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Bi-space Global Attractors for a Class
of Second-Order Evolution Equations
with Dispersive and Dissipative Terms
in Locally Uniform Spaces

Fang-hong Zhang

Abstract. This paper deals with the asymptotic behavior of a class of
second-order evolution equations with dispersive and dissipative terms’
critical nonlinearity in locally uniform spaces. First of all, we prove
the global well-posedness of solutions to the evolution equations in the
locally uniform spaces H1

lu(R
N ) × H1

lu(R
N ) and define a strong con-

tinuous analytic semigroup. Secondly, the existence of the (H1
lu(R

N ) ×
H1

lu(R
N ), H1

ρ(RN )×H1
ρ(RN ))-global attractor is established. Finally, we

obtain the asymptotic regularity of solutions which appear to be optimal
and the existence of a bounded subset(in H2

lu(R
N )×H2

lu(R
N )), which at-

tracts exponentially every initial H1
lu(R

N )×H1
lu(R

N )-bounded set with
respect to the H1

lu(R
N ) ×H1

lu(R
N )-norm.
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1. Introduction

In this paper, we investigate the long-time behavior of the solutions for the
following second-order evolution equations with dispersive and dissipative
terms in locally uniform spaces:

utt − Δu − Δut − βΔutt + αut + λu + f(u) = g(x), in R
N × R

+,

(1.1)

with the initial data

u(x, 0) = u0, ut(x, 0) = u1, x ∈ R
N , (1.2)
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where g(x) ∈ L2
lu(R

N ) with N ≥ 3. The nonlinearity f(s) ∈ C1(R) satisfies
the following conditions: Dissipative condition

lim inf
|s|→∞

F (s)
s2

≥ 0, where F (s) =
∫ s

0

f(r)dr, (1.3)

lim inf
|s|→∞

sf(s) − αF (s)
s2

≥ 0, where α > 0. (1.4)

Growth condition

|f(s) − f(h)| ≤ β|s − h|(1 + |s|q + |h|q), ∀ s, h ∈ R,

where β > 0, 0 ≤ q ≤ 4
N − 2

. (1.5)

Equation (1.1) is a special form of the so-called improved Boussinesq
equation (see [5,19–21,26]) with damped term −Δut, which was used to de-
scribe ion-sound waves in plasma, e.g., see [20,21], and also known to repre-
sent other sorts of ‘propagation problems’ of, for example, lengthways waves
in nonlinear elastic rods and ion-sonic waves of space transformations by a
weak nonlinear effect (see [5,14]).

In bounded domains, there is a vast literature concerning the attrac-
tors for the second-order evolution equations with dispersive and dissipative
terms equations. For instance, in [27,28], Xie and Zhong investigated the
existence of global attractors with critical exponential growth nonlinearity
using the new method named “Condition C”. Carvalho and Cholewa in [11]
presented systematic results including the existence uniqueness and long-
time behavior by using the semigroup approach. Sun et al. in [24] studied the
asymptotic regularity of the solutions and obtained the existence of exponen-
tial attractors. For the (nonautonomous) semi-linear second-order evolution
(1.1) with memory terms, Zhang et al. in [32] constructed the existence of ro-
bust family of exponential attractors, while the nonlinearity is critical. In our
previous work [33], we showed the existence of pullback attractors in the Ba-
nach spaces for the multivalued process generated by a class of second-order
nonautonomous evolution equations with hereditary characteristics and ill-
posedness.

On unbounded domain, up to now, there are few results. Only Jones and
Wang in [18] applied the cutoff method and a decomposition trick to obtain
the existence of random attractor for the stochastic second-order evolution
equations (1.1) with subcritical nonlinearity.

To our best knowledge, for critical nonlinearity, the long-time dynam-
ics for Eq. (1.1) on unbounded domain have not been considered by any
predecessors. There are some barriers encountered. On the one hand, the
Sobolev embeddings are not compact on unbounded domains, and hence
the asymptotic compactness of solutions cannot be obtained by simply us-
ing Sobolev embeddings and regularity of solutions. On the other hand, the
number q + 1 = N+2

N−2 in (1.5) is called a critical exponent, since the nonlin-
earity f is not compact even in the bounded case, and hence the methods
for subcritical nonlinearity cannot be used to derive the asymptotic com-
pactness for our problem. Thirdly, Eq. (1.1) contains the term −Δutt; if the
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initial data z(0) = (u(0), ut(0)) belongs to H1
lu(R

N ) × H1
lu(R

N ), then the so-
lution z(t) = (u(t), ut(t)) is always in H1

lu(R
N ) × H1

lu(R
N ) and has no higher

regularity, which will cause some difficulties.
The main contributions of this paper are that:

(i) We overcome the above difficulties (less regularity; lack of compactness;
the equation itself), establish the well-posedness (Theorem 3.1), and
prove the existence of bi-space global attractors for the second-order
evolution equations with dispersive and dissipative terms Eq. (1.1) on
R

N (Theorem 4.9).
(ii) We obtain the asymptotic regularity of solutions on R

N , which appears
to be optimal (Theorem 5.8). To our best knowledge, this is the first
time to obtain the regularity for Eq. (1.1) on unbounded domain with
both subcritical and critical nonlinearity, and maybe it is a basis for
further considering the asymptotic behavior of the solutions.

The presentation of this paper is follows: In Sect. 2, we recall some basic
definitions about the locally uniform spaces and iterate some definitions and
abstract results concerning the global attractor. In Sect. 3, we prove the
existence of global attractors for the second-order evolution equations with
dispersive and dissipative terms in locally uniform spaces, and the asymptotic
regularity of the solution will be established in Sect. 4.

2. Preliminaries

In this section, we first recall some basic definitions about the locally uniform
spaces.

Following [1–3,7,8,22,29], we consider a strictly positive integrable we
ighted function ρ : RN → (0,∞): for 1 ≤ p < ∞, setting

Lp
ρ(R

N ) =

{
ϕ ∈ Lp

loc(R
N ) : ‖ϕ‖Lp

ρ(RN ) =
(∫

RN

ρ(x)|ϕ(x)|pdx

) 1
p

< ∞
}

,

let τyρ(x) = ρy(x) = ρ(x − y), y ∈ R
N , and consider the locally uniform

spaces

Lp
lu(R

N ) =

{
ϕ ∈ Lp

loc(R
N ) : ‖ϕ‖Lp

lu(R
N ) = sup

y∈RN

‖ϕ‖Lp
ρy (RN ) < ∞

}
,

L̇p
lu(R

N ) = {ϕ ∈ Lp
lu(R

N ) : ‖τyϕ − ϕ‖Lp
lu(R

N ) → 0 as |y| → 0},

where L̇p
lu(R

N ) is the closed subspace of Lp
lu(R

N ) consisting of all its el-
ements that are translation continuous. The locally uniform Sobolev spaces
Wm,p

lu (RN ) and Ẇm,p
lu (RN ) are defined, respectively, by Lp

lu(R
N ) and L̇p

lu(R
N )

in a way similar to the standard Wm,p
lu (RN ).

We consider strictly positive integrable weighted functions ρ ∈ C2(RN )
satisfying
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∣∣∣∣ ∂ρ

∂xj
(x)

∣∣∣∣ ≤ ρ0ρ(x),
∣∣∣∣ ∂2ρ

∂xj∂xk
(x)

∣∣∣∣ ≤ ρ1ρ(x), ∀x ∈ R
N , j, k = 1, 2, . . . , N,

(2.1)

with certain positive constants ρ0, ρ1. In this paper, we consider the exem-
plary weighted functions

ρ(x) = (1 + ε|x|2)−s, with s >
N

2
, ε > 0. (2.2)

Obviously, ρ ∈ C2(RN ), then one can obtain the estimates that |∇ρ| ≤ c1
√

ερ
and |Δρ| ≤ εc2ρ.

Now, we recall the uniform space W s,p
U (RN ), s ∈ R

+ ∪ {0}, and the
Banach space consisting of all φ ∈ W s,p

loc (RN ) such that

‖φ‖W s,p
U (RN ) = sup

y∈RN

‖φ‖W s,p
U (B(y,1)) < ∞, (2.3)

where B(y, 1) = {x ∈ R
N : |x− y| ≤ 1}. In addition, the following two norms

are equivalent: there exist C1, C2 such that for all u ∈ Lp
lu,

‖u‖p
Lp

lu
= sup

y∈RN

∫
RN

ρ(x − y)|u(x)|pdx

≤ C1 sup
y∈RN

∫
B(y,1)

|u(x)|pdx ≤ C2‖u‖p
Lp

lu
.

