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Dirac’s Theorem and Multigraded Syzygies

Antonino Ficarra and Jürgen Herzog

Abstract. Let G be a simple finite graph. A famous theorem of Dirac
says that G is chordal if and only if G admits a perfect elimination
order. It is known by Fröberg that the edge ideal I(G) of G has a linear
resolution if and only if the complementary graph Gc of G is chordal. In
this article, we discuss some algebraic consequences of Dirac’s theorem
in the theory of homological shift ideals of edge ideals. Recall that if
I is a monomial ideal, HSk(I) is the monomial ideal generated by the
kth multigraded shifts of I. We prove that HS1(I) has linear quotients,
for any monomial ideal I with linear quotients generated in a single
degree. For and edge ideal I(G) with linear quotients, it is not true
that HSk(I(G)) has linear quotients for all k ≥ 0. On the other hand,
if Gc is a proper interval graph or a forest, we prove that this is the
case. Finally, we discuss a conjecture of Bandari, Bayati, and Herzog
that predicts that if I is polymatroidal, HSk(I) is polymatroidal too,
for all k ≥ 0. We are able to prove that this conjecture holds for all
polymatroidal ideals generated in degree two.
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Introduction

Let S = K[x1, . . . , xn] be the standard graded polynomial ring with coef-
ficients in a field K and G be a simple graph on the vertex set V (G) =
{1, . . . , n} and with edge set E(G). The edge ideal of G is the ideal I(G) in S
generated by the monomials xixj , such that {i, j} ∈ E(G). The classification
of all Cohen–Macaulay edge ideals and the classification of all edge ideals
with linear resolution are fundamental problems. While the first problem is
widely open and considered to be intractable in general, for the second prob-
lem, we have a complete answer. The complementary graph Gc of G is the
graph with vertex set V (Gc) = V (G) and where {i, j} is an edge of Gc if
and only if {i, j} /∈ E(G). Ralph Fröberg in [8] proved that I(G) has a linear
resolution if and only Gc is chordal, that is, it has no induced cycles of length
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bigger than three. In turn, the classical and fundamental Dirac’s theorem on
chordal graphs says that a graph G is chordal if and only if G admits a perfect
elimination order [4].

Recently, a new research trend in the theory of monomial ideals has
been initiated by the second author, Moradi, Rahimbeigi, and Zhu in [14],
see, also, [2,3,5,6,11,17]. For a = (a1, . . . , an) ∈ Z

n
≥0, we denote xa1

1 · · · xan
n

by xa. Let I ⊂ S be a monomial ideal and let F be its minimal multigraded
free S-resolution. Then, the kth free S-module in F is Fk =

⊕βk(I)
j=1 S(−akj),

where akj ∈ Z
n
≥0 are the kth multigraded shifts of I. The kth homological shift

ideal of I is the monomial ideal generated by the monomials xakj for j =
1, . . . , βk(I). Note that HS0(I) = I. It is natural to ask what combinatorial
and homological properties are satisfied by all HSk(I), k = 0, . . . ,pd(I). Any
such property is called an homological shift property of I. If all HSk(I) have
linear quotients, or linear resolution, we say that I has homological linear
quotients or homological linear resolution, respectively.

In this article, we discuss the algebraic consequences of Dirac’s theorem
on chordal graphs related to the theory of homological shift ideals of edge
ideals.

The article is structured as follows. In Sect. 1, we investigate arbitrary
monomial ideals with linear quotients generated in one degree. Our main
theorem states that for such an ideal I, HS1(I) always has linear quotients.
The proof relies upon the fact that certain colon ideals are generated by linear
forms (Lemma 1.1). In particular, HS1(I) has a linear resolution. At present
we are not able to generalize this result for all monomial ideals with linear
resolution. In this case, one could expect even that HS1(I) also has linear
quotients, if I has a linear resolution. On the other hand, if I is generated
in more than one degree, in Example 1.4, we show that Theorem 1.3 is no
longer valid.

Sections 2 and 3 are devoted to homological shifts of edge ideals with
linear resolution. Let G be a graph and I(G) be its edge ideal. For unex-
plained terminology, look at Sect. 2. Unfortunately, even if I(G) has linear
resolution, it may not have homological linear resolution in general (Exam-
ple 2.3). At present, we do not have a complete classification of all edge ideals
with homological linear quotients or homological linear resolution. Thus, we
determine many classes of cochordal graphs whose edge ideals have homolog-
ical linear resolution. In particular, for proper interval graphs and forests, we
prove that the edge ideals of their complementary graphs have homological
linear quotients, (Theorems 2.4 and 3.1). For the proof of the first result, we
introduce the class of reversible chordal graphs, and show that any proper
interval graph is a reversible graph, (Lemma 2.5). For the second result,
we consider two operations on chordal graphs that preserve the homological
linear quotients property. Namely, adding whiskers to a chordal graph and
taking unions of disjoint chordal graphs (Propositions 3.2 and 3.4). Using
these results, it is easy to see that I(G) has homological linear quotients, if
Gc is a forest. Indeed, any forest is the union of pairwise disjoint trees, and
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any tree can be constructed by iteratively adding whiskers to a previously
constructed tree on a smaller vertex set.

In the last section, we consider polymatroidal ideals. An equigenerated
monomial ideal I is called polymatroidal if its minimal set of monomial gen-
erators G(I) corresponds to the set of bases of a discrete polymatroid ; see
[10, Chapter 12]. Polymatroidal ideals are characterized by the fact that
they have linear quotients with respect to the lexicographic order induced by
any ordering of the variables. Such characterization is due to Bandari and
Rahmati-Asghar [2]. It was conjectured by Bandari, Bayati, and Herzog that
all homological shift ideals of a polymatroidal ideal are polymatroidal. At
present, this conjecture is widely open. On the other hand, Bayati proved
that the conjecture holds for any squarefree polymatroidal ideal [17]. The
second author of this paper, Moradi, Rahimbeigi, and Zhu proved that it
holds for polymatroidal ideals that satisfy the strong exchange property [14,
Corollary 3.6]; whereas the first author of this paper proved that HS1(I)
is again polymatroidal if I is such [5], pointing towards the validity of the
conjecture in general.

