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Local Isometries on Subspaces of
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Abstract. In this paper, we provide a representation of local isometries
when defined between certain general subspaces of scalar-valued and
vector-valued continuous functions. Based on the description mentioned
above, we are able to prove the algebraic reflexivity of the group of
isometries of the subspace of absolutely continuous vector-valued func-
tions and of the subspace of continuously differentiable complex-valued
functions.
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1. Introduction

A linear map T defined between two normed spaces A and B is said to be
locally surjective or simply local if, for every a ∈ A, there exists a surjective
linear map Ta : A −→ B, such that T (a) = Ta(a).

Local isometries have attracted considerable attention recently since the
publication of [8,18,19]. The main goal when dealing with local isometries is
usually to obtain their surjectivity, which is equivalent to the study of the
algebraic reflexivity of the set of surjective isometries of such spaces. This
is a very basic problem in analysis: getting global conclusions from local
hypothesis.

Molnár and Zalar [19] proved that for the space C(K,C) of complex-
valued continuous functions on a first countable compact space K (see [17]
for the locally compact case), any local isometry is a surjection. First count-
ability is essential in this result [18, Remark 3.2.2]. The proofs of such re-
sults strongly depend on the Gleason–Kahane–Żelazko theorem or on the
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Russo–Dye theorem, which are only applicable to complex-valued functions.
Therefore, much less is known about local isometries of spaces of real-valued
continuous functions. Even so, Cabello-Sánchez [7] proved similar results for
various classes of locally compact spaces K in this real-valued context and
showed that any local isometry on C0(K,R) is surjective. Such classes include
totally disconnected locally compact spaces whose one-point compactification
is metrizable and manifolds with and without boundary. More recently, Oi
[20] has studied local isometries between complex Banach algebras using a
new version of the Kowalski–S�lodkowski theorem.

In this paper, we provide, using straightforward concepts, a represen-
tation of local isometries when defined between certain general subspaces
of continuous functions for both scalar-valued and vector-valued functions.
However, it seems intricate to obtain a general result concerning the algebraic
reflexivity for the sets of surjective isometries of subspaces of continuous func-
tions. Despite this and based on the description mentioned above, we are able
to prove the algebraic reflexivity of the group of isometries of the subspace
of absolutely continuous vector-valued functions and of the subspace of con-
tinuously differentiable complex-valued functions.

2. Preliminaries

Let X be a compact Hausdorff space and E be a real or complex normed
space. By C(X,E), we denote the space of all continuous E-valued functions
defined on X. When E is the scalar field K (R or C), we simply write C(X).

Let A be a linear subspace of C(X,E). It is said that x ∈ X is a peak
point for A if there is a function f ∈ A, such that ‖f‖∞ = ‖f(x)‖ > ‖f(y)‖
for all y ∈ X\{x}, where ‖f‖∞ stands for the supremum norm of f . We shall
write Pk(A) to denote the set of peak points for A.

It is said that x ∈ X is a strong boundary point (or weak peak point)
for A if, for every neighborhood U of x, there is a function f ∈ A, such that
‖f‖∞ = ‖f(x)‖ > ‖f(y)‖ for all y ∈ X\U .

Let A be a linear subspace of C(X). It is said that A separates (resp.
strongly) the points of X if, given two distinct points x, y ∈ X, then there
exists f ∈ A with f(x) �= f(y) (resp. |f(x)| �= |f(y)|). We also recall that
a non-empty subset X ′ of X is called a boundary for A if each function in
A attains its maximum modulus within X ′. In particular, Ch(A) stands for
the Choquet boundary of A, i.e., a boundary for A consisting of the set of
all x ∈ X, such that the evaluation functional δx at x is an extreme point of
the closed unit ball of the dual space of (A, ‖.‖∞).

Furthermore, a closed subspace A of C(X) is said to be completely
regular if any x ∈ X is a strong boundary point for A.

It is worth mentioning that, in a first countable context, for a closed
subspace A of C(X), strong boundary points coincide with peak points. To
see this, assume that x is a strong boundary point for A. Let {Un} be a
countable neighborhood basis at x, such that Un ⊆ Um when m ≤ n. For
each n ∈ N, take fn ∈ A, such that fn(x) = 1 = ‖fn‖∞ and |fn| < 1 on
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X\Un. Now, define f =
∑∞

n=1(fn/2n). Clearly, f ∈ A, since A is closed,
f(x) = 1, and for each x′ �= x, |f(x′)| < 1. Thus, x is a peak point for A, as
claimed (see also [10, p. 447] or [6, p. 97]).

3. Local Isometries on Subspaces of Scalar-Valued Continuous
Functions

Let X and Y be first countable compact Hausdorff spaces. Let A and B be
closed strongly separating subspaces of C(X) and C(Y ), respectively, such
that Pk(A) and Pk(B) are non-empty. Let us remark that the existence of
peak points is not a strong assumption. For example, by Bishop [4], for a
closed separating subspace A of complex C(X) which contains the constants,
Pk(A) is not only non-empty, but it is also a boundary for A. Furthermore,
when X is metrizable, according to [22, Corollary 8.4], the set of peak points
of each closed separating subspace A of C(X) containing the constants is
dense in the Choquet boundary of A. Moreover, from [3, Proposition 7], for
any closed separating subspace A of real C(X) which contains the constants,
not only Pk(A) �= ∅ but also the closure of Pk(A) contains the Choquet
boundary (see also [3, Theorem 3] for more results giving function spaces
for which the set of peak points is not empty). Similarly, in the absence of
the constants, Rao and Roy proved that if A is a separable, closed strongly
separating subspace A of complex C(X), such that functions in A have no
common zero, then Pk(A) is dense in Ch(A) [23, Proposition 4].

Let T : A −→ B be a linear isometry. For a peak point x0 for A, we can
define

Cx0 = {f ∈ A : 1 = ‖f‖∞ = |f(x0)|}.

