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Abstract. In this article, we investigate more general nonlinear bihar-
monic equation

Δ2u + Vλ(x)u = μf(x)u−γ + g(x)up−1 in R
N ,

where Δ2 := Δ(Δ) is the biharmonic operator, N ≥ 1, λ > 0 is a
parameter, 0 < γ < 1. Different from previous works on biharmonic
problems, we suppose that V (x) = λa(x) − b(x) with λ > 0 and b(x)
could be singular at the origin. Under suitable conditions on Vλ(x), f(x)
and g(x), the multiplicity of solutions is obtained for λ > 0 sufficiently
large and some new estimates will be established. Our analysis is based
on the Nehari manifold as well as the fibering map.
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1. Introduction

The purpose of this paper is to consider the following biharmonic equation:{
Δ2u + Vλ(x)u = μf(x)u−γ + g(x)up−1, in R

N ,
u > 0, in R

N ,
(1.1)

where Δ2 := Δ(Δ) is the biharmonic operator with N ≥ 1, and 0 < γ < 1,
2 < p < 2∗∗(2∗∗ = 2N

N−4 ). λ, μ > 0 are parameters and the potential Vλ(x) =
λa(x) − b(x). We assume that a(x) and b(x) satisfy the following conditions:
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(V1) a ∈ C(RN ) and a(x) ≥ 0 for all x ∈ R
N and there exists a0 > 0 such

that the set

{a < a0} := {x ∈ R
N |a(x) < a0}

has finite positive Lebesgue measure for N ≥ 4 and

|{a < a0}| < S−2
∞

(
1 +

A2
0

2

)−1

for N ≤ 3,

where | · | is the Lebesgue measure, S∞ is the best Sobolev constant for
the embedding of H2(RN ) in L∞(RN ) with N ≤ 3, and A0 is defined in
Lemma 2.1;
(V2) Ω = int{x ∈ R

N : a(x) = 0} is nonempty and has a smooth boundary
with Ω̄ = {x ∈ R

N : a(x) = 0};
(V3) b(x) is a measurable function on R

N and there exists 0 < b0 < γ̄ such
that 0 ≤ b(x) ≤ b0

|x|4 for all x ∈ R
N , where γ̄ := N2(N−4)2

16 is a critical
Hardy-Sobolev constant.

The potential Vλ satisfies (V1), (V2) is called the steep well potential,
which was first introduced by Bartsch and Wang [4] in the study of the
nonlinear Schrödinger equations.

When Ω is a bounded domain of RN , the researchers mainly focused on
the following Navier boundary value problem:{

Δ2u + cΔu = f(x, u), x ∈ Ω,
u = Δu = 0, x ∈ ∂Ω,

(1.2)

which arises in the study of traveling waves in suspension bridges, see [5,9,14]
and the study of the static deflection of an elastic plate in a fluid. In the last
decades, many authors have attached their attention to the existence and
multiplicity of nontrivial solutions for biharmonic equations, we refer the
readers to [2,6,10,12].

Recently, biharmonic equations on unbounded domain R
N have at-

tracted a lot of attention. Especially, the researchers mainly investigated the
following problems with the steep potential:{

Δ2u − Δu + λV (x)u = f(x, u) in R
N ,

u ∈ H2(RN ). (1.3)

With the aid of λ, they proved that the energy functional possesses the prop-
erty of being locally compact, see [8,11,16,18] and their references therein.
Especially, Ye and Tang [18] assumed that f(x, u) was superlinear and sub-
critical at infinity, when λ was large enough, they obtained the existence
and multiplicity of nontrivial solutions. Later, Zhang, Tang, Zhang and Luo
[19] improved their results and obtained the existence of infinite nontrivial
solutions when λ > 0 was large enough. Badiale, Greco and Rolando [3] ob-
tained two nontrivial solutions for the case f(x, u) = g(x, u) + μξ(x)|u|p−2u
when g(x, u), ξ(x) satisfied some assumptions, λ was large enough and μ was
small enough. Mao and Zhao [13] considered (1.3) with Kirchhoff terms and
concave-convex nonlinearities, existence and multiplicity of solutions were
proved using the variational method.
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Very recently, replacing Laplacian with p-Laplacian in (1.3), Sun, Chu
and Wu [15] studied the following biharmonic equation{