We prove in Theorem 4.5 that for any polymatroidal ideal I generated
in degree two, all homological shift ideals are polymatroidal. In the square-
free case, I may be seen as the edge ideal of a cochordal graph and we apply
our criterion on reversibility of perfect elimination orders. Unfortunately, our
methods are very special and they cannot be applied to prove that homolog-
ical shifts of polymatroidal ideals, generated in higher degree than two, are
polymatroidal.

1. The First Homological Shift of Ideals with Linear Quotients

Let S = K[x1, . . . , xn] be the standard graded polynomial ring, with K
a field. A monomial ideal I ⊂ S has linear quotients if, for some order-
ing u1, . . . , um of its minimal set of monomial generators G(I), all colon
ideals (u1, . . . , ui−1) : ui, i = 1, . . . , m, are generated by variables. We call
u1, . . . , um an admissible order of I. Such order is called non-increasing if
deg(u1) ≤ deg(u2) ≤ · · · ≤ deg(um). By [15, Lemma 2.1], an ideal with linear
quotients always has a non-increasing admissible order. Therefore, from now,
we consider only non-increasing admissible orders.

Let u1, . . . , um be an admissible order of an ideal I ⊂ S having linear
quotients. For i ∈ {1, . . . , m}, we let

set(ui) = {j : xj ∈ (u1, . . . , ui−1) : ui}.

Given a non-empty subset A of {1, . . . , n}, we set xA =
∏

i∈A xi and
x∅ = 1. The multigraded version of [12, Lemma 1.5] implies that

HSk(I) = (uixA : i = 1, . . . , m, A ⊆ set(ui), |A| = k). (1)

The ideal (u1, . . . , ui−1) : ui is generated by the monomials uj : ui =
lcm(uj , ui)/ui. Hence, I has linear quotients if and only if, for all i = 1, . . . ,m
and all j < i, there exists � < i, such that u� : ui = xp for some p, and xp

divides uj : ui.
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Hereafter, we denote the set {1, . . . , n} by [n]. For a monomial u ∈ S and
i ∈ [n], the xi-degree of u is the integer degxi

(u) = max{j ≥ 0 : xj
i divides u}.

For the proof of our main result, we need Corollary 1.2 of the following
lemma.

Lemma 1.1. Let I be an equigenerated graded ideal with linear relations. Let
f1, . . . , fm be a minimal set of generators of I. Then, for any 1 ≤ i ≤ m

(f1, . . . , fi−1, fi+1, . . . , fm) : fi

is generated by linear forms.

Proof. To simplify the notation, we may assume that i = m, and we set
J = (f1, . . . , fm−1) : fm. Since the fi are homogeneous elements, J is a
graded ideal. Let rm ∈ J be an homogeneous element. Then, there exist
r1, . . . , rm−1, such that rmfm = −∑m−1

i=1 rifi with deg(ri) = deg(rm) for
i = 1, . . . ,m − 1. Therefore, r = (r1, . . . , rm) is a homogeneous relation of
I. By assumption, the relation module of I is generated by linear relations,
say �i = (�i1, . . . , �im) for i = 1, . . . , t. Therefore, there exist homogeneous
elements si ∈ S, such that r =

∑t
i=1 si�i. This implies that rm =

∑t
i=1 si�i,m.

Since �i,m ∈ J , the desired conclusion follows. �

Corollary 1.2. Let I be an equigenerated monomial ideal with linear quotients
and let u1, . . . , um be its minimal monomial generators. Then, for any 1 ≤
i ≤ m

(u1, . . . , ui−1, ui+1, . . . , um) : ui

is generated by variables.

Theorem 1.3. Let I ⊂ S be an equigenerated monomial ideal having linear
quotients. Then, HS1(I) has linear quotients.

Proof. We proceed by induction on m ≥ 1. For m = 1 or m = 2, there is
nothing to prove.

Let m > 2 and set J = (u1, . . . , um−1). Let L = (xi : i ∈ set(um), xium /∈
HS1(J)). Then, by Eq. (1)

HS1(I) = HS1(J) + umL.

By inductive hypothesis, HS1(J) has linear quotients. Let v1, . . . , vr be an ad-
missible order of HS1(J). If L = (xj1 , . . . , xjs

), we claim that v1, . . . , vr, xj1um,
. . . , xjs

um is an admissible order of HS1(I). We only need to show that

(v1, . . . , vr, xj1um, . . . , xjt−1um) : xjt
um (2)

is generated by variables, for all t = 1, . . . , s.
Note that each generator xj�

um : xjt
um = xj�

with � < t is already a
variable. Consider now a generator v� : xjt

um for some � = 1, . . . , r. Then,
v� = xhuj for some j < m and h ∈ set(uj). Moreover, we can write xjt

um =
xpuk for some k < m.
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If j = k, then

v� : xjt
um = xhuk : xpuk = xh

is a variable and there is nothing to prove.
Suppose now j �= k. Since u1, . . . , um−1 is an admissible order, by Corol-

lary 1.2

Q = (u1, . . . , uk−1, uk+1, . . . , um−1) : uk

is generated by variables. Since j �= k and j < m, uj : uk belongs to Q.
Hence, we can find b < m, b �= k, such that ub : uk = xq and xq divides
uj : uk. Thus, xquk ∈ HS1(J).

Note that xq divides also xhuj : xpuk. Indeed xq divides uj : uk. If xq

does not divide xhuj : xpuk, then necessarily p = q. However, this would
imply that xjt

um = xquk ∈ HS1(J), against the fact that xjt
∈ L. Hence, xq

divides xhuj : xpuk. However

xquk : xjt
um = xquk : xpuk = xq

belongs to the ideal (2). Hence, xhuj : xpuk is divided by a variable belonging
to the ideal (2). This concludes our proof. �

It is natural to ask the following question. Let I ⊂ S be a monomial
ideal having a linear resolution. Is it true that HS1(I) has a linear resolution,
too?

Theorem 1.3 is no longer valid for monomial ideals with linear quotients
generated in more than one degree, as next example of Bayati et al. shows
[2].