Note that for k ∈ N∪{0}, uniform space W k,p
U (RN ) and locally uniform

space W k,p
lu (RN ) coincide algebraically and topologically when the weighted

function ρ satisfies (2.1). Furthermore, by intermediate spaces, we know that
the same holds for W s,p

U (RN ) and W s,p
lu (RN ) with s ∈ R

+ ∪ {0}, and we will
use this equivalence frequently in this paper.

In addition, we need the following embedding lemma, interpolation in-
equalities in the weighted spaces and locally uniform space.

Lemma 2.1. [1]
(i) If s1 ≥ s2 ≥ 0, 1 < p1 ≤ p2 < ∞ and s1 − N

p1
≥ s2 − N

p2
, then

W s1,p1
U (RN ) ↪→ W s2,p2

U (RN )

is continuous.
(ii) If ρ satisfies (2.1), then the inclusion

W s1,p1
U (RN ) ↪→ W s2,p2

ρ (RN ),

provided that s2 ∈ N, s1 > s2, 1 < p1 ≤ p2 < ∞ and s1 − N
p1

> s2 − N
p2

.

Lemma 2.2. [1] For any p ∈ [2, 2N
N−2 ] and θ ∈ [0, 1], we have

‖ϕ‖Lp
ρ

≤ C‖ϕ‖θ
H1

lu
‖ϕ‖1−θ

Lr
ρ

,

and

‖ϕ‖Lp
ρ

≤ C‖ϕ‖θ
H1

ρ
‖ϕ‖1−θ

Lr
lu

,

where 1
p ≤ θ

2 + 1−θ
r and −N

p ≤ θ(1 − N
2 ) − (1 − θ)N

r .
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Lemma 2.3. [31] there exist C1, C2 such that for all u ∈ Lp
ρ (1 ≤ p < ∞),

C1

∫
RN

ρ(x)|u(x)|pdx ≤
∫
RN

ρ(y)
∫

B(y,1)

|u(x)|pdxdy ≤ C2

∫
RN

ρ(x)|u(x)|pdx.

Next, we iterate some definitions and abstract results concerning the
global attractor, which are necessary to obtain our main results; we refer to
[4,6,9,16,22,23,25] for more details.

Definition 2.1. A set A ⊂ X, which is invariant, closed in X, compact in Z
and attracts the bounded subsets of X in the topology of Z, is called an
(X,Z)-global attractor.

Definition 2.2. Let {S(t)}t≥0 be a semigroup on Banach space X. A set B0 ⊂
Z, satisfying that, for any bounded subset B ⊂ X, there is a T = T (B), such
that S(t)B ⊂ B0, for any t ≥ T, is called an (X,Z)-bounded absorbing set.

Definition 2.3. Let {S(t)}t≥0 be a semigroup on Banach space X. {S(t)}t≥0

is called (X,Z)-asymptotically compact, if for any bounded (in X) sequence
{xn}∞

n=1 ⊂ X and tn ≥ 0, tn → ∞ as n → ∞, {S(tn)xn}∞
n=1 has a conver-

gence subsequence with respect to the topology of Z.

With the usual notation, hereafter let |u|, | · |p, ‖ · ‖Ẇ m,p
lu

, ‖ · ‖W m,p
lu

, ‖ ·
‖W m,p

ρ
and ‖·‖W m,p be the norm of L2(RN ), Lp(RN ), Ẇm,p

lu (RN ), Wm,p
lu (RN ),

Wm,p
ρ (RN ) and Wm,p(RN ), respectively. Also, let 〈·, ·〉 be the usual inner

product in L2(RN ). Let C be an arbitrary positive constant, which may be
different from line to line and even in the same line. For convenience, without
loss of generality, we always assume α = β = λ = 1 hereafter.

3. Global Well-Posedness

In this section, we will investigate the well-posedness of system (1.1)–(1.2).

Theorem 3.1. (Global well-posedness) Assume that f satisfies (1.3)–(1.5),
g(x) ∈ L2

lu(R
N ). Then for any T > 0 and (u0, u1) ∈ H1

lu(R
N ) × H1

lu(R
N ),

there is a unique solution (u(t), ut(t)) of Eqs. (1.1) and (1.2) such that

u(t) ∈ C([0, T ];H1
lu(R

N )), ut(t) ∈ C([0, T ];H1
lu(R

N )).

Moreover, the solution continuously depends on the initial data.

Proof. We divide the proof into three steps:
Step 1 Local well-posedness

Setting v = (I − Δ)u and vt = w, we can rewrite Eq. (1.1) into the
following system:

d
dt

(
v
w

)
+

(
0 −I
I I

) (
v
w

)
= F

(
v
w

)
, t > 0,

where

F
(

v
w

)
=

(
0

f ◦ ((I + A)−1v) + g(x)

)
.
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By the growth condition (1.5), f(·) is local Lipschitz in H1
lu(R

N ) × H1
lu(R

N ),
which is equivalent to (0, f ◦ ((I + A)−1v) + g(x))T . The abstract semigroup
theory about local well-posedness (e.g., see [3,10,11,23,25,26,29]) of an ab-
stract parabolic equation leads to a local solution to system (1.1)–(1.2).
Step 2 Global existence

By the a priori estimates given in Lemma 4.1 below, we infer

‖u(t)‖2H1
lu

+ ‖ut(t)‖2H1
lu

≤ Ce−νt(‖u(0)‖2H1
lu

+ ‖ut(0)‖2H1
lu

) + C

∫
RN

ρy(|g|2 + 1).

This implies that for each local solution (u(t), ut(t)) of system (1.1)–(1.2)
corresponding to initial data (u0, u1) ∈ H1

lu(R
N ) × H1

lu(R
N ), its H1

lu(R
N ) ×

H1
lu(R

N )-norm cannot blow up at finite time, which implies the global exis-
tence of solutions.
Step 3 Lipschitz continuity

Let u1(t), u2(t) be two solutions of system (1.1)–(1.2) corresponding to
the initial data (u1

0, u
1
1), (u

2
0, u

2
1) ∈ H1

lu(R
N ) × H1

lu(R
N ) and denote z(t) =

u1(t) − u2(t), then z(t) satisfies

ztt − Δz − Δzt − Δztt + zt + z + f(u1) − f(u2) = 0. (3.1)

We set m = zt + ηz(0 < η � 1) and rewrite the Eq. (3.1) as follows:

mt + (1 − η)m + (1 − η + η2)z − (1 − η + η2)Δz

−(1 − η)Δm − Δmt + f(u1) − f(u2) = 0. (3.2)

Multiplying (3.2) by ρym, we infer

〈mt, ρym〉+(1−η)〈m, ρym〉+(1−η+η2)〈z, ρym〉−(1−η+η2)〈Δz, ρym〉
−(1 − η)〈Δm, ρym〉 − 〈Δmt, ρym〉 + 〈f(u1) − f(u2), ρym〉 = 0.

(3.3)

Next, we deal with each term of (3.3) one by one as follows:

〈mt, ρym〉 + (1 − η)〈m, ρym〉 =
1
2

d
dt

∫
RN

ρy|m|2 + (1 − η)
∫
RN

ρy|m|2,
(3.4)

〈z, ρym〉 = 〈z, ρy(zt + ηz)〉 =
1
2

d
dt

∫
RN

ρy|z|2 + η

∫
RN

ρy|z|2, (3.5)

〈−Δz, ρym〉 = 〈−Δz, ρy(zt + ηz)〉 =
1
2

d
dt

∫
RN

ρy|∇z|2 + η

∫
RN

ρy|∇z|2

+
∫
RN

∇z∇ρyzt + η

∫
RN

∇z∇ρyz, (3.6)

〈−Δm, ρym〉 =
∫
RN

ρy|∇m|2 +
∫
RN

∇m∇ρym, (3.7)

〈−Δmt, ρym〉 =
1
2

d
dt

∫
RN

ρy|∇m|2 +
∫
RN

∇mt∇ρym. (3.8)
∫
RN

∇z∇ρyzt+η

∫
RN

∇z∇ρyz≤C
√

ε

∫
RN

ρy(|∇z|2+|zt|2+|z|2), (3.9)
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∫
RN

∇mt∇ρym ≤ C
√

ε

∫
RN

ρy(|∇mt|2 + |m|2), (3.10)

(1 − η)
∫
RN

∇m∇ρym ≤ C
√

ε

∫
RN

ρy(|∇m|2 + |m|2). (3.11)