Δ2u − βΔpu + λV (x)u = f(x, u) in R
N ,

u ∈ H2(RN ),

where N ≥ 1, p ≥ 2 and β > 0 small enough or β < 0. Using the mountain
pass theorem, and under some suitable assumptions on V (x) and f(x, u),
they obtained the existence and multiplicity of nontrivial solutions for λ large
enough. Later, Jiang and Zhai [7] supplemented their results, when β ∈ R

and λV (x) was replaced by Vλ(x), which was singular, the multiplicity of
nontrivial solutions was obtained.

Motivated by the above papers, in the present paper, we consider a
biharmonic problem with steep well potential and singular nonlinearity. To
the best of knowledge, few works concerning this case up to now. To this
end, we need some assumptions on f(x) and g(x) and make the following
hypotheses:
(F ) f ∈ L

p
p+γ−1 (RN ) is a positive continuous function.

(G) g ∈ L∞(RN ) is a sign-changing function such that |g+|∞ > 0, where
g+ = max{g(x), 0}.

Now, we state our main result.

Theorem 1.1. Let 0 < γ < 1 and 2 < p < 2∗∗. Suppose that f, g and Vλ

satisfy (F ), (G) and (V1) − (V3), then there exist λ∗ > 0 and μ∗ > 0 such
that problem (1.1) has at least two solutions for all (λ, μ) ∈ [λ∗,+∞)×(0, μ∗).

Remark 1.2. From the condition (V3), it is easy to obtain that the function
b(x) could be singular at the origin. Moreover, the improved Hardy–Sobolev
inequality (see Lemma 1.1 in [17]) gives∫

RN

b(x)u2dx ≤ b0

∫
RN

u2

|x|4 dx ≤ b0

γ̄

∫
RN

|Δu|2dx.

2. Preliminaries

Let

X =
{

u ∈ H2(RN )|
∫
RN

(|Δu|2 + a(x)u2)dx < +∞
}

be equipped with the inner product and norm

〈u, v〉 =
∫
RN

(ΔuΔv + a(x)uv)dx, ‖u‖ = 〈u, u〉(1/2).

For λ > 0, we also need the inner product and norm

〈u, v〉λ =
∫
RN

(ΔuΔv + λa(x)uv)dx, ‖u‖λ = 〈u, u〉(1/2)
λ .

It is clear that ‖u‖ ≤ ‖u‖λ for λ ≥ 1. For simplicity, we let

‖u‖2
λ,V :=

∫
RN

(|Δu|2dx + Vλu2
)
dx,
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then by Remark 1.2, one has

‖u‖2
λ ≥ ‖u‖2

λ,V ≥ μ0 − 1
μ0

‖u‖2
λ, λ > 0, (2.1)

where μ0 = γ̄
b0

> 1. Hence, ‖u‖λ,V and ‖u‖λ are equivalent in Xλ, where

Xλ =
{

u ∈ H2(RN )|
∫
RN

(|Δu|2 + λa(x)u2)dx < +∞
}

.

Lemma 2.1 ([15]). Under assumptions (V1), (V2), the continuous embedding

Xλ ↪→ Lr(RN ) is compact for 2 ≤ r < 2∗∗, and there holds
∫
RN

|u|rdx ≤
Θr‖u‖r

λ for λ ≥ λ∗, where

Θr :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S
−(r−2)
∞

[
(1 + A2

0
2 )−1 − S2

∞|{a < a0}|
]−r/2

if N ≤ 3,

S−r
r

(
1 + A2

0
2

)r/2

if N = 4,

C
N(r−2)/4
0

(
1 + A2

0
2

)r/2

if N > 4,

and

λ∗ :=

⎧⎪⎨
⎪⎩

1
a0

if N ≤ 3,
2(1+B4

0 |{a<a0}|)
a0

if N = 4,
1+C2

0 |{a<a0}|N/4

a0
if N > 4,

where A0, B0, C0 are positive constants, and Sr is the best Sobolev constant
for the embedding of H2(RN ) in Lr(RN ) for 2 ≤ r < 2∗∗.