Example 1.4 [[2], Example 3.3]. Let I =
(
x2
1, x1x2, x4

2, x1x
4
3, x1x

3
3x4, x1x

2
3x

2
4

)

be an ideal of S = K[x1, x2, x3, x4]. I is a (strongly) stable ideal whose Borel
generators are x1x2, x

4
2, x1x

2
3x

2
4. It is well known that stable ideals have linear

quotients. Thus, I has linear quotients. Using Macaulay2 [9] the package [6],
we verified that

HS1(I) =
(
x2
1x2, x1x

4
2, x1x

3
3x

2
4, x1x2x

2
3x

2
4, x2

1x
2
3x

2
4, x1x

4
3x4,

x1x2x
3
3x4, x2

1x
3
3x4, x1x2x

4
3, x2

1x
4
3

)

has the following Betti table:

0 1 2 3

3 1 . . .
4 . . . .
5 1 1 . .
6 8 15 8 1
7 . . . .
8 . 3 5 2
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We show that HS1(I) does not have linear quotients. Suppose by con-
tradiction that HS1(I) has linear quotients. Then, since the Betti numbers of
an ideal with linear quotients do not depend upon the characteristic of the
underlying field K, we may assume that K has characteristic zero. Hence,
HS1(I) would be componentwise linear, see [10, Corollary 8.2.21]. However,
this cannot be the case by virtue of [10, Theorems 8.2.22. and 8.2.23(a)].
Indeed, β1,1+8(HS1(I)) �= 0, while β0,8(HS1(I)) = 0.

2. Homological Shifts of Proper Interval Graphs

Let G be a finite simple graph with vertex set V (G) = [n] and edge set E(G).
Let K be a field. The edge ideal of G is the squarefree monomial ideal I(G) of
S = K[x1, . . . , xn] generated by the monomials xixj , such that {i, j} ∈ E(G).
A graph G is complete if every {i, j} with i, j ∈ [n], i �= j, is an edge of G.
The open neighbourhood of i ∈ V (G) is the set

NG(i) =
{
j ∈ V (G) : {i, j} ∈ E(G)

}
.

A graph G is called chordal if it has no induced cycles of length big-
ger than three. Recall that a perfect elimination order of G is an order-
ing v1, . . . , vn of its vertex set V (G), such that NGi

(vi) induces a complete
subgraph on Gi, where Gi is the induced subgraph of G on the vertex set
{i, i + 1, . . . , n}. Hereafter, if 1, 2, . . . , n is a perfect elimination order of G,
we denote it by x1 > x2 > · · · > xn.

Theorem 2.1 (Dirac). A simple finite graph G is chordal if and only if G
admits a perfect elimination order.

The complementary graph Gc of G is the graph with vertex set V (Gc) =
V (G) and where {i, j} is an edge of Gc if and only if {i, j} /∈ E(G). A graph
G is called cochordal if and only if Gc is chordal.

Theorem 2.2 (Fröberg). Let G be a simple finite graph. Then, I(G) has a
linear resolution if and only if G is cochordal.

It is known by [10, Theorem 10.2.6] that I(G) has linear resolution if
and only if it has linear quotients. The theorems of Dirac and Fröberg classify
all edge ideals with linear quotients. Furthermore, if x1 > x2 > · · · > xn is a
perfect elimination order of Gc, then I(G) has linear quotients with respect
to the lexicographic order >lex induced by x1 > x2 > · · · > xn.

Now, we turn to the homological shifts of edge ideals with linear quo-
tients. Unfortunately, in general, an edge ideal with linear quotients does not
even has homological linear resolution as next example shows.

Example 2.3. Let G be the following cochordal graph on six vertices.
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1

2 3
4

5 6

Let I = I(G) ⊂ S = K[x1, . . . , x6]. Using the package [6], we verified
that HS0(I) and HS1(I) have linear quotients. However, the last homologi-
cal shift ideal HS2(I) = (x1x2x3x4, x1x4x5x6) has the following non-linear
resolution:

0 → S(−6) → S(−4)2 → (x1x2x3x4, x1x4x5x6) → 0.

In graph theory, one distinguished class of chordal graphs is the family
of proper interval graphs. A graph G is called an interval graph if one can
label its vertices with some intervals on the real line, so that two vertices
are adjacent in G, when the intersection of their corresponding intervals is
non-empty. A proper interval graph is an interval graph, such that no interval
properly contains another.

Now, we are ready to state our main result in the section.

Theorem 2.4. Let G be a cochordal graph on [n] whose complementary graph
Gc is a proper interval graph. Then, I(G) has homological linear quotients.

To prove the theorem, we introduce a more general class of graphs.
We call a perfect elimination order x1 > x2 > · · · > xn of a chordal

graph G reversible if xn > xn−1 > · · · > x1 is also a perfect elimination order
of G. We call a chordal graph G reversible if G admits a reversible perfect
elimination order. Moreover, a cochordal graph G is called reversible if and
only if Gc is reversible.

Lemma 2.5. Let G be a proper interval graph. Then, G is reversible.

Proof. By [[16], Theorem 1 and Lemma 1], up to a relabeling of the vertex
set of G, the following property is satisfied:

(∗) for all i < j, {i, j} ∈ E(G) implies that the induced subgraph of G on
{i, i + 1 . . . , j} is a clique, i.e., a complete subgraph.

With such a labeling, both x1 > x2 > · · · > xn and xn > xn−1 > · · · > x1

are perfect elimination orders of G. By symmetry, it is enough to show that
x1 > x2 > · · · > xn is a perfect elimination order. Let i ∈ [n], j, k ∈ NG(i)
with j, k > i. We prove that {j, k} ∈ E(G). Suppose j > k. By (∗), the
induced subgraph of G on {i, i + 1 . . . , j} is a clique. Since j > k > i, we
obtain that {j, k} ∈ E(G), as wanted. �

With this lemma at hand, Theorem 2.4 follows from the following more
general result.
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Theorem 2.6. Let G be a cochordal graph on [n], and let x1 > · · · > xn

be a reversible perfect elimination order of Gc. Then, HSk(I(G)) has linear
quotients with respect to the lexicographic order >lex induced by x1 > · · · >
xn, for all k ≥ 0.

For the proof of this theorem, we need a description of the homological
shift ideals.

Lemma 2.7. Let G be a cochordal graph on [n], and let x1 > x2 > · · · > xn

be a perfect elimination order of Gc. Then, for all {i, j} ∈ E(G), with i < j

set(xixj) = {1, . . . , i − 1} ∪ ({i + 1, . . . , j − 1} ∩ NG(i)). (3)

In particular

HSk(I(G))=
(
xAxB : A,B ⊆ [n], A,B �=∅,max(A)<min(B), |A∪B|=k+2,

{max(A), b} ∈ E(G), for all b ∈ B
)
.