By the Sobolev embedding H1(B1(r)) ↪→ L
2N

N−2 (B1(r)) and Ḣ1
lu(R

N ) ↪→
L̇

2N
N−2 (RN ), we have∣∣∣∣

∫
RN

ρy(f(u1) − f(u2))z
∣∣∣∣

≤
∫
RN

ρy(x)
(
1 + |u1| 4

N−2 + |u2| 4
N−2

)
|z|2dx

≤
∫
RN

ρy(r)

(∫
B1(r)

(
1 + |u1| N+2

N−2 + |u2| 4
N−2

)
|z|2dx

)
dr

≤ C

∫
RN

ρy(r)

(∫
B1(r)

|z| 2N
N−2 dx

)N−2
N

dr

≤ C

∫
RN

ρy(r)|z|2H1(B1(r))
dr

≤ C

∫
RN

ρy(|∇z|2 + |z|2)dx, (3.12)

and ∣∣∣∣
∫
RN

ρy(f(u1) − f(u2))zt

∣∣∣∣
≤

∫
RN

ρy(x)
(
1 + |u1| 4

N−2 + |u2| 4
N−2

)
|z||zt|dx

≤
∫
RN

ρy(r)

(∫
B1(r)

(
1 + |u1| N+2

N−2 + |u2| 4
N−2

)
|z||zt|dx

)
dr

≤ C

∫
RN

ρy(r)

(∫
B1(r)

|z| 2N
N−2 dx

)N−2
2N

(∫
B1(r)

|zt| 2N
N−2 dx

)N−2
2N

dr

≤ C

∫
RN

ρy(r)|z|H1(B1(r))|zt|H1(B1(r))dr

≤ Cη

∫
RN

ρy(|∇z|2 + |z|2)dx + η

∫
RN

ρy(|∇zt|2 + |zt|2)dx. (3.13)

From (3.3)–(3.13), we get

1
2

d
dt

(∫
RN

ρy|m|2 + (1 − η + η2)
∫
RN

ρy|z|2

+(1 − η + η2)
∫
RN

ρy|∇z|2 +
∫
RN

ρy|∇m|2
)

+(1 − η)
∫
RN

ρy|m|2+η(1−η+η2)
∫
RN

ρy(|z|2 + |∇z|2) +
∫
RN

ρy|∇m|2
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≤ C
√

ε

∫
RN

ρy(|∇z|2 + |z|2 + |zt|2 + |∇mt|2 + |m|2 + |∇m|2)

+C

∫
RN

ρy(|∇z|2 + |z|2) + η

∫
RN

ρy(|∇zt|2 + |zt|2). (3.14)

In particular, we infer
d
dt

∫
RN

ρy(|m|2 + |∇m|2 + |z|2 + |∇z|2)

≤ C

∫
RN

ρy(|m|2 + |∇m|2 + |z|2 + |∇z|2). (3.15)

By the Gronwall Lemma, for any T ≥ 0, we get

sup
t∈[0,T ]

(‖z(t)‖2H1
lu

+ ‖zt(t)‖2H1
lu

) ≤ eCT (‖z(0)‖2H1
lu

+ ‖zt(0)‖2H1
lu

). (3.16)

This completes the proof. �

Remark 3.2. Theorem 3.1 implies that the solution of Eqs. (1.1)–(1.2) gener-
ates a C0 semigroup {S(t)}t≥0 defined by

S(t) : H1
lu(R

N ) × H1
lu(R

N ) → H1
lu(R

N ) × H1
lu(R

N )
and S(t) : (u0, u1) �→ (u(t), ut(t)).

Moreover, the semigroup {S(t)}t≥0 satisfying the Lipschitz continuity: given
any R > 0 and any two initial data (u1

0, u
1
1), (u

2
0, u

2
1) ∈ H1

lu(R
N ) × H1

lu(R
N )

with ‖(ui
0, u

i
1)‖H1

lu(R
N )×H1

lu(R
N ) ≤ R, i = 1, 2, it holds that:

‖S(t)(u1
0, u

1
1) − S(t)(u2

0, u
2
1)‖H1

lu(R
N )×H1

lu(R
N )

≤ eCRt‖(u1
0, u

1
1) − (u2

0, u
2
1)‖H1

lu(R
N )×H1

lu(R
N ), ∀ t ≥ 0.

4. Global Attractor

In the section, we will prove the existence of global attractor for a class
of second-order evolution equations with dispersive and dissipative terms in
locally uniform spaces.

4.1. Dissipation Estimates

Lemma 4.1. Assume that f satisfies (1.3)–(1.5), g(x) ∈ L2
lu(R

N ). There is
a positive constant �1 such that for any bounded subset B ⊂ Ẇ 1,2

lu (RN ) ×
Ẇ 1,2

lu (RN ), there exists a positive constant T1 = T1(B) such that

‖u(t)‖H1
lu

+ ‖ut(t)‖H1
lu

≤ �1 for all t ≥ T1 and (u0, u1) ∈ B. (4.1)

Proof. We set v = ut + δu(0 < δ � 1) and rewrite Eq. (1.1) as follows

vt + (1 − δ)v + (1 − δ + δ2)u − (1 − δ + δ2)Δu

−(1 − δ)Δv − Δvt + f(u) = g(x). (4.2)

Multiplying (4.2) by ρyv, we infer

〈vt, ρyv〉 + (1 − δ)〈v, ρyv〉 + (1 − δ + δ2)〈u, ρyv〉 − (1 − δ + δ2)〈Δu, ρyv〉
−(1 − δ)〈Δv, ρyv〉 − 〈Δvt, ρyv〉 + 〈f(u), ρyv〉 = 〈g(x), ρyv〉. (4.3)
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Next, we deal with each term of (4.3) one by one as follows:

〈vt, ρyv〉 + (1 − δ)〈v, ρyv〉 =
1
2

d
dt

∫
RN

ρy|v|2 + (1 − δ)
∫
RN

ρy|v|2, (4.4)

〈u, ρyv〉 = 〈u, ρy(ut + δu)〉 =
1
2

d
dt

∫
RN

ρy|u|2 + δ

∫
RN

ρy|u|2, (4.5)

〈−Δu, ρyv〉 = 〈−Δu, ρy(ut + δu)〉 =
1
2

d
dt

∫
RN

ρy|∇u|2 + δ

∫
RN

ρy|∇u|2

+
∫
RN

∇u∇ρyut + δ

∫
RN

∇u∇ρyu, (4.6)

〈−Δv, ρyv〉 =
∫
RN

ρy|∇v|2 +
∫
RN

∇v∇ρyv, (4.7)

〈−Δvt, ρyv〉 =
1
2

d
dt

∫
RN

ρy|∇v|2 +
∫
RN

∇vt∇ρyv, (4.8)

〈f(u), ρyv〉 = 〈f(u), ρy(ut + δu)〉
=

d
dt

∫
RN

ρyF (u) + δ

∫
RN

ρyf(u)u, (4.9)

〈g(x), ρyv〉 ≤ ς

∫
RN

ρy|v|2 + Cς

∫
RN

ρy|g|2. (4.10)

From (4.3)–(4.10), we get

d
dt

(∫
RN

ρy|v|2 + (1 − δ + δ2)
∫
RN

ρy|u|2 + (1 − δ + δ2)
∫
RN

ρy|∇u|2

+
∫
RN

ρy|∇v|2 + 2
∫
RN

ρyF (u)

)

+2(1 − δ − ς)
∫
RN

ρy|v|2 + 2δ(1 − δ + δ2)
∫
RN

ρy|u|2

+2δ(1 − δ + δ2)
∫
RN

ρy|∇u|2

+2(1 − δ + δ2)
∫
RN

∇u∇ρyut

+2δ(1 − δ + δ2)
∫
RN

∇u∇ρyu

+2(1 − δ)
∫
RN

ρy|∇v|2 + 2(1 − δ)
∫
RN

∇v∇ρyv + 2
∫
RN

∇vt∇ρyv

+2δ

∫
RN

ρyf(u)u

≤ Cς

∫
RN

ρy|g|2. (4.11)

Noting that
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2(1 − δ + δ2)
∫
RN

∇u∇ρyut + 2δ(1 − δ + δ2)
∫
RN

∇u∇ρyu

≤ C
√

ε

∫
RN

ρy(|∇u|2 + |ut|2 + |u|2), (4.12)

2(1 − δ)
∫
RN

∇v∇ρyv + 2
∫
RN

∇vt∇ρyv

≤ C
√

ε

∫
RN

ρy(|∇v|2 + |vt|2 + |v|2). (4.13)

