hi
+

(xi+1−x)(x−xi−1)
(hi+hi+1)hi

, xi−1 ≤ x ≤ xi,

(xi+1−x)
2

(hi+hi+1)hi+1
, xi ≤ x ≤ xi+1,

0, otherwise,

2 ≤ i <
N

2
,

N

2
+ 2 ≤ i < N,

BN (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(xN−2−x)
2

(hN−1+hN)hN−1
, xN−2 ≤ x ≤ xN−1,

h2
N

−(xN−1−x)
2

h2
N

− (x−xN )2

(hN+hN−1)hN
, xN−1 ≤ x ≤ xN ,

0, otherwise,

and

BN+1(x) =

{
(xN−1−x)2

h2
N

, xN−1 ≤ x ≤ xN ,

0, otherwise.

Since the source term f(x) has a jump at point x = d, the second-order
derivative of the exact solution is discontinuous at point x = d, which leads
to the special technique that needs to be used to construct the collocation
equation at this point. To this end, we introduce the following four basis
functions

B−
N/2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(xN/2−2−x)
2

(hN/2−1+hN/2)hN/2−1
, xN/2−2 ≤ x ≤ xN/2−1,

h2
N/2−(xN/2−1−x)

2

h2
N/2

− (x−xN/2)
2

(hN/2+hN/2−1)hN/2
, xN/2−1 ≤ x ≤ xN/2,

0, otherwise,

B−
N/2+1(x) =

⎧
⎨

⎩

(xN/2−1−x)
2

h2
N/2

, xN/2−1 ≤ x ≤ xN/2,

0, otherwise.

B+
N/2(x) =

⎧
⎨

⎩

(xN/2+1−x)
2

h2
N/2+1

, xN/2 ≤ x ≤ xN/2+1,

0, otherwise,

and

B+
N/2+1

(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h2
N/2+1−(xN/2+1−x)2

h2
N/2+1

− (x−xN/2)
2

(hN/2+1+hN/2+2)hN/2+1
, xN/2 ≤ x ≤ xN/2+1,

(xN/2+2−x)2

(hN/2+1+hN/2+2)hN/2+1
, xN/2+1 ≤ x ≤ xN/2+2,

0, otherwise.

The approximation solution U(x) to the exact solution u(x) of problem
(1.1) is constructed as

U(x) =
{

U (1)(x), 0 ≤ x ≤ d,
U (2)(x), d ≤ x ≤ 1,

(2.2)
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where

U(1)(x) =

N/2−1∑

i=0

a
(1)
i Bi(x) + a

(1)
N/2

B−
N/2

(x) + a
(1)
N/2+1

B−
N/2+1

, x ∈ [0, d],

U(2)(x) = a
(2)
N/2

B+
N/2

(x) + a
(2)
N/2+1

B+
N/2+1

+

N+1∑

i=N/2+2

a
(2)
i Bi(x), x ∈ [d, 1].

and they satisfy the following collocation equations

{
TU(1)(xi−1/2) = fi−1/2, 1≤i≤ N

2
,

U(1)(x0) = 0,

{
TU(2)(xi−1/2) = fi−1/2, N

2
+ 1≤i≤N,

U(2)(xN ) = 0,

(2.3)

and

U (1)(xN/2) = U (2)(xN/2),
√

ε

(
dU (1)

dx
(xN/2−) − dU (2)

dx
(xN/2+)

)

= 0,

(2.4)

which are equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
TNa(1)

]

i−1/2
= fi−1/2, 1 ≤ i ≤ N

2 ,

a
(1)
N/2+1 = a

(2)
N/2,

√
ε

(

− a
(1)
N/2

hN/2
+

a
(1)
N/2+1

hN/2
+

a
(2)
N/2

hN/2+1
− a

(2)
N/2+1

hN/2+1

)

= 0,

[
TNa(2)

]

i−1/2
= fi−1/2,

N
2 + 1 ≤ i ≤ N,

a
(1)
0 = a

(2)
N+1 = 0

(2.5)

with a(1) =
(
a
(1)
0 , . . . , a

(1)
N/2+1

)T

,a(2) =
(
a
(2)
N/2, . . . , a

(2)
N+1

)T

,

[
T Na(k)

]

i−1/2
= −ε

⎡

⎣
2

(
a
(k)
i+1 − a

(k)
i

)

hi (hi + hi+1)
−

2
(
a
(k)
i − a

(k)
i−1

)

hi (hi−1 + hi)

⎤

⎦

+b
(
xi−1/2, q−

i a
(k)
i−1 +

(
1 − q−

i − q+i

)
a
(k)
i + q+i a

(k)
i+1

)
, k = 1, 2

and

q−
i =

hi

4 (hi−1 + hi)
, q+

i =
hi

4 (hi + hi+1)
, h0 = hN+1 = 0.