Proof. As remarked before, I(G) has linear quotients with respect to the
lexicographic order >lex induced by x1 > x2 > · · · > xn. Let {i, j} ∈ E(G)
with i < j. Let us determine set(xixj). If k ∈ set(xixj), then xk(xixj)/x� ∈
I(G) and xk(xixj)/x� >lex xixj for some � ∈ {i, j}. Note that k < j; indeed,
for k > j, both xixk, xjxk are smaller than xixj in the lexicographic order.
Thus, either k < i or i < k < j. We distinguish the two possible cases.

Case 1. Suppose k < i. Assume that none of xkxi, xkxj is in I(G). Then,
{k, i}, {k, j} ∈ E(Gc). Since x1 > x2 > · · · > xn is a perfect elimination
order, the induced graph of Gc

i on the vertex set NGc
k
(k) is complete. However,

i, j > k and i, j ∈ NGc
k
(k). Thus, we would have {i, j} ∈ E(Gc), that is,

xixj /∈ I(G), absurd.
Case 2. Suppose i < k < j. Since k > i, xkxj <lex xixj . Thus, k ∈

set(xixj) if and only if xixk ∈ E(G), that is, k ∈ NG(i).
The two cases above show that Eq. (3) holds. The formula for HSk(I(G))

follows immediately by applying Eqs. (1) and (3). �

For the proof of the theorem, we recall the concept of Betti splitting [7].
Let I, I1, I2 be monomial ideals of S, such that G(I) is the disjoint

union of G(I1) and G(I2). We say that I = I1 + I2 is a Betti splitting if

βi,j(I) = βi,j(I1) + βi,j(I2) + βi−1,j(I1 ∩ I2) for all i, j.

Proof of Theorem 2.6. We proceed by induction on n ≥ 1. Let G′ be the
induced subgraph of G on the vertex set {2, 3, . . . , n}. Then, x2 > x3 >
· · · > xn is again a reversible perfect elimination order of (G′)c and G′ is a
reversible cochordal graph.

Let J = (xi : x1xi ∈ I(G)). Then, I(G) = x1J + I(G′) is a Betti
splitting, because G(I(G)) is the disjoint union of G(x1J) and G(I(G′)), and
x1J , I(G′) have linear resolutions; see [7, Corollary 2.4]. Since I(G′)∩x1J =
x1I(G′), [3, Proposition 1.7] gives

HSk(I(G)) = x1

(
HSk−1(I(G′)) + HSk(J)

)
+ HSk(I(G′)).
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We claim that HSk(I(G)) has linear quotients with respect to the lexi-
cographic order >lex induced by x1 > x2 > · · · > xn. For k = 0, this is true.
Let k > 0.

Let u = xi1xj1xF1 , v = xi2xj2xF2 ∈ G(HSk(I(G))), with u >lex v,
i1 < j1, i2 < j2, xi1xj1 , xi2xj2 ∈ I(G), F1 ⊆ set(u), F2 ⊆ set(v). We are
going to prove that there exists w ∈ G(HSk(I(G))), such that w >lex v,
w : v = xp and xp divides u : v.

We can write

u = xp1xp2 · · · xpk+2 , v = xq1xq2 · · · xqk+2 ,

with p1 < p2 < · · · < pk+2, q1 < q2 < · · · < qk+2. Since u >lex v, then
p1 = q1, p2 = q2, . . . , ps−1 = qs−1, ps < qs for some s ∈ {1, . . . , k + 2}. If
s = k + 2, then u : v = xpk+2 = xj1 and there is nothing to prove. Therefore,
we may assume s < k + 2. Thus, ps < qs < qk+2 = j2. Set p = ps and q = qs,
then xp divides u : v.

Suppose for the moment that x1 divides v. Then, by definition of >lex,
p1 = q1 = 1 and x1 divides u, too. There are four cases to consider.

Case 1. Suppose i1 = i2 = 1. Setting u′ = u/x1 and v′ = v/x1, we have
u′, v′ ∈ G(HSk(J)) and u′ >lex v′. Since J is an ideal generated by variables,
it has homological linear quotients with respect to >lex. Hence, there exists
w′ ∈ G(HSk(J)) with w′ >lex v′, such that w′ : v′ = x� and x� divides
u′ : v′. Setting w = x1w

′, we have that w >lex v and w ∈ G(x1HSk(J)) ⊆
G(HSk(I(G))). Hence, w : v = w′ : v′ = x� and x� divides u : v = u′ : v′.

Case 2. Suppose i1 > 1 and i2 > 1. Setting u′ = u/x1 and v′ = v/x1, we have
u′, v′ ∈ G(HSk−1(I(G′))) and u′ >lex v′. By inductive hypothesis, I(G′) has
homological linear quotients with respect to >′

lex induced by x2 > x3 > · · · >
xn. Hence, there exists w′ ∈ G(HSk−1(I(G′))) with w′ >′

lex v′, such that
w′ : v′ = x� and x� divides u′ : v′. Setting w = x1w

′, we have that w >lex v
and w ∈ G(x1HSk−1(I(G′))) ⊆ G(HSk(I(G))). Hence, w : v = w′ : v′ = x�

and x� divides u : v = u′ : v′.

Case 3. Suppose i1 > 1 and i2 = 1. Then, 1 = i2 < p < j2.

Subcase 3.1. Assume x1xp ∈ I(G), then p ∈ set(xi2xj2). Setting w = xp(v/xq),
by Eq. (1), w ∈ G(HSk(I(G))), and w >lex v, because p < q. Moreover,
w : v = xp and xp divides u : v.

Subcase 3.2. Assume that x1xp /∈ I(G). By hypothesis, xn > xn−1 > · · · > x1

is also a perfect elimination order of Gc. Thus, by Lemma 2.7, we can
write u = xAxB with A = {pk+2, pk+1, . . . , pr}, B = {pr−1, . . . , p2, p1}
for some r > 1 and with {pr, p�} ∈ E(G) for all � = r − 1, . . . , 2, 1. Since
{1, p} = {p1, ps} /∈ E(G), by the above presentation of u, s > r. Using
again Lemma 2.7, but considering the reversed perfect elimination order
xn > xn−1 > · · · > x1, we see that

w = xqs+1xqs+2 · · · xqk+2u/(xps+1xps+2 · · · xpk+2)

= x(A\{ps+1,ps+2,...,pk+2})∪{qs+1,qs+2,...,qk+2}xB ∈ G(HSk(I(G))).
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Moreover, w >lex v, w : v = xp and xp divides u : v, as desired.