By (1.3)–(1.4), we infer∫
RN

ρyf(u)u ≥ c1

∫
RN

ρyF (u) + μ

∫
RN

ρy|u|2 − Cμ

∫
RN

ρy, (4.14)

and ∫
RN

ρyF (u) ≥ −c2

∫
RN

ρy. (4.15)

Substituting the estimates (4.12)–(4.15) into (4.11), and choosing ε and ς
small enough, we infer that

d
dt

(∫
RN

ρy|v|2 + (1 − δ + δ2)
∫
RN

ρy|u|2 + (1 − δ + δ2)
∫
RN

ρy|∇u|2

+
∫
RN

ρy|∇v|2 + 2
∫
RN

ρyF (u)

)

+ν

(∫
RN

ρy|v|2 + (1 − δ + δ2)
∫
RN

ρy|u|2 + (1 − δ + δ2)
∫
RN

ρy|∇u|2

+β

∫
RN

ρy|∇v|2 + 2
∫
RN

ρyF (u)

)

≤ Cδ

∫
RN

ρy|g|2 + C, (4.16)

where ν is a positive constant which depends on δ and μ.
Denoting

E1(t) =
∫
RN

ρy|v|2 + (1 − δ + δ2)
∫
RN

ρy|u|2

+(1 − δ + δ2)
∫
RN

ρy|∇u|2 +
∫
RN

ρy|∇v|2 + 2
∫
RN

ρyF (u),

(4.17)

we can obtain that
d
dt

E1(t) + νE1(t) ≤ C

∫
RN

ρy(|g|2 + 1). (4.18)

Using the Gronwall lemma, we infer

E1(t) ≤ e−νtE1(0) + C

∫
RN

ρy(|g|2 + 1). (4.19)
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Noting that E1(t) ∼ ‖u(t)‖2
H1

lu
+ ‖ut(t)‖2H1

lu
, this completes the proof.

Remark 4.2. Lemma 4.1 implies that the C0 semigroup {S(t)}t≥0 has
a (H1

lu(R
N ) × H1

lu(R
N ),H1

lu(R
N ) × H1

lu(R
N ))-bounded absorbing set in the

locally uniform space H1
lu(R

N ) × H1
lu(R

N ).

Lemma 4.3. Assume that f satisfies (1.3)–(1.5), g(x) ∈ L2
lu(R

N ). There is
a positive constant �2 such that for any bounded subset B ⊂ Ẇ 1,2

lu (RN ) ×
Ẇ 1,2

lu (RN ), there exists a positive constant T2 = T2(B) such that

‖ut(t)‖H1
lu

+‖utt(t)‖H1
lu

≤�2 for all t ≥ T2 and (u0, u1) ∈ B. (4.20)

Proof. Multiplying (4.2) by ρyvt, we infer

〈vt, ρyvt〉 + (1 − δ)〈v, ρyvt〉 + (1 − δ + δ2)〈u, ρyvt〉
−(1 − δ + δ2)〈Δu, ρyvt〉 − (1 − δ)〈Δv, ρyvt〉 − 〈Δvt, ρyvt〉
+〈f(u), ρyvt〉 = 〈g(x), ρyvt〉. (4.21)

Next, we deal with each term of (4.21) one by one as follows:

〈vt, ρyvt〉 + (1 − δ)〈v, ρyvt〉 =
∫
RN

ρy|vt|2 +
1 − δ

2
d
dt

∫
RN

ρy|v|2,
(4.22)

|(1 − δ + δ2)〈u, ρyvt〉| ≤ ς

∫
RN

ρy|vt|2 + Cς

∫
RN

ρy|u|2

≤ ς

∫
RN

ρy|vt|2 + Cς,�1 , (4.23)

(1 − δ + δ2)〈−Δu, ρyvt〉
= (1 − δ + δ2)

∫
RN

∇u∇ρyvt + (1 − δ + δ2)
∫
RN

∇uρy∇vt

≤ ς

∫
RN

ρy|vt|2 + ς

∫
RN

ρy|∇vt|2 + Cς

∫
RN

ρy|∇u|2

≤ ς

∫
RN

ρy|vt|2 + ς

∫
RN

ρy|∇vt|2 + Cc1,ς,�1 ,

(4.24)
(1 − δ)〈−Δv, ρyvt〉

= (1 − δ)
∫
RN

∇v∇ρyvt + (1 − δ)
∫
RN

∇vρy∇vt

≤ ς

∫
RN

ρy|vt|2 + Cς

∫
RN

ρy|∇v|2 +
1 − δ

2
d
dt

∫
RN

ρy|∇v|2

≤ ς

∫
RN

ρy|vt|2 +
1 − δ

2
d
dt

∫
RN

ρy|∇v|2 + Cc1,ς,�1 , (4.25)

−〈Δvt, ρyvt〉 =
∫
RN

∇vt∇ρyvt +
∫
RN

ρy|∇vt|2, (4.26)
∫
RN

∇vt∇ρyvt ≤ Cc1

√
ε(|∇vt|2 + |vt|2). (4.27)
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∣∣∣∣
∫
RN

ρyf(u)vt

∣∣∣∣ ≤
∫
RN

ρy(r)

(∫
B1(r)

(1 + |u| N+2
N−2 )|vt|dx

)
dr

≤
∫
RN

ρy(r)

(∫
B1(r)

(1 + |u| N+2
N−2 )

2N
N+2

)N+2
2N

(∫
B1(r)

|vt| 2N
N−2 dx

)N−2
2N

dr

≤
∫
RN

ρy(r)

(∫
B1(r)

(
1 + |u| N+2

N−2

) 2N
N+2

)N+2
2N

(∫
B1(r)

|vt| 2N
N−2 dx

)N−2
2N

dr

≤
∫
RN

ρy(r)‖u‖H1(B1(r))‖vt‖B1(r)dr

≤ ς

∫
RN

ρy|vt|2 + Cς‖u‖2H1
lu

≤ ς

∫
RN

ρy|vt|2 + Cς,�1 .

(4.28)

〈g(x), ρyvt〉 ≤ ς

∫
RN

ρy|vt|2 + Cς

∫
RN

ρy|g|2. (4.29)

Substituting the estimates (4.22)–(4.29) into (4.21), and choosing ε and ς
small enough, we get that

d
dt

(
(1 − δ)

∫
RN

ρy|v|2 + (1 − δ)
∫
RN

ρy|∇v|2
)

+2(1 − 5ς − Cc1,
√

ε)
∫
RN

ρy|vt|2 + 2(1 − ς − Cc1,
√

ε)
∫
RN

ρy|∇vt|2

≤ Cς

∫
RN

ρy|g|2 + Cc1,ς,�1 . (4.30)

In particular, we have

d
dt

(
(1 − δ)

∫
RN

ρy|v|2 + (1 − δ)
∫
RN

ρy|∇v|2
)

≤ Cς

∫
RN

ρy|g|2 + Cc1,ς,�1 . (4.31)

We infer that∫
RN

ρy|v(t)|2 +
∫
RN

ρy|∇v(t)|2 ≤ C + C

∫
RN

ρy|g|2. (4.32)

This completes the proof. �

4.2. Decomposition of the Equations

For the nonlinear term f, following the idea in [12,13,15,29–31], for a C1-
function f(·) satisfying (1.3)–(1.5), the following decomposing properties
hold: there are constants C > 0 and γ satisfying 0 < γ < q + 1 such that f
can be decomposed as

f = f0 + f1
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with f0, f1 ∈ C1(R) satisfying

|f0(s)| ≤ C(|s| + |s|q+1), ∀ s ∈ R, (4.33)
f0(s)s ≥ 0, ∀ s ∈ R, (4.34)
|f1(s)| ≤ C(1 + |s|γ), ∀ s ∈ R with some γ < q + 1, (4.35)
∃ l ∈ R, F1(s) ≥ −l, ∀ s ∈ R, (4.36)

∃ki ≥ 1, μ̃i ≥ 0 such that ∀μi ∈ (0, μ̃i], ∃Cμi
∈ R,

kiFi(s) + μis
2 − Cμi

≤ sfi(s), for all s ∈ R, (4.37)

where Fi(s) =
∫ s

0
fi(r)dr, i = 1, 2.