For any f ∈ A, let

L(f) = {y ∈ Y : ‖Tf‖∞ = |(Tf)(y)|}

and let

Ix0 =
⋂

f∈Cx0

L(f).

By [2, Lemmas 2.3 and 2.4], we know that Ix0 �= ∅, and furthermore

Ix0 = {y ∈ Y : |(Tf)(y)| = |f(x0)|,∀f ∈ A}.

To make the paper self-contained, we adapt the techniques used in [2,
Theorem 3.1] to prove the following theorem.

Theorem 3.1. Let X and Y be first countable compact Hausdorff spaces. Let A
and B be closed strongly separating subspaces of C(X) and C(Y ), respectively,
such that Pk(A) and Pk(B) are non-empty. If T : A −→ B is a linear
isometry, then

(Tf)(y) = a(y)f(ψ(y))
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for all f ∈ A and all y ∈ Y0 :=
⋃

x∈Pk(A) Ix, where a : Y0 −→ K is a contin-
uous unimodular function and ψ : Y0 −→ Pk(A) is a continuous surjective
map.

If, furthermore, T is surjective, then Y0 = Pk(B) and ψ : Pk(B) −→
Pk(A) is a homeomorphism.

Proof. Let T : A −→ B be a linear isometry. We prove the result through
several claims.

Claim 1. Fix x0 ∈ Pk(A). If f ∈ A satisfies f(x0) = 0, then (Tf)(y) = 0
for all y ∈ Ix0 . Furthermore, |f(x0)| = |(Tf)(y)| for all f ∈ A and all y ∈ Ix0 .

Suppose, contrary to what we claim, that there is a function f ∈ A
with f(x0) = 0, such that (Tf)(y0) �= 0 for some y0 ∈ Ix0 . With no loss of
generality, we can assume that ‖f‖∞ = 1 and (Tf)(y0) = k > 0.

Since x0 is a peak point for A, there exists g ∈ A, such that |g(x0)| = 1 =
‖g‖∞ and |g(x)| < 1 for all x ∈ X\{x0}. In addition, since y0 ∈ Ix0 , we can
suppose that (Tg)(y0) = 1. Let U = {x ∈ X : |f(x)| ≥ k/2}. As U is clearly
compact and x0 /∈ U , then we can consider s = sup{|g(x)| : x ∈ U} < 1.

Next, choose M > 0, such that 1 + Ms < k + M . If x ∈ U , then
|(f + Mg)(x)| ≤ 1 + Ms < k + M . On the other hand, if x /∈ U , then
|(f + Mg)(x)| < k/2 + M . As a consequence, ‖(f + Mg)‖∞ < k + M , but

k + M = (Tf)(y0) + (MTg)(y0) ≤ ‖T (f + Mg)‖∞,

which is a contradiction with the isometric property of T .
Let us suppose that there exists f ∈ A, such that |f(x0)| �= |(Tf)(y0)|

for some y0 ∈ Ix0 . Then, since x0 is a peak point, we can define a function
m(x) = f(x) − f(x0)l(x) in A where l ∈ A with ‖l‖∞ = 1 = l(x0). Hence,
m(x0) = 0, but (Tm)(y0) = (Tf)(y0) − f(x0)(T l)(y0) �= 0 which contradicts
the above paragraph.

Claim 2. Define Y0 :=
⋃

x∈Pk(A) Ix and a surjective map ψ : Y0 −→
Pk(A) as ψ(y) := x if y ∈ Ix. Then, ψ is continuous.

It is apparent that ψ is well defined by the strongly separating property
of A.

Let (yα) be a net in Y0 converging to y0 and let (ψ(yβ)) be a subnet
of (ψ(yα)) converging to some x1 ∈ X. Also, take x0 ∈ Pk(A), such that
y0 ∈ Ix0 . If we suppose that x0 �= x1, then we can find g ∈ A, such that
|g(x1)| �= |g(x0)| = 1. By the continuity of Tg, we can assume that

||(Tg)(yβ)| − |(Tg)(y0)|| <
|1 − |g(x1)||

2
for each β. Hence, by Claim 1, we have

||g(ψ(yβ))| − 1| <
|1 − |g(x1)||

2
,

which would contradict the continuity of g.
Claim 3. For all f ∈ A and all y ∈ Y0, we can write (Tf)(y) =

a(y)f(ψ(y)), where a : Y0 −→ K is a continuous unimodular function.
Let a : Y0 −→ K be a function defined as a(y) := (Tf0)(y) where f0 ∈ A,

such that f0(ψ(y)) = 1. It is apparent, from Claim 1, that a is well defined
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and unimodular. Furthermore, for given f ∈ A, let g := f −f(ψ(y))f0, where
f0 is any function in A, such that f0(ψ(y)) = 1. Hence, since g(ψ(y)) = 0, by
Claim 1, we infer that (Tg)(y) = 0, and consequently, (Tf)(y) = a(y)f(ψ(y)).

Claim 4. Assume that T is bijective. Then, Y0 = Pk(B) and ψ :
Pk(B) −→ Pk(A) is a homeomorphism.

Let us first check that if x0 is a peak point for A, then y0 ∈ Ix0 is a
peak point for B. That is, Y0 ⊆ Pk(B).

Let V be a neighborhood of y0, which is the only element of Ix0 due to
the strongly separating property of T (A) = B. Then

⋂

f∈Cx0

L(f) ⊂ V,

which is to say that
⎛

⎝
⋂

f∈Cx0

L(f)

⎞

⎠ ∩ (X\V ) = ∅.

Thus, since X\V is compact, we can find finitely many functions {f1, . . . , fn} ⊂
Cx0 , such that

n⋂

i=1

L(fi) ⊂ V.

Assume, multiplying by a constant is necessary, that fi(x0) = 1, i = 1, . . . , n.
Then, we can define a function f :=

∑n
i=1 fi for which f(x0) = n and

|(Tf)(y)| < ‖Tf‖∞ = n for all y /∈ V . Consequently, y0 is a strong boundary
point for B. Since Y is first countable and B is closed, y0 is a peak point for
B (see Preliminaries).