Case 4. Suppose i1 = 1 and i2 > 1. Recall that p < j2. Moreover, p �= i2,
because xp divides u : v, but xi2 divides v. Thus, there are two cases to
consider.

Subcase 4.1. Assume p < i2. By Lemma 2.7, p ∈ set(xi2xj2). If q �= i2, then
q < j2, and by Eq. (1), w = xp(v/xq) is a minimal generator of HSk(I(G)).
Moreover, w >lex v and w : v = xp divides u : v, as wanted. Suppose now
that q = i2. If there exists �, such that x� divides v and i2 < � < j2, then
� > p and w = xp(v/x�) is a minimal generator of HSk(I(G)), such that
w >lex v and with w : v = xp dividing u : v, as wanted. Otherwise, suppose
no such integer � exists. Then, s = k + 1, qk+1 = i2 and qk+2 = j2. Since
p ∈ set(xi2xj2), then xpx� ∈ I(G), where � ∈ {i2, j2}. Then, p < � and by
Lemma 2.7, we see that w = xp(v/x�) is a minimal generator of HSk(I(G)),
such that w >lex v and with w : v = xp dividing u : v.

Subcase 4.2. Assume now i2 < p < j2. If xi2xp ∈ I(G), by Lemma 2.7, p ∈
set(xi2xj2). Setting w = xp(v/xq), we have w ∈ G(HSk(I(G))), w >lex v and
w : v = xp divides u : v. Suppose now that xi2xp /∈ I(G). By hypothesis, xn >
xn−1 > · · · > x1 is also a perfect elimination order of Gc. Thus, by Lemma 2.7,
we can write u = xAxB with A = {pk+2, pk+1, . . . , pr}, B = {pr−1, . . . , p2, p1}
for some r > 1 and with {pr, p�} ∈ E(G) for all � = r − 1, . . . , 2, 1. Note
that i2 < p, so xi2 divides u. Since {i2, p} = {i2, ps} /∈ E(G), by the above
presentation of u, s > r. Using again Lemma 2.7, but considering the reversed
perfect elimination order xn > xn−1 > · · · > x1, we see that

w = xqs+1xqs+2 · · · xqk+2u/(xps+1xps+2 · · · xpk+2)

= xAx(B\{ps+1,ps+2,...,pk+2})∪{qs+1,qs+2,...,qk+2} ∈ G(HSk(I(G))).

Moreover, w >lex v, w : v = xp and xp divides u : v, as desired.
Suppose now that x1 does not divide v. Then, v ∈ G(HSk(I(G′))). If

x1 does not divide u, then u ∈ G(HSk(I(G′))), too. Let >′
lex be the lexico-

graphic order induced by x2 > x3 > · · · > xn. Since by induction, I(G′) has
homological linear quotients with respect to >′

lex and also u >′
lex v, there

exists w ∈ G(HSk(I(G′))), with w >′
lex v, w : v = x� and x� divides u : v.

But also we have w ∈ G(HSk(I(G))) and w >lex v. Otherwise, if x1 divides
u, then x1 divides u : v. Since HSk(I(G′)) ⊆ HSk−1(I(G′)) and k > 0, we can
write v = xtw

′ with w′ ∈ G(HSk−1(I(G′))). Let w = x1w
′. Then, w >lex v

and w : v = x1 divides u : v
Hence, the inductive proof is complete and the theorem is proved. �

Remark 2.8. Let x1 > x2 > · · · > xn be a reversible perfect elimination order
of Gc. By symmetry, Theorem 2.6 shows also that HSk(I(G)) has linear
quotients with respect to the lexicographic order induced by xn > xn−1 >
· · · > x1.

Example 2.9. Let n,m be two positive integers.
(a) Let G = Kn,m be the complete bipartite graph. That is, V (G) = [n+m]

and E(G) =
{{i, j} : i ∈ [n], j ∈ {n + 1, . . . , n + m}}. For example,
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for n = 3 and m = 4 It is easy to see that Gc is the disjoint union of
two complete graphs Γ1 and Γ2 on vertex sets [n] and {n + 1, . . . , n +
m} respectively. Furthermore, any ordering of the vertices is a perfect
elimination order of Gc. Applying the previous theorem

I(G) = (x1, . . . , xn)(xn+1, . . . , xm)

has homological linear quotients with respect to the lexicographic order
induced by any ordering of the variables.

(b) Let G be the graph with vertex set V (G) = [n + m] and edge set

E(G) =
{{i, j} : i ∈ [n + m], n + 1 ≤ j ≤ n + m, i < j

}
.

We claim that G is a reversible cochordal graph. Indeed, Gc is the
disjoint union of the complete graph Kn on the vertex set [n] together
with the set of isolated vertices {n + 1, . . . , n + m}. It is easily seen
that any ordering of the vertices is a perfect elimination order of Gc.
Applying Theorem 2.6

I(G) = (x1, . . . , xn)(xn+1, . . . , xm) + (xixj : n + 1 ≤ i < j ≤ n + m)

has homological linear quotients with respect to the lexicographic order
induced by any ordering of the variables.

1

2

3

4

5

6

7

3. Homological Shifts of Trees

In this section, we construct several classes of edge ideals with homological
linear quotients, by considering various operations on cochordal graphs that
preserve the homological linear quotients property. As a main application of
all these results, we will prove the following theorem.

Theorem 3.1. Let G be a graph, such that Gc is a forest. Then, I(G) has
homological linear quotients.

The squarefree Veronese ideal In,d of degree d in S = K[x1, . . . , xn] is
the ideal of S generated by all squarefree monomials of degree d in S. It is
well known that In,d has homological linear quotients (see, for instance, [14,
Corollary 3.2]).