Now, we decompose the solution into the sum

S(t)(u0, u1) = D(t)(u0, u1) + K(t)(u0, u1),

where (z(t), zt(t)) = D(t)(u0, u1) and (w(t), wt(t)) = K(t)(u0, u1) solves the
following equations, respectively:{

ztt − Δz − Δzt − Δztt + zt + z + f0(z) = 0,

z(0) = u0, zt(0) = u1,
(4.38)

and {
wtt − Δw − Δwt − Δwtt + wt + w + f(u) − f0(z) = g(x),

w(0) = 0, wt(0) = 0.
(4.39)

Note that {D(t)}t≥0 also forms a semigroup, but {K(t)}t≥0 may not.

4.3. A Priori Estimates

Lemma 4.4. Assume that f0 satisfies (4.33)–(4.34), (4.37). Then there is a
positive constant �3 such that for any bounded subset B ⊂ Ẇ 1,2

lu (RN ) ×
Ẇ 1,2

lu (RN ), there exists a positive constant T3 = T3(B) such that

‖zt(t)‖2H1
lu

+ ‖ztt(t)‖2H1
lu

≤ �3, ∀t ≥ T3, (u0, u1) ∈ B. (4.40)

The proof of this Lemma is a repeat of Lemma 4.3, and we omit the
details.

Remark 4.5. D(t) maps the bounded set of Ẇ 1,2
lu (RN ) × Ẇ 1,2

lu (RN ) to be a
uniformly (w.r.t. time t) bounded set; that is, for any (u0, u1) ∈ H1

lu × H1
lu,

‖D(t)(u0, u1)‖2H1
lu

= ‖z(t)‖2H1
lu

+ ‖zt(t)‖2H1
lu

≤ Q(‖(u0, u1)‖
H1

lu×H1
lu

), for all t ≥ 0. (4.41)

For the solutions (z(t), zt(t)) = D(t)(u0, u1) of Eq. (4.38), we also need
the following exponential decay result.

Lemma 4.6. Assume that f0 satisfies (4.33)–(4.34), (4.37). Then there exists
a positive constant ν such that for every t ≥ T3,

‖D(t)(u0, u1)‖2H1
lu

= ‖z(t)‖2H1
lu

+ ‖zt(t)‖2H1
lu

≤ Q1(‖(u0, u1)‖
H1

lu×H1
lu

)e−νt,

(4.42)

where Q1(·) is an increasing function on [0,∞).
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Proof. We set q = zt + δz(0 < δ � 1) and rewrite the Eq. (4.38) as follows:

qt + (1 − δ)q + (1 − δ + δ2)z − (1 − δ + δ2)Δz − (1 − δ)Δq − Δqt

+f0(z) = 0. (4.43)

Multiplying (4.43) by ρyq, we infer that

〈qt, ρyq〉 + (1 − δ)〈q, ρyq〉 + (1 − δ + δ2)〈z, ρyq〉 − (1 − δ + δ2)〈Δz, ρyq〉
−(1 − δ)〈Δq, ρyq〉 − 〈Δqt, ρyq〉 + 〈f(z), ρyq〉 = 0. (4.44)

By some standard calculations, we infer that

d
dt

(∫
RN

ρy|q|2 + (1 − δ + δ2)
∫
RN

ρy|z|2 + (1 − δ + δ2)
∫
RN

ρy|∇z|2

+
∫
RN

ρy|∇q|2 + 2
∫
RN

ρyF0(z)

)

+2(1 − δ)
∫
RN

ρy|q|2 + 2δ(1 − δ + δ2)
∫
RN

ρy|z|2

+2δ(1 − δ + δ2)
∫
RN

ρy|∇z|2

+2(1 − δ + δ2)
∫
RN

∇z∇ρyzt + 2δ(1 − δ + δ2)
∫
RN

∇z∇ρyz

+2(1 − δ)
∫
RN

ρy|∇q|2 + 2(1 − δ)
∫
RN

∇v∇ρyq

+2
∫
RN

∇qt∇ρyv + 2δ

∫
RN

ρyf0(z)z

= 0. (4.45)

Noting that

|2(1 − δ + δ2)
∫
RN

∇z∇ρyzt + 2δ(1 − δ + δ2)
∫
RN

∇z∇ρyz|

≤ C
√

ε

∫
RN

ρy(|∇z|2 + |zt|2 + |z|2), (4.46)

2(1 − δ)
∫
RN

∇z∇ρyz + 2
∫
RN

∇zt∇ρyz

≤ C
√

ε

∫
RN

ρy(|∇z|2 + |zt|2 + |z|2). (4.47)

By (4.33), Lemma 4.4 and Remark 4.5, we infer that∫
RN

ρyF0(z) ≤ C

∫
RN

ρy(|z|2 + |z| 2N
N−2 )

≤ C‖z‖
4

N−2

H1
lu

∫
RN

ρy(|z|2 + |∇z|2)

≤ C‖(u0,u1)‖
H1

lu×H1
lu

∫
RN

ρy(|z|2 + |∇z|2). (4.48)
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Note that

f0(z)z ≥ 0, ∀ z ∈ R; F0(z) ≥ 0, ∀ z ∈ R. (4.49)

Hence, choosing ε small enough, we infer that

d
dt

(∫
RN

ρy|q|2 + (1 − δ + δ2)
∫
RN

ρy|z|2 + (1 − δ + δ2)
∫
RN

ρy|∇z|2

+
∫
RN

ρy|∇q|2 + 2
∫
RN

ρyF0(z)

)

+ν

(∫
RN

ρy|q|2 + (1 − δ + δ2)
∫
RN

ρy|z|2 + (1 − δ + δ2)
∫
RN

ρy|∇z|2

+
∫
RN

ρy|∇q|2 + 2
∫
RN

ρyF0(z)

)
≤ 0, (4.50)

where ν is a positive constant which depends on δ.
Applying the Gronwall Lemma, we get∫

RN

ρy|q|2 +
∫
RN

ρy|z|2 +
∫
RN

ρy|∇z|2 +
∫
RN

ρy|∇q|2

≤ Q1(‖(u0, u1)‖
H1

lu×H1
lu

)e−νt. (4.51)

This completes the proof. �

Remark 4.7. Based on Lemmas 4.1, 4.3–4.6, the solutions (w(t), wt(t)) =
K(t)(u0, u1) of Eq. (4.39), we infer that there exists a positive constant �4
such that

‖w(t)‖2H1
lu

+ ‖wt(t)‖2H1
lu

+ ‖wtt(t)‖2H1
lu

≤ �4, ∀t ≥ 0 and (u0, u1) ∈ B.

(4.52)

Lemma 4.8. Assume that f satisfies (1.3)–(1.5), f1 satisfies (4.35)–(4.37),
g(x) ∈ L2

lu(R
N ). Then there exists a positive constant k such that for every

t ≥ 0,

‖K(t)(u0, u1)‖2H1+σ
lu

= ‖w(t)‖2
H1+σ

lu
+ ‖wt(t)‖2H1+σ

lu

≤ Q2(‖(u0, u1)‖
H1

lu×H1
lu

, ‖g‖L2
lu

)ekt, (4.53)

where Q2(·) is an increasing function on [0,∞), σ = min{ 1
4 , N+2−(N−2)γ

2 },
where γ is given in (4.35).

Proof. Let θ be a smooth function satisfying 0 ≤ θ(s) ≤ 1 for s ∈ [0,∞) and

θ(s) = 1 for 0 ≤ s ≤ 1
2
; θ(s) = 0 for s ≥ 1.