To prove the converse, consider the inverse of T , which is an isometry
from B onto A. Then, by the above claims, we can define a non-empty set

X0 :=
⋃

y∈Pk(B)

Iy,

such that X0 ⊆ Pk(A) and a continuous surjective map ϕ : X0 −→ Pk(B),
such that

|(T−1g)(x0)| = |g(ϕ(x0))|

for all g ∈ B and x0 ∈ X0. Consequently

|f(x0)| = |(Tf)(ϕ(x0))|

for all f ∈ A, which is to say that ψ(ϕ(x0)) = x0. Thus, one can infer that
ψ : Pk(B) −→ Pk(A) is a homeomorphism. �

We recall that a linear map T defined between two normed spaces A and
B is said to be a local isometry if, for every f ∈ A, there exists a surjective
linear isometry Tf : A −→ B, such that Tf = Tff .
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Theorem 3.2. Let X and Y be first countable compact Hausdorff spaces. Let
A and B be closed strongly separating subspaces of C(X) and C(Y ), respec-
tively, such that Pk(A) and Pk(B) are non-empty. If T : A −→ B is a local
isometry, then

(Tf)(y) = a(y)f(ψ(y))

for all f ∈ A and all y ∈ Pk(T (A)), where a : Pk(T (A)) −→ K is a continu-
ous unimodular function and ψ : Pk(T (A)) −→ Pk(A) is a homeomorphism.

Proof. Let T : A −→ B be a local isometry. From Theorem 3.1, there exist
a continuous unimodular function a : Y0 −→ K and a continuous surjective
map ψ : Y0 −→ Pk(A), such that

(Tf)(y) = a(y)f(ψ(y))

for all f ∈ A and all y ∈ Y0 :=
⋃

x∈Pk(A) Ix. We continue the proof through
several claims.

Claim 1. If x0 ∈ Pk(A), then Ix0 is a singleton.
To this end, let us suppose that there exist y1 and y2 in Ix0 with y1 �= y2.

Since x0 is a peak point, there exists f ∈ A, such that f(x0) = 1 and |f | < 1
on X\{x0}.

As T is a local isometry, we can find a linear surjective isometry Tf :
A −→ B, such that Tf = Tff . By Theorem 3.1, we can write (Tff)(y) =
af (y)f(ψf (y)) for all f ∈ A and all y ∈ Pk(B), where af : Pk(B) −→
K is a continuous unimodular function and ψf : Pk(B) −→ Pk(A) is a
homeomorphism. Hence, (Tf)(y1) = (Tff)(y1) which yields

a(y1)f(ψ(y1)) = a(y1)f(x0) = af (y1)f(ψf (y1)),

and consequently

1 = |f(x0)| = |f(ψf (y1))|.
Similarly we infer 1 = |f(x0)| = |f(ψf (y2))|, which means that ψf (y1) =
x0 = ψf (y2), a contradiction, since ψf is injective.

Claim 2. Let x0 be a peak point for A. If y0 ∈ Ix0 , then y0 is a peak
point for T (A). That is, Y0 ⊆ Pk(T (A)).

Let V be a neighborhood of y0, which is the only element of Ix0 . Then,⋂
f∈Cx0

L(f) ⊂ V , and so
⎛

⎝
⋂

f∈Cx0

L(f)

⎞

⎠ ∩ (X\V ) = ∅.

Thus, since X\V is compact, we can find finitely many functions {f1, . . . , fn}
⊂ Cx0 , such that

⋂n
i=1 L(fi) ⊂ V . Assume, multiplying by a constant is

necessary, that fi(x0) = 1, i = 1, . . . , n. Then, we can define a function
f :=

∑n
i=1 fi for which f(x0) = n and |(Tf)(y)| < ‖Tf‖∞ = n for all

y /∈ V . Consequently, y0 is a strong boundary point for T (A). Since Y is first
countable and T (A) is a closed linear subspace of B, y0 is a peak point for
T (A) (see Preliminaries).
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Claim 3. Let y0 be a peak point for T (A). Then, y0 ∈ Ix0 for some
x0 ∈ Pk(A). That is, Pk(T (A)) ⊆ Y0.

Since y0 is a peak point for T (A), there exists f ∈ A, such that |(Tf)(y0)|
= 1 and |(Tf)(y)| = |f(ψ(y))| < 1 for any y ∈ Y0\{y0}. Hence, by Theorem
3.1, 1 = |(Tf)(y0)| = |(Tff)(y0)| = |f(ψf (y0))| and, besides, it turns out
that ψf (y0) is a peak point for A. Hence, by Claim 1, we know that Iψf (y0)

is a singleton. If we suppose that {y0} �= {y1} = Iψf (y0), then, by Claim 1 in
Theorem 3.1, we infer 1 > |(Tf)(y1)| = |f(ψf (y0))| = 1, a contradiction.

As a consequence of Claims 1, 2, and 3, we deduce that ψ is a continuous
bijective map from Pk(T (A)) onto Pk(A). Let us see that, indeed, such map
is a homeomorphism.

Claim 4. ψ : Pk(T (A)) −→ Pk(A) is a homeomorphism.
Since we already know that ψ is continuous, it suffices to check that

ψ−1 : Pk(A) −→ Pk(T (A)) is continuous. To this end, fix x0, a peak point
for A, and let (xα) be a net in Pk(A) converging to x0. Let us consider the
net (yα) := (ψ−1(xα)) in Pk(T (A)). Let (yβ) be a subnet of (yα) converging
to some y1 ∈ Y and assume that ψ−1(x0) = y0 �= y1. Since y0 is a peak point
for T (A), there exists f ∈ A, such that |(Tf)(y1)| < |(Tf)(y0)| = 1.

Take a subnet (xγ) of (xβ), such that

||f(xγ)| − |f(x0)|| ≤ 1 − |(Tf)(y1)|
2

.