The first operation we consider consists in adding whiskers. Let Γ′ be a
graph on vertex set [n−1]. Let i ∈ [n−1] and let Γ be the graph with vertex
set [n] and edge set V (Γ) = V (Γ′) ∪ {{i, n}}. Γ is called the whisker graph of
Γ′ obtained by adding the whisker {i, n} to Γ′.
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Proposition 3.2. Let Γ′ be a graph on vertex set [n − 1] and Γ be the graph
on vertex set [n] and edge set V (Γ) = V (Γ′) ∪ {{i, n}} for some i ∈ [n − 1].
Set G = Γc. Suppose I((Γ′)c) has homological linear quotients. Then, I(G)
has homological linear quotients, too.

Proof. Since Γ′ is chordal, obviously, Γ is chordal, too. Set J = I((Γ′)c),
I = I(G) and L = (xj : j ∈ [n − 1]\{i}). Since NGc(n) = {i}, we have the
Betti splitting

I = xnL + J. (4)

Since G is cochordal, HS0(I) and HS1(I) have linear quotients. Therefore, we
only have to show that HSk(I) has linear quotients for k ≥ 2. By Eq. (4), for
all k ≥ 2

HSk(I) = xnHSk(L) + xnHSk−1(J) + HSk(J).

Note that HSk(L) is the squarefree Veronese ideal of degree k + 1 in the
polynomial ring K[xj : j ∈ [n − 1]\{i}]. Thus, HSk(L) has linear quotients
with admissible order, say, u1, . . . , um. Let v1, . . . , vr and w1, . . . , ws be ad-
missible orders of HSk−1(J) and HSk(J), respectively. Let vj1 , . . . , vjp

, with
j1 < j2 < · · · < jp, the monomials in G(HSk−1(J))\G(HSk(L)). We claim
that

xnu1, . . . , xnum, xnvj1 , . . . , xnvjp
, w1, . . . , ws (5)

is an admissible order of HSk(J).
Let � ∈ {1, . . . , m}. Then, (xnu1, . . . , xnu�−1) : xnu� = (u1, . . . , u�−1) :

u� is generated by variables.
Let � ∈ {1, . . . , p}. We show that

Q = (xnu1, . . . , xnum, xnvj1 , . . . , xnvj�−1) : xnvj�

= (u1, . . . , um, vj1 , . . . , vj�−1) : vj�

is generated by variables. Consider vjq
: vj�

, then we can find d < j�, such
that vd : vj�

is a variable that divides vjq
: vj�

. Either d = jb, for some b < �,
or vd ∈ HSk(L). In any case, vd ∈ (u1, . . . , um, vj1 , . . . , vj�−1) and vd : vj�

∈ Q
divides vjq

: vj�
.

Consider now uq : vj�
, 1 ≤ q ≤ m. Hence, xi divides vj�

, lest vj�
∈ G(HSk(L)).

But then, vj�
/xi ∈ HSk−1(L). Let xt dividing uq : vj�

. Then, u = xtvj�
/xi ∈

HSk(L) and u : vj�
= xt ∈ Q divides uq : vj�

.
Finally, let � ∈ {1, . . . , s}. We show that

Q = (xnu1, . . . , xnum, xnvj1 , . . . , xnvjp
, w1, . . . , w�−1) : w�

= (xnHSk(L) + xnHSk−1(J)) : w� + (w1, . . . , w�−1) : w�

is generated by variables. Since w1, . . . , ws is an admissible order, (w1, . . . ,
w�−1) : w� is generated by variables. Consider now a generator xnz : w� with
z ∈ HSk(L) or z ∈ HSk−1(J). Then, xn divides xnz : w�. On the other hand
w�/xt ∈ HSk−1(J) for some t. But then, xnw�/xt : w� = xn ∈ Q divides our
generator.

The three cases above show that (5) is an admissible order, as desired.
�
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Since any tree can be constructed iteratively by adding a whisker to a
tree on a smaller vertex set at each step, the previous proposition implies
immediately.

Corollary 3.3. Let G be a graph, such that Gc is a tree. Then, I(G) has
homological linear quotients.

The second operation we consider consists in joining disjoint graphs.
Two graphs Γ1 and Γ2 are called disjoint if V (Γ1) ∩ V (Γ2) = ∅. The join of
Γ1 and Γ2 is the graph Γ with vertex set V (Γ) = V (Γ1)∪V (Γ2) and edge set
E(Γ) = E(Γ1) ∪ E(Γ2).

Proposition 3.4. Let Γ1 and Γ2 be disjoint chordal graphs, such that I(Γc
1),

I(Γc
2) have homological linear quotients. Let Γ be the join of Γ1 and Γ2 and

set G = Γc. Then, I(G) has homological linear quotients, too.

Proof. Obviously Γ is chordal, too. Let G1 = Γc
1, G2 = Γc

2, V (G1) = [n] and
V (G2) = {n + 1, . . . , n + m}. Set L = (x1, . . . , xn)(xn+1, . . . , xm). Then

I(G) = I(G1) + I(G2) + L.

Suppose x1 > · · · > xn and xn+1 > · · · > xn+m are perfect elimination orders
of Γ1 and Γ2. Then, G = Γc is cochordal. Indeed, x1 > · · · > xn > xn+1 >
· · · > xn+m is a perfect elimination order of Γ. Let >lex be the lexicographic
order induced by such an ordering of the variables. Set I = I(G), I1 = I(G1),
and I2 = I(G2). Then, I, I1, I2 and J have linear quotients with respect to
>lex.

Let k ≥ 0 and u ∈ G(HSk(I)), such that xixj divides u for some integers
i ∈ [n], n + 1≤j ≤n + m. We claim that u ∈ G(HSk(L)). Let i0 = max{i ∈
[n] : xi divides u} and j0 = max{j ∈ {n + 1, . . . , n + m} : xj divides u}. Let
u/(xi0xj0) = xF . Then, F ⊆ {1, . . . , i0−1}∪{n+1, . . . , j0−1} = setI(xi0xj0)
and xi0xj0 ∈ L. Thus, by Eq. (1), u = xi0xj0xF ∈ HSk(L), as desired.
This argument shows that any squarefree monomial w ∈ K[x1, . . . , xn+m]
of degree k + 2, containing as a factor any monomial xixj with i ∈ [n] and
n + 1 ≤ j ≤ n + m, is a generator of HSk(L).

From this remark, for all k ≥ 0, it follows that:

HSk(I) = HSk(L) + HSk(I1) + HSk(I2).