Let a ≡ (a0, a1, . . . , aN+3)
T =

(
a
(1)
0 , . . . , a

(1)
N/2+1, a

(2)
N/2, . . . , a

(2)
N+1

)T

.
Then, the linearized form of discrete Eq. (2.5) can be written as
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L
N
ai ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε

[
2(ai+1−ai)

hi(hi+hi+1)
− 2(ai−ai−1)

hi(hi−1+hi)

]

+ bu

(
xi−1/2, ξi

) [
q−

i ai−1

+
(
1 − q−

i − q+
i

)
ai + q+

i ai+1
]
= fi−1/2 − b

(
xi−1/2, 0

)
, i = 1, . . . , N/2,

ai − ai+1 = 0, i = N/2 + 1,

√
ε

(
− ai−2

hi−2
+

ai−1

hi−2
+ ai

hi−1
− ai+1

hi−1

)
= 0, i = N/2 + 2,

−ε

[
2(ai+1−ai)

hi−2(hi−2+hi−1)
− 2(ai−ai−1)

hi−2(hi−3+hi−2)

]

+ bu

(
xi−2−1/2, ξi

)

·
[
q−

i−2ai−1 +
(
1 − q−

i−2 − q+
i−2

)
ai + q+

i−2ai+1

]

= fi−2−1/2 − b
(
xi−2−1/2, 0

)
, i = N/2 + 3, . . . , N + 2,

(2.6)

where ξi = λi

[
q−
i ai−1 +

(
1 − q−

i − q+
i

)
ai + q+

i ai+1

]
for 1 ≤ i ≤ N/2 and

ξi = λi

[
q−
i−2ai−1 +

(
1 − q−

i−2 −q+
i−2

)
ai + q+

i−2ai+1

]
for N/2+3 ≤ i ≤ N +2

with 0 < λi < 1.
The following theorem gives the stability of the discrete scheme.

Theorem 2.1. The solution a of the discretization scheme (2.5) satisfies

‖a‖ ≤ C
∥
∥LNa

∥
∥ ,

where C is a positive constant independent of N .

Proof. Let

[Λa]i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ε
bu(xi−1/2,ξi)(1−q−

i −q+
i )

[
2(ai+1−ai)

hi(hi+hi+1)
− 2(ai−ai−1)

hi(hi−1+hi)

]

+ ai, i = 1, . . . , N
2 ,

ai − ai+1, i = N
2 + 1,

√
ε

(
− ai−2

hi−2
+ ai

hi−2
+ ai

hi−1
− ai+1

hi−1

)
, i = N

2 + 2,

− ε
bu(xi−2−1/2,ξi)(1−q−

i−2−q+
i−2)

[
2(ai+1−ai)

hi−2(hi−2+hi−1)
− 2(ai−ai−1)

hi−2(hi−3+hi−2)

]

+ ai, i = N
2 + 3, . . . , N + 2.

It is easy to see that Λ is an M-matrix, which implies
∥
∥Λ−1

∥
∥ ≤ 1. Then using

the similar method given in [14, Theorem 3], we can prove the result of the
theorem holds true. �

Next we derive the convergence analysis of the quadratic B-spline col-
location method.

Theorem 2.2. Let U(x) be the cubic B-spline collocation approximation solu-
tion of problem (2.2)–(2.4) and u(x) be the exact solution of problem (1.1).
Then we have the following error estimate

‖u(x) − U(x)‖ ≤ CN−2 ln2 N,

where C is a positive constant independent of N .
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Proof. Let Y (1)(x) and Y (2)(x) be the unique quadratic spline interpolation
functions to the solution u(x) on [0, d] and [d, 1] respectively, where

Y (1)(x) =

N/2−1∑

i=0

c
(1)
i Bi(x) + c

(1)
N/2B

−
N/2(x) + c

(1)
N/2+1B

−
N/2+1, x ∈ [0, d],

Y (2)(x) = c
(2)
N/2B

+
N/2(x) + c

(2)
N/2+1B

+
N/2+1 +

N+1∑

i=N/2+2

c
(2)
i Bi(x), x ∈ [d, 1]

and

Y (1) (
xN/2

)
= Y (2) (

xN/2

)
,

√
ε

(
dY (1)

dx

(
xN/2−

) − dY (2)

dx

(
xN/2+

)
)

= 0.