Set θy(x) = θ(|x − y|) and A = −Δ.
We set m = wt + δw(0 < δ � 1) and rewrite the Eq. (4.39) as follows:

mt + (1 − δ)m + (1 − δ + δ2)w − (1 − δ + δ2)Δw − (1 − δ)Δm − Δmt

+f(u) − f(z) + f1(z) = g(x). (4.54)
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Multiplying (4.54) by θyAσ(θym), we infer that

〈mt, θyAσ(θym)〉 + (1 − δ)〈m, θyAσ(θym)〉 + (1 − δ + δ2)〈w, θyAσ(θym)〉
−(1 − δ + δ2)〈Δw, θyAσ(θym)〉 − (1 − δ)〈Δm, θyAσ(θym)〉
−〈Δmt, θyAσ(θym)〉 + 〈f(u) − f(z) + f1(z), θyAσ(θym)〉

= 〈g(x), θyAσ(θym)〉.
(4.55)

We deal with each term above, one by one, as follows:

〈mt, θyAσ(θym)〉 + (1 − δ)〈m, θyAσ(θym)〉
=

1
2

d
dt

∫
RN

|θyA
σ
2 (θym)|2 + (1 − δ)

∫
RN

|Aσ
2 (θym)|2,

(4.56)
〈w, θyAσ(θym)〉

= 〈w, θyAσ(θy(wt + δw))〉
=

1
2

d
dt

∫
RN

|θyA
σ
2 (θyw)|2 + δ

∫
RN

|θyA
σ
2 (θyw)|2,

(4.57)
−〈Δw, θyAσ(θym)〉

= 〈Aw, θyAσ(θy(wt + δw))〉
=

1
2

d
dt

∫
RN

|Aσ+1
2 (θyw)|2 + 2

∫
RN

∇w∇θyAσ(θywt) + 〈Δθyw,Aσ(θywt)〉

+δ

∫
RN

|Aσ+1
2 (θyw)|2 + 2δ

∫
RN

∇w∇θyAσ(θyw) + δ〈Δθyw,Aσ(θyw)〉,
(4.58)

〈−Δmt, θyAσ(θym)〉 =
1
2

d
dt

∫
RN

|Aσ+1
2 (θym)|2 + 2

∫
RN

∇mt∇θyAσ(θym)

+〈Δθymt, A
σ(θymt)〉,

(4.59)

−〈Δm, θyAσ(θym)〉 =
∫
RN

|Aσ+1
2 (θym)|2 + 2

∫
RN

∇m∇θyAσ(θym)

+〈Δθym,Aσ(θym)〉. (4.60)

Noting that σ < 1
2 , by Remark 4.7, we have

2
∫
RN

∇w∇θyAσ(θywt) + 〈Δθyw,Aσ(θywt)〉

≤ Cc1‖w‖H1
lu

(∫
RN

|Aσ(θywt)|2
) 1

2

≤ Cc1‖w‖H1
lu

‖wt‖H1
lu

≤ Cc1,�4 ,

(4.61)
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2δ

∫
RN

∇w∇θyAσ(θyw) + δ〈Δθyw,Aσ(θyw)〉

≤ Cc1‖w‖H1
lu

(∫
RN

|Aσ(θyw)|2
) 1

2

≤ Cc1‖w‖2H1
lu

≤ Cc1,�4 ,

(4.62)

2
∫
RN

∇mt∇θyAσ(θym) + 〈Δθymt, A
σ(θymt)〉

≤ Cc1‖mt‖H1
lu

(∫
RN

|Aσ(θym)|2
) 1

2

≤ Cc1‖mt‖H1
lu

‖m‖H1
lu

≤ ς‖mt‖2H1
lu

+ Cc1,τ‖m‖2H1
lu

≤ Cc1,�4,ε, (4.63)

and

2
∫
RN

∇m∇θyAσ(θym) + 〈Δθym,Aσ(θym)〉

≤ Cc1‖m‖H1
lu

(∫
RN

|Aσ(θym)|2
) 1

2

≤ Cc1‖m‖2H1
lu

≤ Cc1,�4,ε. (4.64)

Note that σ ≤ N+2−(N−2)γ
2 , by (4.35), we get

|〈f1(z), θyAσ(θym)〉|
≤ C

∫
RN

θy(1 + |z|γ)|Aσ(θym)|

≤ C

(∫
RN

|Aσ(θym)| 2N
N−2+2σ

)N−2+2σ
2N

(∫
B(y,1)

|1 + |z|γ | 2N
N+2−2σ

)N+2−2σ
2N

≤ C(1 + ‖z‖γ
H1

U
)(‖θym‖L2 + ‖A

σ+1
2 (θym)‖L2), (4.65)

where B(y, 1) = {x ∈ R
N : |x − y| ≤ 1}.

By virtue of (1.5), we have

|〈f(u) − f(z), θyAσ(θym)〉|
≤ C

∫
RN

θy|w|
(
1 + |u| 4

N−2 + |z| 4
N−2

)
|Aσ(θym)|

≤ C

(∫
RN

|Aσ(θym)| 2N
N−2+2σ

)N−2+2σ
2N

(∫
RN

||θyw| 2N
N−2−2σ

)N−2−2σ
2N
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×
(∫

B(y,1)

|1 + |u| 4
N−2 + |z| 4

N−2 |N
2

) 2
N

≤ C
(
‖θym‖L2 + ‖A

σ+1
2 (θym)‖L2

) (
‖θyw‖L2 + ‖A

σ+1
2 (θyw)‖L2

)
,

(4.66)

where σ ≤ 1
4 < N−2

2 and B(y, 1) = {x ∈ R
N : |x − y| ≤ 1}.

Since σ < 1
2 ,

〈g, θyAσ(θym)〉 ≤ ‖g‖L2
U
‖m‖H1

U
. (4.67)

Therefore, by virtue of Lemmas 4.1, 4.3 and Remark 4.7, we have
d
dt

(∫
RN

|Aσ
2 (θym)|2+(1−δ+δ2)

∫
RN

|Aσ+1
2 (θyw)|2+

∫
RN

|Aσ+1
2 (θym)|2

)

≤C

(∫
RN

|Aσ
2 (θym)|2+(1−δ+δ2)

∫
RN

|Aσ+1
2 (θyw)|2+

∫
RN

|Aσ+1
2 (θym)|2

)

+C‖g‖
L2

U
,�1,�2,�3,�4 . (4.68)

Applying the Gronwall lemma, we infer that∫
RN

|Aσ
2 (θym)|2 +

∫
RN

|Aσ+1
2 (θyw)|2 +

∫
RN

|Aσ+1
2 (θym)|2

≤ Q2(‖(u0, u1)‖H1
lu,‖g‖

L2
lu

)ekt. (4.69)

This completes the proof. �

Now, we state our main results:

Theorem 4.9. (Existence of global attractor) Assume that f satisfies (1.3)–
(1.5), g(x) ∈ L2

lu(R
N ). Then the semigroup {S(t)}t≥0 generated by the weak

solutions of Eqs. (1.1) and (1.2) with the initial data (u0, u1) ∈ H1
lu(R

N ) ×
H1

lu(R
N ) has an unique (H1

lu(R
N ) × H1

lu(R
N ),H1

ρ (RN ) × H1
ρ(RN )) global at-

tractor A, which satisfies:
(i) A is closed and compact in H1

ρ(RN ) × H1
ρ(RN ));

(ii) A attracts every bounded subset of (H1
lu(R

N ) × H1
lu(R

N ) with respect to
H1

ρ(RN ) × H1
ρ(RN ))-norms;

(iii) A is invariant; that is, S(t)A = A for any t ≥ 0.

5. Asymptotic Regularity

In this section, we will prove the regularity of the (H1
lu(R

N )
×H1

lu(R
N ),H1

ρ(RN ) × H1
ρ(RN )) global attractor by some bootstrap argu-

ments. Similar to that in Zelik [30,31], based on Lemmas 4.6 and 4.8 above,
for the solution (u(t), ut(t)), we can decompose it as follows.

Lemma 5.1. Assume that f satisfies (1.3)–(1.5) and g(x) ∈ L2
lu(R

N ), and let
u(t) be the solution of Eqs. (1.1)–(1.2) with the initial data (u0, u1) ∈ B.
Then for any ς > 0, there are positive constants Cς and Kς , such that

u(t) = z1(t) + w1(t), for all t ≥ 0, (5.1)
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where z1(t), w1(t) satisfy the estimates as follows:

‖w1(t)‖2H1+σ
U

≤ Kς , t ≥ 0, (5.2)

and for every t ≥ s ≥ 0,
∫ t

s

‖z1(r)‖2H1
U
dr ≤ ς(t − s) + Cς , (5.3)

where the constants Cς and Kς depend on ς, σ.

Proof. Note that

B =
⋃

t≥TB0

S(t)B0;

by Lemma 4.1, we infer that

sup
t≥0

‖S(t)(u0, u1)‖2H1
lu

≤ �1, for all (u0, u1) ∈ B.

Now, taking T ≥ 1
k0

ln Q1(�1)
ε (where Q1(·) the function in Lemma 4.6),

and in every interval [mT, (m + 1)T ), m = 1, 2, . . . , we set

z1(t) = z(t) and w1(t) = w(t),

where z(t) is the solution of Eq. (4.38) in the interval [(m−1)T, (m+1)T ) with
the initial data (z((m − 1)T ), zt((m − 1)T )) = (u((m − 1)T ), ut((m − 1)T )),
and w(t) is the solution of Eq. (4.39) in the interval [(m − 1)T, (m + 1)T )
with the initial data (w((m − 1)T ), wt((m − 1)T )) = (0, 0).