Note that L is the edge ideal of a complete bipartite graph. By Exam-
ple 2.9(a), L has homological linear quotients. Let u1, . . . , um be an admissible
order of HSk(L). Moreover, let v1, . . . , vr and w1, . . . , ws be admissible orders
of HSk(I1) and HSk(I2), respectively. Note that the monomials ui, vj , wt are
all different, because all monomials ui contain a factor xi0xj0 with i0 ∈ [n]
and j0 ∈ {n+1, . . . , n+m}. Whereas, the vj are monomials in K[x1, . . . , xn]
and the wt are monomials in K[xn+1, . . . , xn+m].

We claim that

u1, . . . , um, v1, . . . , vr, w1, . . . , ws (6)

is an admissible order of HSk(I).
Let � ∈ {1, . . . , m}. Then, (u1, . . . , u�−1) : u� is generated by variables.
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Let � ∈ {1, . . . , r}. We show that

Q = (u1, . . . , um, v1, . . . , v�−1) : v�

is generated by variables. Clearly, (v1, . . . , v�−1) : v� is generated by vari-
ables. Consider now uq : v�, 1 ≤ q ≤ m. Recall that v� is a monomial in
K[x1, . . . , xn]. Thus, xj divides uq : v� for some j ∈ {n + 1, . . . , n + m}. Con-
sider v�/xt for some t. Then, u = xj(v�/xt) ∈ HSk(L) and u : v� = xj ∈ Q,
as desired.

Finally, let � ∈ {1, . . . , s}. We show that

Q = (u1, . . . , um, v1, . . . , vr, w1, . . . , w�−1) : w�

is generated by variables. Since w1, . . . , ws is an admissible order, (w1, . . . ,
w�−1) : w� is generated by variables. Consider now a generator z : w� with
z = uq or z = vq, for some q. Since w� is a monomial in K[xn+1, . . . , xn+m],
z : w� is divided by a variable xi, where i ∈ [n]. Consider w�/xt for some t.
Then, u = xi(w�/xt) ∈ HSk(L) and u : w� = xi ∈ Q, as desired.

The three cases above show that (6) is an admissible order, as desired.
�

Proof of Theorem 3.1. Let Γ = Gc be a forest and let c be the number of
connected components of Γ. If c = 1, then Γ is a tree, and by Corollary 3.3,
I(G) has homological linear quotients. Suppose c > 1 and write Γ = Γ1 ∪ Γ2,
where Γ1 and Γ2 are disjoint forests. The numbers of connected components
of Γ1 and Γ2 are smaller than c. Thus, by induction, I(Γc

1) and I(Γc
2) have

homological linear quotients. Applying Proposition 3.4, it follows that I(G)
has homological linear quotients, too. �

Let G be a complete multipartite graph, then Gc is the disjoint union
of some complete graphs. Repeated applications of Proposition 3.4 yield the
following.

Corollary 3.5. Let G be a complete multipartite graph. Then, I(G) has ho-
mological linear quotients.

4. Polymatroidal Ideals Generated in Degree Two

A polymatroidal ideal I ⊂ S = K[x1, . . . , xn] is a monomial ideal I generated
in a single degree verifying the following exchange property : for all u, v ∈ G(I)
with u �= v and all i, such that degxi

(u) > degxi
(v), there exists j, such that

degxj
(u) < degxj

(v) and xj(u/xi) ∈ G(I).
The name polymatroidal ideal is justified by the fact that their minimal

generating set corresponds to the set of bases of a discrete polymatroid. A
squarefree polymatroidal ideal is called matroidal. Any polymatroidal ideal
also satisfy a dual version of the exchange property.

Lemma 4.1 [13, Lemma 2.1]. Let I ⊂ S be a polymatroidal ideal. Then, for
all u, v ∈ G(I) and all i, such that degxi

(u) > degxi
(v), there exists j, such

that degxj
(u) < degxj

(v) and xi(v/xj) ∈ G(I).
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There are many useful characterizations of polymatroidal ideals. The
following one is due to Bandari and Rahmati-Asghar.

Theorem 4.2 [1, Theorem 2.4]. Let I ⊂ S be a monomial ideal generated in
a single degree. Then, I is polymatroidal if and only if I has linear quotients
with respect to the lexicographic order induced by any ordering of the variables.

It is expected by Bandari, Bayati, and Herzog that the homological shift
ideals HSk(I) of a polymatroidal ideal I are all polymatroidal; see [14,17].
In this section, we provide an affirmative answer to this conjecture for all
polymatroidal ideals generated in degree two.

First, we deal with the squarefree case.

Lemma 4.3. Let I ⊂ S be a matroidal ideal generated in degree two, and let
G be the simple graph on [n], such that I = I(G). Then, any ordering of the
variables is a perfect elimination order of Gc.

Proof. Up to relabeling, we can consider the ordering x1 > x2 > · · · > xn.
Let j, k ∈ NGc(i) with j, k > i. We must prove that {j, k} ∈ E(Gc). By our
assumption, {i, j}, {i, k} /∈ E(G), that is xixj , xixk /∈ I(G) = I. Suppose
by contradiction that {j, k} /∈ E(Gc), then {j, k} ∈ E(G), that is, xjxk ∈
I(G). Pick any monomial xixs ∈ I(G). Then, degxi

(xixs) > degxi
(xjxk). By

Lemma 4.1, we can find � with degx�
(xixs) < degx�

(xjxk) and xi(xjxk)/x� ∈
I(G). Thus, either xixj ∈ I(G) or xixk ∈ I(G). This is a contradiction.
Hence, {j, k} ∈ E(Gc), as desired. �

Corollary 4.4. Let I ⊂ S be a matroidal ideal generated in degree two. Then,
HSk(I) is a matroidal ideal, for all k ≥ 0.

Proof. Let G be the simple graph on [n], such that I = I(G). By Lemma 4.3
and Theorem 2.2, Gc is a reversible chordal graph and any ordering of the
variables is a reversible perfect elimination order of Gc. By Theorem 2.6, for
all k ≥ 0, HSk(I) has linear quotients with respect to the lexicographic order
induced by any ordering of the variables. Thus, by Theorem 4.2, HSk(I) is
matroidal, for all k ≥ 0. �

Now, we turn to the non-squarefree case.