Hence

||(Tf)(yγ)| − 1| ≤ 1 − |(Tf)(y1)|
2

,

which implies that (Tf)(yγ) cannot converge to (Tf)(y1), a contradiction
with the continuity of Tf . �

Let us recall here that a topological space is said to be incompressible [13]
if it admits no homeomorphism onto a proper subset of itself. Closed mani-
folds without boundaries are examples of incompressible spaces [11, Corollary
5.1.19].

Corollary 3.3. Let X be a first countable compact incompressible space and
let A be a completely regular subspace of C(X). If T : A −→ A is a local
isometry, then

(Tf)(y) = a(y)f(ψ(y))

for all f ∈ A and all y ∈ X, where a : X −→ K is a continuous unimodular
function and ψ : X −→ X is a homeomorphism.

Proof. Since A is a completely regular subspace, Pk(A) = X. As a con-
sequence of Theorem 3.2, there are a homeomorphism ψ between X and its
subset Pk(T (A)) and a continuous unimodular function a : Pk(T (A)) −→ K,
such that (Tf)(y) = a(y)f(ψ(y)) for all f ∈ A and all y ∈ Pk(T (A)). Since
X is incompressible, we infer that Pk(T (A)) = X and we are done. �
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Theorem 3.4. Let X be a first countable compact Hausdorff space and let A
a be closed strongly separating subspace of C(X) with Pk(A) �= ∅. Assume
there exists a function f0 ∈ A, such that |f0| is injective.

If there exists T : A −→ A a local isometry, then

(Tf)(y) = a(y)f(ψ(y))

for all f ∈ A and all y ∈ Pk(A), where a : Pk(A) −→ K is a continuous uni-
modular function and ψ is a selfhomeomorphism of Pk(A). If, furthermore,
Pk(A) is a boundary for A, then T is surjective.

Proof. Suppose that T : A −→ A is a local isometry. By Theorem 3.2,
(Tf)(y) = a(y)f(ψ(y)) for all f ∈ A and y ∈ Pk(T (A)), where a : Pk(T (A)) −→
K is a continuous unimodular function and ψ : Pk(T (A)) −→ Pk(A) is a
homeomorphism.

Since T is a local isometry, there exists a surjective linear isometry Tf0 ,
such that Tf0 = Tf0f0. Hence, by Theorem 3.1, (Tf0)(y) = (Tf0f0)(y) =
af0(y)f0(ψf0(y)) for all y ∈ Pk(A), where af0 : Pk(A) −→ K is a continuous
unimodular function and ψf0 : Pk(A) −→ Pk(A) is a homeomorphism. Then,
for each y ∈ Pk(T (A)), we have

af0(y) f0(ψf0(y)) = Tf0(y) = a(y)f0(ψ(y)),

which implies that f0(ψf0(y)) = f0(ψ(y)), since f0 is a positive function and
|af0(y)| = |a(y)| = 1. Thus, ψf0(y) = ψ(y) because of the injectivity of f0.
Now, again from the above relation, it follows that a(y) = af0(y) for all
y ∈ Pk(T (A)). Now, we prove that Pk(T (A)) = Pk(A). Contrary to what
we claim, assume that y0 ∈ Pk(A)\Pk(T (A)). Since ψ is surjective, there
is a point y ∈ Pk(T (A)), such that ψf0(y0) = ψ(y). From the above part,
ψf0(y) = ψ(y), and so, ψf0(y) = ψf0(y0) which contradicts the injectivity of
ψf0 . Therefore, Pk(T (A)) = Pk(A).

From the above discussion, one can deduce that Tf = af0f ◦ ψf0 on
Pk(A) for each f ∈ A. Since Pk(A) is a boundary for A, it follows that
Tf = Tf0f (f ∈ A), and consequently, T is surjective.

�

It seems difficult to obtain a general result for the algebraic reflexivity
of the isometry groups of subspaces of continuous functions. However, if we
restrict to certain important subspaces, we can apply the above results to
obtain such algebraic reflexivity.

Let X be a compact subset of R with at least two points and E be a real
or complex normed space. A function f : X −→ E is said to be absolutely
continuous on X if given ε > 0, there exists a δ > 0, such that

n∑

i=1

‖f(bi) − f(ai)‖ < ε,

for every finite family of non-overlapping open intervals {(ai, bi) : i = 1, . . . , n}
whose extreme points belong to X with

∑n
i=1(bi − ai) < δ. We denote by

AC(X,E) the space of all absolutely continuous E-valued functions on X.
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When E = C, we write AC(X) instead of AC(X,C). Furthermore, note that
the total variation of each absolutely continuous function f is finite, that is

V(f) = sup
{ n∑

i=1

‖f(xi) − f(xi−1)‖ : n ∈ N, x0, x1, . . . , xn ∈ X,

x0 < x1 < · · · < xn

}

< ∞.

Corollary 3.5. Let X and Y be compact subsets of R with at least two points,
and let T : AC(X) −→ AC(Y ) be a local isometry with respect to the norm
‖ · ‖∞ + V(·). Then, T is a surjective linear isometry.

Proof. According to [21, Theorem 2.10], each surjective linear isometry T :
AC(X) −→ AC(Y ) is of the form T f = τf ◦ϕ for all f ∈ AC(X), where τ is
a unimodular scalar and ϕ : Y −→ X is an absolutely continuous homeomor-
phism. Therefore, since T is a local isometry, it is an isometry with respect
to ‖.‖∞.

Next, we claim that T : AC(X) −→ AC(Y ) can be extended to an
isometry T̃ : C(X) −→ C(Y ). To this end, for any f ∈ C(X), we can take a
sequence {fn} in AC(X), such that ‖fn − f‖∞ → 0 because of the sup-norm
density of AC(X) in C(X). Hence, taking into account that T is an isometry
with respect to ‖.‖∞, we get ‖Tfn − Tmf‖∞ = ‖fn − fm‖∞ → 0, and so,
{Tfn} is a Cauchy sequence in C(Y ). We put T̃ f = lim Tfn. Now, it is easily
checked that the definition of T̃ f is independent of the choice of the sequence
{fn}.