In the interval [0, T ), we set

z1(t) = z(t) and w1(t) = w(t),

where z(t) is the solution of Eq. (4.38) with the initial data (z(0), zt(0)) =
(u0, u1), and (w(t), wt(t)) is the solution of Eq. (4.39) with the initial data
(w(0), wt(0)) = (0, 0).

Then from Lemma 4.6, we infer that
∫ t

s

‖z1(r)‖2H1
U
dr ≤ ς(t − s) + χ[0,T )(s)Q1(�1), for all t ≥ s ≥ 0,

where χ[0,T )(s) is the characteristic function of set [0, T ). According to
Lemma 4.8, we infer that

‖w1(t)‖2H1+σ
U

≤ Q2(‖(u0, u1)‖H1
lu×H1

lu
, ‖g‖L2

lu
)e2k1T , for all t ≥ 0.

This completes the proof. �

Remark 5.2. According to the proof of Lemma 5.1, we infer that the decom-
position z1(t) can also further satisfy that

‖z1(t)‖2H1
U

≤ Q1(�1), for all t ≥ 0.
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Lemma 5.3. Assume that f satisfies (1.3)–(1.5), and f1 satisfies (4.35)–(4.37),
g(x) ∈ L2

lu(R
N ). For any bounded set B ⊂ H1

lu(R
N ) × H1

lu(R
N ), there exists

a positive constant J‖B‖
H1

lu×H1
lu

which depends only on the H1
lu × H1

lu-bounds
of B, such that

‖K(t)(u0, u1)‖2H1+σ
lu

≤ J‖B‖
H1

lu×H1
lu

, for all t ≥ 0 and (u0, u1) ∈ B, (5.4)

where σ is given in Lemma 4.8.

Proof. Multiplying (4.54) by θyAσ(θym), similar to the proof of Lemma 4.8,
here we only need to deal with the nonlinear term in a different way:

〈f(u) − f(z) + f1(z), θyAσ(θym)〉
= 〈f(u) − f(z) + f1(z), θyAσ(δθyw + θywt)〉. (5.5)

By (1.5), we have

〈f(u) − f(z) + f1(z), δθyAσ(θyw)〉
= 〈f(u) − f(z), δθyAσ(θyw)〉 + 〈f1(z), δθyAσ(θyw)〉
≤ C

∫
RN

(1 + |u| 4
N−2 + |z| 4

N−2 )θy|w||Aσ(θyw)| + 〈f1(z), θyAσ(θyw)〉

�
4∑

i=1

Ii. (5.6)

For I1, we infer that

I1 = C

∫
RN

θy|w||Aσ(θyw)| ≤ ‖w‖L2
U

(∫
RN

|Aσ(θyw)|2
) 1

2

. (5.7)

For I2, using Lemma 4.1, we get

I2 = C

∫
RN

|u| 4
N−2 θy|w||Aσ(θyw)|

≤ C

∫
RN

(|z1| 4
N−2 + |w1| 4

N−2 )θy|w||Aσ(θyw)|. (5.8)

By Remark 4.7 and the interpolation inequality, we have
∫
RN

|z1|
4

N−2 θy|w||Aσ(θyw)|

=

∫
B(y,1)

|z1|
4

N−2 |θyw||Aσ(θyw)|

≤ C

(∫
B(y,1)

|z1|
2N

N−2

) 2
N (∫

RN

|θyw| 2N
N−2−2σ

) N−2−2σ
2N

×
(∫

RN

|Aσ(θyw)| 2N
N−2+2σ

) N−2+2σ
2N

≤C‖z1‖
4

N−2

H1
U

(‖A
1+σ
2 (θyw)‖L2+‖θyw‖L2)(‖A

1+σ
2 (θyw)‖L2+‖Aσ(θyw)‖L2)

≤C�1,ε‖z1‖2
H1

U

∫
RN

|A 1+σ
2 (θyw)|2+ε

∫
RN

|A 1+σ
2 (θyw)|2+C�1,ε(1+‖θyw‖2

L2), (5.9)
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and by Lemma 5.1 and the interpolation inequality, we infer that

∫
RN

|w1|
4

N−2 θy|w||Aσ(θyw)| ≤ C

(∫
B(y,1)

|w1|
2N

N−2−2σ

) 2(N−2−2σ)
N(N−2)

×
(∫

RN

|θyw|
2N(N−2)

(N−2)2−2(N−6)σ

) (N−2)2−2(N−6)σ

2N(N−2)
(∫

RN

|Aσ(θyw)| 2N
N−2+2σ

) N−2+2σ
2N

≤ C‖w1‖
4

N−2

H1+σ
U

‖θyw‖
L

2N(N−2)
(N−2)2−2(N−6)σ

(‖A
1+σ
2 (θyw)‖L2 + ‖Aσ(θyw)‖L2)

≤ ε

∫
RN

|A 1+σ
2 (θyw)|2 + CKς,ε(1 + ‖θyw‖2

L2). (5.10)

Hence,

I2 ≤ ε

∫
RN

|A 1+σ
2 (θyw)|2 + C�1,ε‖z1‖2H1

U

∫
RN

|A 1+σ
2 (θyw)|2

+CKς ,�1,ε(1 + ‖θyw‖2L2). (5.11)

For I3, we get

I3 = C

∫
RN

|z| 4
N−2 θy|w||Aσ(θyw)|C

(∫
B(y,1)

|z| 2N
N−2

) 2
N

×
(∫

RN

|θyw| 2N
N−2−2σ

)N−2−2σ
2N

(∫
RN

|Aσ(θyw)| 2N
N−2+2σ

)N−2+2σ
2N

≤ C‖z‖
4

N−2

H1
U

(∥∥∥A
1+σ
2 (θyw)

∥∥∥
L2

+ ‖θyw‖L2

)

×
(
‖A

1+σ
2 (θyw)‖L2 + ‖Aσ(θyw)‖L2

)

≤ C�1‖z‖
4

N−2

H1
U

∫
RN

|A 1+σ
2 (θyw)|2 + C�1(1 + ‖θyw‖2L2). (5.12)

Note that from Lemma 5.1 and Remark 5.2, we can take T large enough such
that

‖z‖
4

N−2

H1
U

≤ ε

C�1

, for all t ≥ T. (5.13)

For I4, by (4.35), we infer that

I4 = 〈f1(z), θyAσ(θyw)〉
≤ C

∫
RN

(1 + |z|γ)θy|Aσ(θyw)|

≤ C

(
1 +

∫
B(y,1)

θy|z| 2Nγ
N+2−2σ

)N+2−2σ
2N

‖Aσ(θyw)‖
L

2N
N−2+2σ

≤ C(1 + ‖z‖γ
H1

U
)
(
‖A

1+σ
2 (θyw)‖L2 + ‖Aσ(θyw)‖L2

)

≤ C�3,ε(1 + ‖θyw‖2L2) + ε

∫
RN

|A 1+σ
2 (θyw)|2. (5.14)
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Thus,

〈f(u) − f(z) + f1(z), δθyAσ(θyw)〉
≤ 5ε

∫
RN

|A 1+σ
2 (θyw)|2 + C�1,ε‖z1‖2H1

U

∫
RN

|A 1+σ
2 (θyw)|2

+CKς ,�3,ε(1 + ‖θyw‖2L2). (5.15)

Similarly, we get that

〈f(u) − f(z) + f1(z), θyAσ(θywt)〉
≤ 5ε

(∫
RN

|A 1+σ
2 (θyw)|2 +

∫
RN

|A 1+σ
2 (θywt)|2

)

+C�3,ε‖z1‖2H1
U

∫
RN

|A 1+σ
2 (θyw)|2 + CKς ,�3,ε(1 + ‖θyw‖2L2 + ‖θywt‖2L2).

(5.16)

We denote that

E2(t)=
∫
RN

|Aσ
2 (θym)|2+(1−δ+δ2)

∫
RN

|Aσ+1
2 (θyw)|2 +

∫
RN

|Aσ+1
2 (θym)|2).

Therefore, we get that
d
dt

E2(t) + Cε(1 − C�1‖z1‖2H1
U
)E2(t) ≤ CKς ,‖g‖

L2
U

,�1,�2,�3,�4 . (5.17)

Applying the Gronwall Lemma and integrating over [1 + T, t], we infer

E2(t) ≤ e
− ∫ t

T+1 Cε(1−C�1‖z1(s)‖2
H1

U
)dsE2(T + 1)

+CKς ,‖g‖
L2

U
,�1,�2,�3,�4

∫ t

T+1

e
∫ s
t

Cε(1−C�1‖z1(τ)‖2
H1

U
)dτ

ds.