Following the error estimates given in [14, Theorem 2], we have

∥
∥
∥u(x) − Y

(1)
(x)

∥
∥
∥
[0,d]

≤ CN
−3

ln
3

N,
∥
∥
∥u(x) − Y

(2)
(x)

∥
∥
∥
[d,1]

≤ CN
−3

ln
3

N,

(2.7)
√

ε
∣
∣
∣

(
u − Y

(1)
)′ (

xN/2−)∣∣
∣ ≤ CN

−2
ln

2
N,

√
ε

∣
∣
∣

(
u − Y

(2)
)′ (

xN/2+
)∣∣
∣ ≤ CN

−2
ln

2
N,

(2.8)

and

ε max
1≤i≤N/2

∣
∣
∣
∣

(
u − Y

(1)
)′′

i−1/2

∣
∣
∣
∣ ≤ CN

−2
ln

2
N, ε max

N/2+1≤i≤N

∣
∣
∣
∣

(
u − Y

(2)
)′′

i−1/2

∣
∣
∣
∣ ≤ CN

−2
ln

2
N,

(2.9)

where we have used the bounds of the exact solution and its derivatives
(1.3), the mesh transition parameters σ1 and σ2, and the mesh sizes (2.1).

Let c ≡ (c0, c1, . . . , cN+3)
T =

(
c
(1)
0 , . . . , c

(1)
N/2+1, c

(2)
N/2, . . . , c

(2)
N+1

)T

. Then we
have

L
N

(ai − ci)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε
(
u − Y (1)

)′′

i−1/2
+ bu

(
xi−1/2, ηi

) (
u − Y (1)

)

i−1/2
, i = 1, 2, . . . , N/2,

(
u − Y (1)

)

i−1
+

(
u − Y (2)

)

i−1
, i = N/2 + 1,

√
ε

(
u − Y (2)

)′
(xi−2+) − ε

(
u − Y (1)

)′
(xi−2−) , i = N/2 + 2,

−ε
(
u − Y (2)

)′′

i−2−1/2
+ bu

(
xi−2−1/2, ηi

) (
u − Y (2)

)

i−2−1/2
, i = N/2 + 3, . . . , N + 2,

where ηi = ρi

(
u − Y (1)

)

i−1/2
for 1 ≤ i ≤ N/2 and ηi = ρi

(
u − Y (2)

)

i−2−1/2

for N/2 + 3 ≤ i ≤ N + 2 with 0 < ρi < 1. Thus we can get

‖a − c‖ ≤ CN−2 ln2 N, (2.10)

where we have used Theorem 2.1 and the estimates (2.7)–(2.9). Next, it is
easy to see that Bi(x) ≥ 0,

N/2−1∑

k=0

Bk(x) + B−
N/2

(x) + B−
N/2+1

= 1,

N+1∑

k=N/2+2

Bk(x) + B+
N/2

(x) + B+
N/2+1

= 1.
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Hence, we can obtain

∥
∥
∥U(1)(x) − Y (1)(x)

∥
∥
∥ ≤

∥
∥
∥a(1) − c(1)

∥
∥
∥ ,

∥
∥
∥U(2)(x) − Y (2)(x)

∥
∥
∥ ≤

∥
∥
∥a(2) − c(2)

∥
∥
∥ .

(2.11)

Therefore, combining (2.7) and (2.10)–(2.11), we have
∥
∥
∥u − U (1)

∥
∥
∥

[0,d]
≤

∥
∥
∥u(1) − Y (1)

∥
∥
∥

[0,d]
+

∥
∥
∥Y (1) − U (1)

∥
∥
∥

[0,d]
≤ CN−2 ln2 N,

∥
∥
∥u − U (2)

∥
∥
∥

[d,1]
≤

∥
∥
∥u(2) − Y (2)

∥
∥
∥

[d,1]
+

∥
∥
∥Y (2) − U (2)

∥
∥
∥

[d,1]
≤ CN−2 ln2 N.

From the above inequalities, we conclude that the result of theorem holds
true. �

3. Numerical Experiments

In this section, the following numerical example is solved to corroborate in
practice the efficiency of the developed method, which is taken from [3].