Then, since T1 is a unimodular constant function, say λ, from Theorem
3.1, it follows that there are a subset Y0 of Y and a continuous surjection
ψ : Y0 → X, such that

(Tf)(y) = λf(ψ(y)) (f ∈ AC(X), y ∈ Y0).

Obviously, AC(X) has a positive injective function, for example, f0(x) =
x − a + 1, where a = min X. Then, similarly to the proof of Theorem 3.4,
one can see that Tf = Tf0f = λf0f ◦ ψf0 , which implies that T = Tf0 is
surjective. �

Let X be a compact subset of R, such that X coincides with the closure
of its interior. For any n ∈ N, let C(n)(X) be the Banach algebra of all n-
times continuously differentiable complex-valued functions f on X, with the
norm ‖f‖C = maxx∈X(

∑n
k=0(|f (k)(x)|/k!)). In the following, we show that

the isometry groups of C(n)(X)-spaces are algebraically reflexive (see [16,
Corollary 1] and also [20, page 409]).

Corollary 3.6. Let X and Y be compact subsets of R, such that X and Y
coincide with the closures of their interiors. If T : C(n)(X) → C(n)(Y ) is
local isometry with respect to the norm ‖ · ‖C , then T is a surjective linear
isometry.

Proof. From [24, Theorem 4.4], T : C(n)(X) → C(n)(Y ) is a surjective linear
isometry if and only if there exist a function a : Y → C with |a(y)| = 1 and
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a′(y) = 0 for all y ∈ Y , and a homeomorphism ψ : Y → X with |ψ′(y)| = 1
and ψ′′(y) = 0 for all y ∈ Y , such that

(T f)(y) = a(y)f(ψ(y))
(
y ∈ Y, f ∈ C(n)(X)

)
.

This especially implies that T is an isometry with respect to ‖.‖∞. Now,

taking into account that C(n)(X)
‖·‖∞

= C(X) and C(n)(X) has positive
injective functions, by an argument similar to the previous result, we can
infer that T is surjective. �

4. Local Isometries on Subspaces of Vector-Valued Continuous
Functions

Let X and Y be first countable compact Hausdorff spaces and let E and F
be strictly convex normed spaces.

Definition 4.1. Let A be a linear subspace of C(X,E) and let T be a linear
isometry of A into C(Y, F ). If e ∈ SE , where SE is the unit sphere of E, and
x ∈ X with F(x, e) := {f ∈ A : ‖f‖∞ = 1 and f(x) = e} �= ∅, then we
set

I(x, e) := {y ∈ Y : ‖(Tf)(y)‖ = 1 for all f ∈ F(x, e)}.

Moreover, put I(x) :=
⋃

e∈SE
I(x, e).

The proof of the following lemma is standard (see, e.g., [12, Lemma 1]).

Lemma 4.2. With the same hypothesis as in Definition 4.1, I(x, e) is non-
empty.

Definition 4.3. Let A be a regular closed linear subspace of C(X) with Pk(A) �=
∅. We will denote by A(X,E) any linear subspace of C(X,E) which contains
the set {f · e : f ∈ A, e ∈ SE}.

Let us recall that that A is regular if it separates any closed subset C of
X from any x /∈ C in the sense that there is a function f ∈ A with f(x) = 1
and f = 0 on C.

Theorem 4.4. (i) Let T be a linear isometry of A(X,E) into C(Y, F ). Then,
there exist a continuous mapping ψ from Y0 :=

⋃
x∈Pk(A) I(x) onto

Pk(A), and a bounded linear map ω(y) from E into F and (Tf)(y) =
ω(y)(f(ψ(y))) for all y ∈ Y0 and all f ∈ A(X,E).

(ii) Let T be a linear isometry of A(X,E) onto such a subspace B(X,E)
of C(Y, F ), where A and B are regular closed subspaces of C(X) and
C(Y ), respectively. Then, there exist a homeomorphism ψ of Pk(B)
onto Pk(A), and a linear isometry ω(y) of E into F and (Tf)(y) =
ω(y)(f(ψ(y))) for all y ∈ Pk(B) and all f ∈ A(X,E).

Proof. (i) Claim 1. Let y ∈ I(x) for some x ∈ Pk(A). If we take f ∈ A(X,E),
such that f(x) = 0, then (Tf)(y) = 0.
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Take x0 ∈ Pk(A). From the definition of peak point, we know that
there is f1 ∈ A with 1 = f1(x0) = ‖f1‖∞ and |f1| < 1 on X\{x0}. Hence, by
Lemma 4.2, I(x0) is non-empty.

Fix e ∈ SE and y0 ∈ I(x0, e) and let f2 ∈ A(X,E), such that f2
vanishes on some open neighborhood U of x0. Let us check that (Tf2)(y0) = 0.
Dividing f2 by a constant, if necessary, we can assume both that ‖f2‖∞ < 1
and |f1| < 1 − ‖f2‖∞ on X\U . Let us define the functions

g := f2 + f1 · e

and

h :=
1
2
(g + f1 · e).

It is obvious that g(x0) = h(x0) = f1(x0) · e. Furthermore, ‖f1 · e‖∞ =
‖g‖∞ = ‖h‖∞ = f1(x0) = 1. Hence, as y0 ∈ I(x0, e), we have ‖T (f1 · e)(y0)‖ =
‖(Tg)(y0)‖ = ‖(Th)(y0)‖ = f1(x0) = 1. Since F is strictly convex, T (f1 ·
e)(y0), (Tg)(y0) and (Th)(y0) belong to SE , and (Th)(y0) is on the segment
which joins T (f1 · e)(y0) and (Tg)(y0)), we infer that T (f1 · e)(y0) = (Tg)(y0)
and, as a consequence, (Tf2)(y0) = 0.