Theorem 4.5. Let I ⊂ S be a polymatroidal ideal generated in degree two.
Then, HSk(I) is a polymatroidal ideal, for all k ≥ 0.

Proof. If I is squarefree, the thesis follows from Corollary 4.4. Suppose I is not
squarefree. Up to a suitable relabeling, we can write I = (J, x2

1, x
2
2, . . . , x

2
t ),

where J is the squarefree part of I, i.e., G(J) = {u ∈ G(I) : u is squarefree}
and 1 ≤ t ≤ n. Then, J is a matroidal ideal. Let G be the simple graph on [n]
with J = I(G), and then, Gc is cochordal. Let u1, . . . , um be an admissible
order of J . We claim that

u1, . . . , um, x2
1, x

2
2, . . . , x

2
t

is an admissible order of I. We only need to prove that

Q = (u1, . . . , um, x2
1, . . . , x

2
�−1) : x2

� = (J, x2
1, . . . , x

2
�−1) : x2

�
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is generated by variables. Indeed, let xixj : x2
� ∈ Q be a generator with i ≤ j.

If xixj : x2
� is a variable, there is nothing to prove. Otherwise, xixj : x2

� =
xixj , and � �= i, j. Since degx�

(x2
�) > degx�

(xixj), by the exchange property,
w = xk(x2

�)/x� = xkx� ∈ I, with k = i or k = j. Then, k �= �, w = xkx� ∈ J
and w : x2

� = xk ∈ Q is a variable that divides xixj : x2
� , as desired.

We claim that set(x2
�) = [n]\{�}, for all � = 1, . . . , t. Let i ∈ [n]\{�}.

Then, xixj ∈ G(I) for some j. If j = �, then xix� ∈ I. Suppose j �= �, then
degxj

(xixj) > degxj
(x2

�). By the exchange property, xix� ∈ I, as desired.
By Eq. (1), for all k > 0

HSk(I) = HSk(J) +
t∑

�=1

x2
� · HSk−1((xi : i ∈ [n]\{�})).

We set J� = (xi : i ∈ [n]\{�}), � = 1, . . . , t. Since J is matroidal,
HSk(J) is matroidal by Corollary 4.4. Moreover, each ideal J� is generated
by variables, and so, it is matroidal. Hence, all ideals x2

� · HSk−1(J�) are
polymatroidal.

To verify that HSk(I) is polymatroidal, we check the exchange property.
Let u, v ∈ G(HSk(I)) and i, such that degxi

(u) > degxi
(v).

To achieve our goal, we note the following fact. Let w ∈ S be any
squarefree monomial of degree k + 1 and let � ∈ [t]. Then, x�w ∈ HSk(I).
Indeed, if x� divides w, then x�w ∈ x2

� ·HSk−1(J�) ⊂ HSk(I). Suppose x� does
not divide w. For all i, such that xi divides w, xix� ∈ J , because i �= �. Fix a
lexicographic order 
, such that x� > xi for all i ∈ [n]\{�}. Up to relabeling,
we can assume � = 1 and that 
 is induced by x1 > x2 > · · · > xn. Writing
x�w = x�xj2 · · · xjk+2 with � = 1 < j2 < · · · < jk+2 ≤ n, then x�xjk+2 ∈ J ,
x�xji

∈ J and x�xji

 x�xjk+2 , for i = 2, . . . , k + 1. Hence

{j2, . . . , jk+1} ⊆ {
j | xj ∈ (u ∈ G(J) : u 
 x�xjk+2) : x�xjk+2

}
.

This shows that x�w ∈ HSk(J) ⊂ HSk(I), because by Theorem 4.2, J has
linear quotients with respect to 
.

If u, v ∈ HSk(J) or u, v ∈ x2
� ·HSk−1(J�), we can find j with degxj

(u) <

degxj
(v), such that xj(u/xi) ∈ HSk(I), because both HSk(J), x2

� · HSk−1(J�)
are polymatroidal.

Suppose now u ∈ HSk(J) and v ∈ x2
� · HSk−1(J�). Then, degx�

(u) <
degx�

(v) and x�(u/xi) ∈ HSk(I), because u/xi is a squarefree monomial of
degree k + 1.

Suppose u ∈ x2
� ·HSk−1(J�) and v ∈ HSk(J). Let j, such that degxj

(u) <

degxj
(v). Then, degxj

(u) = 0. If i = �, then xj(u/x�) ∈ HSk(I), because it
is the product of x� times a squarefree monomial of degree k + 1. If i �= �,
then xj(u/xi) can also be written as such a product. In any case xj(u/xi) ∈
HSk(I).

Finally, suppose u ∈ x� · HSk−1(J�) and v ∈ x2
h · HSk−1(Jh) with � �= h.

Suppose i = � and let j, such that degxj
(u) < degxj

(v). Then, u′ = xj(u/xi)
is either x� times a squarefree monomial of degree k+1, or is equal to xh times
a squarefree monomial of degree k + 1. In both cases, u′ ∈ HSk(I). Suppose
now i �= �. If there exist more than one j with degxj

(u) < degxj
(v), we can
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choose j �= h. Then, degxj
(v) = 1, and so, xj does not divide u. Consequently,

xj(u/xi) is equal to x� times a squarefree monomial of degree k + 1, and so,
xj(u/xi) ∈ HSk(I). If there is only one j, such that degxj

(u) < degxj
(v),

then j = h. We claim that xh does not divide u, then xh(u/xi) is equal to
x� times a squarefree monomial of degree k + 1, and so, xh(u/xi) ∈ HSk(I),
as wanted. Writing v = x2

hxj1 · · · xjk
, with jp ∈ [n]\{h}, p = 1, . . . , k, then

degxjp
(v) = 1 ≤ degxjp

(u), for all p = 1, . . . , k. Then, xj1 · · · xjk
divides

u/(xix�), because degx�
(u) > 1 ≥ degx�

(v) and degxi
(u) = 1 > degxi

(v).
This implies that u = xix� ·xj1 · · · xjk

. From this presentation, it follows that
xh does not divide u, because i, � �= h and jp �= h for p = 1, . . . , k, as well.

The cases above show that the exchange property holds for all monomi-
als of G(HSk(I)). Hence, HSk(I) is polymatroidal and the proof is complete.
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