Example Consider the following singularly perturbed convection–
diffusion problem with non-smooth data:

⎧
⎪⎪⎨

⎪⎪⎩

−εu′′(x) + b(x, u) = f(x), x ∈ (0, 1/2) ∪ (1/2, 1),
u (x−) = u (x+) , x = 1/2,√

ε (u′ (x−) − u′ (x+)) = 0, x = 1/2,
u(0) = u(1) = 0,

(3.1)

where

b(x, u) = 1 − e−u, f(x) =

{
1 − e−(1−2x)2 , 0 ≤ x ≤ 1/2,

1 − e−√
2−2x, 1/2 < x ≤ 1.

The Newton iterative method is used to solve the nonlinear collocation
equation (2.5). The initial guesses for Example are taken as [a(m)

i ](0) = 0 and
the stoping criterion is

max
0≤i≤N

∣
∣
∣[a(m)

i ](k) − [a(m)
i ](k−1)

∣
∣
∣ ≤ 10−5, m = 1, 2.

The computed solution for Example with ε = 2−20 and N = 128 is de-
picted in Fig. 1, which shows that the solution has obvious boundary and
inner layers. Since the exact solution of the example is not available, the
double mesh principle is adopted to calculate the maximum pointwise er-
ror and the corresponding convergence rate, which are denoted by eN =
max1≤i≤N

∣
∣
∣UN

i−1/2 − U2N
i−1/2

∣
∣
∣ and rN = log2

(
eN

e2N

)
for the scheme (2.2)–(2.4)

on the Shishkin-type mesh ΩN respectively. The numerical results are given
in Table 1, which show that the quadratic B-spline approximate solution con-
verges to the exact solution with almost second-order accuracy. Therefore,
numerical experiments verify the effectiveness of the theoretical results.
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Figure 1. The computed solution for Example with ε = 2−20

and N = 128

Table 1. Error estimates and convergence rates of the
scheme (2.2)–(2.4) for Example

Number of mesh points N

ε 128 256 512 1024 2048 4096
2−0 1.1953e−6 3.0011e−7 7.5189e−8 1.8818e−8 4.7071e−9 1.1771e−9

1.994 1.997 1.998 1.999 2.000 –
2−4 1.9055e−5 4.7934e−6 1.2020e−6 3.0096e−7 7.5298e−8 1.8832e−8

1.991 1.996 1.998 1.999 , 1.999 –
2−8 2.9806e−4 7.5895e−5 1.9136e−5 4.8036e−6 1.2033e−6 3.0112e−7

1.974 1.988 1.994 1.997 1.999 –
2−12 4.1360e−3 1.1435e−3 2.9805e−4 7.5896e−5 1.9136e−5 4.8036e−6

1.855 1.940 1.973 1.988 1.994 –
2−16 1.9043e−2 8.3359e−3 3.0376e−3 1.0003e−3 2.9450e−4 7.5895e−5

1.192 1.456 1.603 1.764 1.956 –
2−20 1.9042e−2 8.3357e−3 3.0375e−3 1.0003e−3 3.1114e−4 9.3523e−5

1.192 1.456 1.603 1.685 1.734 –

4. Conclusion and Discussion

In this paper, a quadratic B-spline collocation method on a Shishkin-type
mesh is used to solve the singularly perturbed problem with a discontinuous
source term (1.1). There is a jump in the second-order derivative of the exact
solution at the discontinuous point due to the discontinuous source term. The
quadratic B-spline collocation equations are constructed on the left and right
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sides of the discontinuous point respectively. The collocation equations at
the discontinuous point are also derived using the conditions satisfied at the
discontinuous point. Then the nonlinear collocation equation is solved by the
Newton iterative method and the approximate solution with piecewise qua-
dratic differentiability is obtained. It is proved that the scheme is stable and
almost second-order uniformly convergent. Numerical experiments confirm
the correctness of the theoretical results. Although the convergence order of
our discrete scheme is lower than some existing literatures, for example [17],
the numerical solution obtained by applying the quadratic B-spline method is
piecewise continuously differentiable, which indicates that our spline method
has some advantages in solving singular perturbation problems. However, it
is still difficult to extend this quadratic B-spline method to the singularly
perturbed convection–diffusion problem, mainly because the convection term
will cause difficulties in the stability analysis of the quadratic B-spline collo-
cation scheme.
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