Let T̂ ŷ0 : A(X,E) −→ F and x̂0 : A(X,E) −→ E be the functionals
defined by the requirement that T̂ ŷ0(f) := (Tf)(y0) and x̂0(f) := f(x0),
f ∈ A(X,E). It is straightforward to check that the functions in A(X,E)
that vanish on a neighborhood of x0 are dense in ker(x̂0), since A is regular.
Furthermore, ker(x̂0) is closed since the functional x̂0 is continuous. Conse-
quently, the above paragraph yields the inclusion ker(x̂0) ⊆ ker(T̂ ŷ0); this is,
if f(x0) = 0, then (Tf)(y0) = 0, as was to be proved.

Claim 2. I(x1) ∩ I(x2) = ∅ for x1, x2 ∈ Pk(A).
Suppose that there are x1, x2 ∈ Pk(A) and y ∈ Y , such that y ∈

I(x1) ∩ I(x2). Choose f ∈ A, such that f(x1) = 1 and f(x2) = 0. Since
(f · e)(x2) = 0 for every e ∈ E, we have, by Claim 1, that T (f · e)(y) = 0 for
all e ∈ E.

On the other hand, there exists e1 ∈ SE , such that y ∈ I(x1, e1) and, as
x1 is peak point for A, there is a function 0 �= g ∈ A(X,E), such that g(x1) =
‖g‖∞ ·e1. By Claim 1 and since (g−f ·g(x1))(x1) = 0, we infer (Tg)(y) = T (f ·
g(x1))(y). Besides, by the above paragraph, (Tg)(y) = T (f · g(x1))(y) = 0.
However, from the definition of I(x1, e1), we know that ‖(Tg)(y)‖ = ‖g‖∞ �=
0, which is a contradiction.

Claim 3. Let x ∈ Pk(A) and e ∈ SE . If f(x) = e for f ∈ A(X,E), then
‖(Tf)(y)‖ = ‖e‖ = 1 for all y ∈ I(x, e).

Since x is a peak point, there is a function g ∈ A with 1 = g(x) = ‖g‖∞.
Define a function h in A(X,E) by h := f − g · e. The clear fact that h(x) = 0
and Claim 1 yield (Th)(y) = 0. By the linearity of T , we have (Tf)(y) =
T (g ·e)(y). Finally, from the definition of I(x, e), ‖(Tf)(y)‖ = ‖T (g · e)(y)‖ =
‖g · e‖∞ = ‖e‖ = 1.

Let us define a mapping ψ from Y0 :=
⋃

x∈Pk(A) I(x) onto Pk(A) by
ψ(y) := x, where y ∈ I(x).
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Let y ∈ I(x) for some x ∈ Pk(A) and let g ∈ A, such that g(x) = 1 =
‖g‖∞. Then, we can define a linear map ω(y) from E into F as ω(y)(e) :=
T (g · e)(y) for all e ∈ E. It is clear that the definition of ω does not depend
on the choice of g by Claim 1. Moreover, from Claim 3, it is obvious that
ω(y) is a bounded linear map with ‖ω(y)‖ = 1.

Claim 4. ψ : Y0 −→ Pk(A) is a well-defined surjective continuous map-
ping and (Tf)(y) = ω(y)(f(ψ(y))) for all y ∈ Y0 and all f ∈ A(X,E).

By Claim 2, ψ is a well-defined mapping. To obtain the multiplicative
representation of T , let x ∈ Pk(A) and y ∈ I(x). Choose any function ξ ∈ A,
such that ξ(x) = 1 = ‖ξ‖∞. For every f ∈ A(X,E), the function f − ξ · f(x)
vanishes at x. Thus, by Claim 1, we infer that (Tf)(y) = T (ξ · f(x))(y) =
ω(y)(f(x)) for every f ∈ A(X,E).

To check the continuity of ψ, let (yα) be a net convergent to y in Y0.
Assume, contrary to what we claim, that (ψ(yα)) does not converge to ψ(y).
By taking a subnet if necessary, we can consider that (ψ(yα)) converges to
an x in the compact space X. Let U and V be disjoint neighborhoods of
x and ψ(y) in X, respectively. There exist an α0, such that ψ(yα) ∈ U ,
for all α ≥ α0, and, since A is regular, a function f ∈ A(X,E), such that
coz(f) ⊂ V and ‖(Tf)(y)‖ �= 0, where coz(f) = {x ∈ X : f(x) �= 0}. For
α ≥ α0, ψ(yα) �∈ coz(f). Hence, by Claim 1, (Tf)(yα) = 0, for all yα ≥ α0.
Consequently ((Tf)(yα)) does not converge to (Tf)(y) �= 0, which contradicts
the continuity of Tf .

ii) Assume now that T is onto.
Claim 5. Let x ∈ Pk(A) and let y ∈ I(x). Then, x ∈ I(y).
Suppose that x /∈ I(y). Then, since T−1 : B(X,E) −→ A(X,E) is a

linear isometry, we can deduce that there exists x′ ∈ X, x′ �= x, such that
x′ ∈ I(y). Choose f ∈ A(X,E), such that f(x) = 0. By Claim 1, we infer
that both (Tf)(y) = 0 and T−1(Tf)(x′) = f(x′) = 0. This means that x
and x′ cannot be separated with functions of A(X,E), which contradicts the
regularity of A.

Claim 6. I(x) is a singleton for x ∈ Pk(A).
Let us now suppose that I(x) contains two elements, y and y′. By the

above paragraph, x ∈ I(y)∩I(y′). Since the range of T separates the points of
Y , there is a function f ∈ A(X,E), such that (Tf)(y) = 1 and (Tf)(y′) = 0.
From Claim 1, we have T−1(Tf)(x) = f(x) = 0 and, hence, (Tf)(y) = 0.
This contradiction shows that I(x) is a singleton.

As a straightforward consequence of the above claims, we infer that Y0 =
Pk(B) and that ψ : Pk(B) −→ Pk(A) is a continuous bijection. Furthermore
T−1 induces a continuous bijection of Pk(A) onto Pk(B) which can be easily
checked to be the inverse of ψ, whence Pk(A) and Pk(B) are homeomorphic.