(5.18)

According to Lemma 5.1, for every t ≥ s ≥ 0,∫ t

s

‖z1(r)‖2H1
U
dr ≤ ς(t − s) + Cς .

Now, we choose ς < 1
2C�1

and have

CKς ,‖g‖
L2

U
,�1,�2,�3,�4

∫ t

T+1

e
∫ s
t

Cε(1−C�1‖z1(τ)‖2
H1

U
)dτ

ds

≤ CKς ,‖g‖
L2

U
,�1,�2,�3,�4e

C�1Cε

∫ t

T+1

eCε(1−C�1 ς)(s−t)ds

≤ CKς ,‖g‖
L2

U
,ε,�1,�2,�3,�4

∫ t

T+1

e
s−t
2 ds

≤ CKς ,‖g‖
L2

U
,ε,�1,�2,�3,�4 , (5.19)

and

e
− ∫ t

T+1 Cε(1−C�1‖z1(s)‖2
H1

U
)dsE2(T + 1)

≤ e− 1
2 (t−T−1)eC�1,ς,εE2(T + 1). (5.20)
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Note that T is fixed, and using Lemma 4.8, we complete the proof. �

Lemma 5.4. Assume that f satisfies (1.3)–(1.5), g(x) ∈ L2
lu(R

N ). Assume Bσ

is an arbitrary bounded set in H1+σ
lu × H1+σ

lu . Then there exists a constant
Mσ(> 0) which depends only on the H1+σ

lu × H1+σ
lu -bound of Bσ such that

‖S(t)(u0, u1)‖2H1+σ
lu ×H1+σ

lu
≤ Mσ, for all t ≥ 0 and (u0, u1) ∈ Bσ.(5.21)

Proof. The proof of this lemma is completely similar to that of Lemma 5.3,
and we can deal with the nonlinear term by similar calculations used in
Lemma 5.3, so we omit it here. �

In the following, we can perform the bootstrap arguments to obtain the
asymptotic regularity of the solutions. Similar to the proof Lemma 5.3, we
infer the following two lemmas.

Lemma 5.5. Assume that f satisfies (1.3)–(1.5), g(x) ∈ L2
lu(R

N ) and σ ≤ θ ≤
1. Then for any bounded Bθ ⊂ H1+θ

lu × H1+θ
lu . Then there exists a constant

Mθ(> 0) which depends only on the H1+θ
lu × H1+θ

lu -bound of Bθ such that

‖S(t)(u0, u1)‖2H1+θ
lu ×H1+θ

lu
≤ Mθ,

for all t ≥ 0 and (u0, u1) ∈ Bθ. (5.22)

Lemma 5.6. Assume that f satisfies (1.3)–(1.5), g(x) ∈ L2
lu(R

N ) and θ ∈
[σ, 1 − min{σ, 4σ

n−2}], and assume that the initial data set Bθ is bounded in
H1+θ

lu × H1+θ
lu , then the decomposed ingredient (w(t), wt(t)) satisfies that

‖K(t)(u0, u1)‖2H1+θ+s0
lu

≤ Jθ, for all t ≥ 0 and (u0, u1) ∈ Bθ, (5.23)

where s0 = min{σ, 4σ
n−2} and the constant Jθ(> 0) which depends only on the

H1+θ
lu × H1+θ

lu -bound of Bθ.

We also need the following attraction transitivity lemma.

Lemma 5.7. [17] Let K1, K2, K3 be subsets of H such that

distH(S(t)K1,K2) ≤ L1e−ν1t, distH(S(t)K2,K3) ≤ L2e−ν2t,

for some ν1, ν2 > 0 and L1, L2 > 0. Assume that for all z1, z2 ∈ ⋃
t≥0 S(t)Kj

(j = 1, 2, 3), there holds

‖S(t)z1 − S(t)z2‖ ≤ L0eν0t‖z1 − z2‖
for some ν0 > 0 and some L0 > 0. Then it follows that

distH(S(t)K1,K3) ≤ Le−νt,

where ν = ν1ν2
ν0+ν1+ν2

and L = L0L1 + L2.

Now, we state the following asymptotic regularity results:
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Theorem 5.8. (Asymptotic Regularity) Assume that f satisfies (1.3)–(1.5),
g(x) ∈ L2

lu(R
N ), and let {S(t)}t≥0 be the semigroup generated by the weak so-

lutions of Eqs. (1.1)–(1.2) with the initial data (u0, u1) ∈ H1
lu(R

N )×H1
lu(R

N ).
Then, there exists a set B ⊂ H2

lu(R
N ) × H2

lu(R
N ) (closed and bounded in

H2
lu(R

N ) × H2
lu(R

N )), a positive constant ν and a monotonically increasing
function Q(·) such that: for any bounded set B ⊂ H1

lu(R
N ) × H1

lu(R
N ), the

following estimate holds:

dist∗(S(t)B,B) ≤ Q(‖B‖H1
lu(R

N )×H1
lu(R

N ))e
−νt,

where dist∗ denotes the usual Hausdorff semidistance in H1
lu(R

N )×H1
lu(R

N ).

Proof. We denote

B =
⋃

t≥TB0

S(t)B0,

where B0 be the bounded absorbing set stated in Remark 4.2 and TB0 =
max{T1(B), T2(B), T3(B)}.

According to Lemmas 4.6 and 5.3, we know that there is a set Aσ which
is bounded in H1+σ

lu (RN ) × H1+σ
lu (RN ) such that

distH1
lu×H1

lu
(S(t)B, Aσ) ≤ distH1

lu×H1
lu

(D(t)B, Aσ) ≤ Q1(‖B‖H1
lu×H1

lu
)e−k0t.

Applying Lemmas 4.6 and 5.6 to Aσ, we see that there is a set Aσ+s which
is bounded in H1+σ+s

lu (RN ) × H1+σ+s
lu (RN ), such that

distH1
lu×H1

lu
(S(t)B, Aσ+s) ≤ distH1

lu×H1
lu

(D(t)B, Aσ+s) ≤ Q1(‖B‖H1
lu×H1

lu
)e−k0t,

where k0 depends only on the H1
lu × H1

lu-bound of Aσ. Combining this with
Remark 3.2, we know that the conditions in Lemma 5.7 are all satisfied.
Hence we have

distH1
lu×H1

lu
(S(t)B, Aσ+s) ≤ CQ1(‖B‖H1

lu×H1
lu

)e−k0t, (5.24)

for two appropriate constants C and k0.

Note that σ = min{ 1
4 , N+2−(N−2)γ

2 } and s0 = min{σ, 4σ
n−2} are fixed,

by finite steps (e.g., at most by [1s ] + 2 steps) we can infer that there is a
bounded (in H2

lu(R
N ) × H2

lu(R
N )) set B1 ⊂ H2

lu(R
N ) × H2

lu(R
N ) such that

distH1
lu×H1

lu
(S(t)B, B1) ≤ Q1(‖B‖H1

lu×H1
lu

)e−νt.

Now, for any bounded set B ∈ H1
lu(R

N ) × H1
lu(R

N ), by Lemma 4.1 and
Remark 4.2, we see that there exist a T such that

S(t)B ⊂ B, for all t ≥ T.

Hence,

distH1
lu×H1

lu
(S(t)B, B1) ≤ MeνT e−νt, (5.25)

where M = sup{‖S(t)B‖H1
lu×H1

lu
, 0 ≤ t ≤ T} < ∞.

Now, we apply the attraction transitivity lemma, i.e., Lemma 5.7, then
again to (5.24) and (5.25), and this completes the proof. �
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Remark 5.9. The (H1
lu(R

N ) × H1
lu(R

N ),H1
ρ(RN ) × H1

ρ(RN ))-global attractor
given in Theorem 4.9 is bounded in the locally uniform space H2

lu(R
N ) ×

H2
lu(R

N ), which appears to be optimal.

Remark 5.10. There exists a bounded (in (H2
lu(R

N )×H2
lu(R

N )) subset which
attracts exponentially every initial H1

lu(R
N ) × H1

lu(R
N )-bounded set with

respect to the H1
lu(R

N ) × H1
lu(R

N )-norm.

Remark 5.11. To our best knowledge, this is the first time we obtain the reg-
ularity for Eqs. (1.1) and (1.2) with critical nonlinearity on the unbounded
domain. Maybe it is a basis for further considering the asymptotic behav-
ior, e.g., based on this result, whether the exponential attractors exist for
Eqs. (1.1) and (1.2) with critical nonlinearity on unbounded domain is still
open.
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