Finally, take y0 ∈ Pk(B) and let x0 ∈ Pk(A), such that {y0} = Ix0 . To
see that ω(y0) is a linear isometry of E into F , choose e0 ∈ SE and ξ ∈ A,
such that 1 = ξ(x0) = ‖ξ‖∞. It suffices to check that ‖ω(y0)(e0)‖ = 1. Hence,
since I(x0) is a singleton, {y0} =

⋂
e∈SE

I(x0, e). In particular, y0 ∈ I(x0, e0).
Consequently

‖ω(y0)(e0)‖ := ‖T (ξ · e0)(y0)‖ = ‖ξ · e0‖∞ = 1. �
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Theorem 4.5. Let T be a local isometry of A(X,E) into such a subspace
B(X,E) of C(Y, F ). Then, there exist ψ a homeomorphism of Pk(T (A(X,E)))
onto Pk(A), ω(y) a linear isometry of E into F and (Tf)(y) = ω(y)(f(ψ(y)))
for all y ∈ Pk(T (A(X,E))) and all f ∈ A(X,E).

Proof. Since T is a local isometry, from Theorem 4.4(i), there exist a con-
tinuous mapping ψ from Y0 :=

⋃
x∈Pk(A) I(x) onto Pk(A), a bounded lin-

ear map ω(y) from E into F and (Tf)(y) = ω(y)(f(ψ(y))) for all y ∈ Y0

and all f ∈ A(X,E). First, note that for any y ∈ Y0, ω(y) is an isome-
try. To see, let y ∈ Y0 and e ∈ SE . Since T is a local isometry, we have
‖ω(y)(e)‖ = ‖T (g · e)(y)‖ = ‖Tg·e(g · e)(y)‖ = ‖ωg·e(y)(e)‖ = ‖e‖ = 1, where
g is a function in A, such that g(x) = 1 = ‖g‖∞.

Claim 1. I(x0) is a singleton for x0 ∈ Pk(A).
To this end, let us suppose that there exist y1 and y2 in I(x0) with

y1 �= y2. Since x0 is a peak point for A, there exists f ∈ A(X,E), such that
‖f(x0)‖ = 1 and ‖f‖ < 1 on X\{x0}.

As T is a local isometry, we can find a linear surjective isometry Tf :
A(X,E) −→ B(Y, F ), such that Tf = Tff . By Theorem 4.4(ii), we know
that there exist a ψf a homeomorphism of Pk(B) onto Pk(A) and ωf (y)
a linear isometry of E into F , such that (Tff)(y) = ωf (y)(f(ψf (y))) for
all y ∈ Pk(B). Hence, by Theorem 4.4(i), (Tff)(y1) = ωf (y1)(f(ψf (y1))) =
ω(y1)(f(ψ(y1))) = ω(y1)(f(x0)). Consequently, ‖ωf (y1)(f(ψf (y1)))‖
= ‖ω(y1)(f(ψ(y1)))‖ = ‖ω(y1)(f(x0))‖ = 1, which yields ‖f(ψf (y1))‖ = 1,
since ωf (y1) is an isometry. Similarly, ‖f(ψf (y2))‖ = 1, which, by the choice
of f , implies that ψf (y1) = ψf (y2), a contradiction with the injectivity of ψf .

Claim 2. Y0 ⊆ Pk(T (A(X,E))).
Let x0 be a peak point for A. Let V be a neighborhood of y0 ∈ I(x0).

That is, y0 ∈ I(x0, e) for some e ∈ SE . Hence, by Claim 1, y0 is the only
element in I(x0, e), and consequently

{y ∈ Y : ‖(Tf)(y)‖ = ‖f‖∞ = 1 for all f ∈ A(X,E),
such that f(x) = e} ∩ (X\V ) = ∅.

Thus, since X\V is compact, we can find finitely many functions
{f1, . . . , fn} with fi(x0) = e, i = 1, . . . , n, such that

{y ∈ Y : ‖(Tfi)(y)‖ = ‖fi‖∞ = 1 for all fi, i = 1, . . . , n} ⊂ V.

Then, we can define a function f :=
∑n

i=1 fi for which f(x0) = n · e and
|(Tf)(y)| < ‖Tf‖∞ = n for all y /∈ V . Consequently, y0 is a strong boundary
point for T (A(X,E)). Since Y is first countable and T (A(X,E)) is a closed
linear subspace of B, by an argument as in the Preliminaries, we can prove
that y0 is a peak point for T (A(X,E)).

Claim 3. Pk(T (A(X,E))) ⊆ Y0.
Since y0 is a peak point for T (A(X,E)), there exists f ∈ A(X,E), such

that ‖(Tf)(y0)‖ = 1 and ‖(Tf)(y)‖ < 1 for any y ∈ Y \{y0}. Hence, by
Theorem 4.4(ii), ‖(Tf)(y0)‖ = ‖(Tff)(y0)‖ = ‖f(hf (y0))‖ = 1 and, besides,
hf (y0) is a peak point for A(X,E). Hence, by Claim 1, we know that Ihf (y0)
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is a singleton. If we suppose that {y0} �= {y1} = Ihf (y0), then, by Claim 1 in
Theorem 4.4(ii), we infer 1 > ‖(Tf)(y1)‖ = ‖f(hf (y0))‖ = 1, a contradiction.

Finally, as in Claim 4 of the proof of Theorem 3.2, we can prove that
h : Pk(T (A(X,E))) −→ Pk(A) is a homeomorphism. �

Theorem 4.6. Let X be a first countable compact Hausdorff space and let A
be a regular closed subspace of C(X). Assume there exists a function f0 ∈ A,
such that |f0| is injective.

If there exists T : A(X,E) −→ A(X,E) a local isometry, then there
exist a homeomorphism ψ of Pk(A) onto itself and ω(y) a linear isometry
of E into E for each y ∈ Pk(A), such that (Tf)(y) = ω(y)(f(ψ(y))) for all
y ∈ Pk(A) and all f ∈ A(X,E). If, furthermore, Pk(A) is a boundary for
A, then T is surjective.

Proof. By Theorem 4.5, there exists ψ a homeomorphism of Pk(T (A(X,E)))
onto Pk(A), ω(y) is a linear isometry of E into E and and (Tf)(y) =
ω(y)(f(ψ(y))) for all y ∈ Pk(A) and all f ∈ A(X,E). Then, (Tf0 · e)(y) =
ω(y)(f0 · e(ψ(y))) for all y ∈ Pk(T (A(X,E))) and for a fixed e ∈ SE .

Since T is a local isometry, there exists a linear surjective isometry
Tf0·e, such that (Tf0 · e)(y) = (Tf0·ef0 · e)(y). Hence, by Theorem 4.4,
(Tf0 · e)(y) = (Tf0·ef0 · e)(y) = ωf0·e(y)(f0 · e(ψf0·e(y))) for all y ∈ Pk(A),
ωf0·e(y) is an isometry for all y ∈ Pk(A), and ψf0·e : Pk(A) −→ Pk(A) is a
homeomorphism.

Hence, ω(y)(f0 · e(ψ(y))) = ωf0·e(y)(f0 · e(ψf0·e(y))) for all y ∈ Pk(T (A
(X,E))). Since ω(y) and ωf0(y) are isometries, we infer that ||f0 ·e(ψf0·e(y)))||
= ||f0 · e(ψ(y))|| for all y ∈ Pk(T (A(X,E))). Consequently, |f0(ψf0·e(y))| =
|f0(ψ(y))| for all y ∈ Pk(T (A(X,E))).

Since |f0| is injective, we infer that ψ(y) = ψf0·e(y) for all y ∈ Pk(T (A
(X,E))). Furthermore, similarly to the proof of Theorem 3.2, one can see
that Pk(T (A(X,E))) = Pk(A).

From the above discussion, it follows that ω(y) = ωf0·e(y) for all y ∈
Pk(A), whence (Tf)(y) = ωf0·e(y)f(ψf0·e(y)) = (Tf0·ef)(y) for all y ∈
Pk(A). Now, if Pk(A) is a boundary for A, then Tf = Tf0·ef on Y . Therefore,
T = Tf0·e is surjective. �

Definition 4.7. A surjective linear isometry T : AC(X,E) −→ AC(Y, F ) with
respect to the norm max(‖ ·‖∞,V(·)) is called a �-isometry if, for each y ∈ Y ,
there exists a constant function e in AC(X,E), such that (Te)(y) �= 0 (see
[1] and [15] for more details concerning this property).

A linear map T : AC(X,E) −→ AC(Y, F ) is called a �-local isometry
if, for every f ∈ AC(X,E), there exists a �-isometry Tf : AC(X,E) −→
AC(Y, F ), such that Tf = Tff .

The following result shows that each �-local isometry T : AC(X,E) −→
AC(Y, F ) is a linear surjective isometry, which yields [14, Theorem 2.1].

Corollary 4.8. Let X and Y be compact subsets of R with at least two points,
and let T : AC(X,E) −→ AC(Y, F ) be a �-local isometry. Then, T is a
linear surjective isometry and there exist a monotonic absolutely continuous
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homeomorphism ψ : Y −→ X, and a surjective linear isometry J : E −→ F ,
such that (Tf)(y) = J(f(ψ(y))) for all f ∈ AC(X,E) and y ∈ Y .

Proof. From [15, Theorem 4.1], for each �-isometry T : AC(X,E) −→
AC(Y, F ), there exist a monotonic absolutely continuous homeomorphism
ϕ : Y −→ X, and a surjective linear isometry J : E −→ F , such that
(Tf)(y) = J(f(ϕ(y))) for all f ∈ AC(X,E) and y ∈ Y , which especially
shows that T is an isometry with respect to ‖.‖∞. Then, T is an isometry
with respect to ‖.‖∞, whence similarly to Corollary 3.5, it can be extended
to an isometry T̃ : C(X,E) −→ C(Y, F ). Now, taking into account that
Pk(AC(X)) = X, from Theorem 4.4(i), it follows that there exist a contin-
uous mapping ψ from Y0 :=

⋃
x∈X I(x) onto X and a bounded linear map

ω(y) from E into F for each y ∈ Y0, such that (Tf)(y) = ω(y)(f(ψ(y))) for
all y ∈ Y0 and all f ∈ AC(X,E).

Since T is a �-local isometry, Te is a constant function for each e ∈ E
[15, Lemma 3.14], whence (Te)(y) = (Te)(y′) for all y, y′ ∈ Y0. Then, we
infer that ω(y) = ω(y′) for all y, y′ ∈ Y0. Put J = ω(y) for some y ∈ Y0.
Thus, (Tf)(y) = J(f(ψ(y))) for all f ∈ AC(X,E) and y ∈ Y0. Let e ∈ SE

and define f0(x) = x−a+1, where a = min X. Now, by an argument similar
to Theorem 4.6, one can conclude that Y0 = Y and T = Tf0·e. Therefore, T
is surjective, ψ is a monotonic absolutely continuous homeomorphism, and J
is a surjective linear isometry. �
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Universitat Jaume I
Campus Riu Sec
12071 Castellón
Spain
e-mail: font@mat.uji.es

Maliheh Hosseini
Faculty of Mathematics
K. N. Toosi University of Technology
Tehran 16315-1618
Iran
e-mail: m.hosseini@kntu.ac.ir

Received: January 1, 2023.

Revised: January 3, 2023.

Accepted: March 29, 2023.


	Local Isometries on Subspaces of Continuous Functions
	Abstract
	1. Introduction
	2. Preliminaries
	3. Local Isometries on Subspaces of Scalar-Valued Continuous Functions
	4. Local Isometries on Subspaces of Vector-Valued Continuous Functions
	References