In this paper, we make use of the following notations: the Lr-norm
(1 ≤ r ≤ +∞) by | · |r. C denotes various positive constants, which may
vary from line to line. By (V1), (V2), the Hölder inequality and the Sobolev
inequality, we have∫

RN

f |u|1−γdx ≤ |f | p
p+γ−1

Θ
1−γ

p
p ‖u‖1−γ

λ . (2.2)

The energy functional corresponding to (1.1) given by

Iλ,μ(u) =
1
2
‖u‖2

λ − 1
2

∫
RN

b(x)u2dx − μ

1 − γ

∫
RN

f |u|1−γdx

− 1
p

∫
RN g|u|pdx, for u ∈ Xλ.

(2.3)

It is clear that Iλ,μ is a C1 functional. Since Iλ,μ is not bounded below
on Xλ, it is useful to consider the functional on the Nehari manifold

Nλ,μ = {u ∈ Xλ\{0} : 〈I ′
λ,μ(u), u〉 = 0}.

We analyze Nλ,μ in terms of the stationary points of fibering maps Nu :
(0,+∞) → R given by

Nu(t) = Iλ,μ(tu), t > 0.
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Then for each u ∈ Nλ,μ, we have

N ′
u(t) = t‖u‖2

λ,V − μt−γ

∫
RN

f |u|1−γdx − tp−1

∫
RN

g|u|pdx,

N ′′
u (t) = ‖u‖2

λ,V + μγt−γ−1

∫
RN

f |u|1−γdx − (p − 1)tp−2

∫
RN

g|u|pdx.

It is easy to see that

tN ′
u(t) = t2‖u‖2

λ,V − μt1−γ

∫
RN

f |u|1−γdx − tp
∫
RN

g|u|pdx,

and for u ∈ Xλ\{0} and t > 0, then tu ∈ Nλ,μ if and only if N ′
u(t) = 0,

that is, the critical points of Nu(t) correspond to the points on the Nehari
manifold. In particular, u ∈ Nλ,μ if and only if N ′

u(1) = 0. Then we define

N+
λ,μ = {u ∈ Nλ,μ : N ′′

u (1) > 0},

N 0
λ,μ = {u ∈ Nλ,μ : N ′′

u (1) = 0},

N −
λ,μ = {u ∈ Nλ,μ : N ′′

u (1) < 0}.

The existence of solutions to (1.1) can be studied by considering the existence
of minimizers to Iλ,μ on Nλ,μ. Furthermore, for each u ∈ Nλ,μ, we know that

N ′′
u (1) = ‖u‖2

λ,V + μγ

∫
RN

f |u|1−γdx − (p − 1)
∫
RN

g|u|pdx

= (1 + γ)‖u‖2
λ,V − (p + γ − 1)

∫
RN

g|u|pdx

= (2 − p)‖u‖2
λ,V + μ(p + γ − 1)

∫
RN

f |u|1−γdx.

(2.4)

Lemma 2.2. The energy functional Iλ,μ is coercive and bounded from below
on Nλ,μ.

Proof. For u ∈ Nλ,μ, we have

‖u‖2
λ,V − μ

∫
RN

f |u|1−γdx −
∫
RN

g|u|pdx = 0.

Therefore, by (2.1), (2.2), (2.3) and Lemma 2.1,

Iλ,μ(u) =
(

1
2

− 1
p

)
‖u‖2

λ,V − μ(p + γ − 1)
p(1 − γ)

∫
RN

f |u|1−γdx

≥ (p − 2)(μ0 − 1)
2pμ0

‖u‖2
λ − μ(p + γ − 1)

p(1 − γ)
|f | p

p+γ−1
Θ

1−γ
p

p ‖u‖1−γ
λ .

For 0 < γ < 1, thus we get the conclusion. �

Before the following lemma, we define

μ∗ =
(μ0 − 1)(p − 2)

μ0(p + γ − 1)|f | p
p+γ−1

Θ
1−γ

p
p

×
(

(μ0 − 1)(1 + γ)
μ0(p + γ − 1)|g+|∞Θp

) 1+γ
p−2

.

Lemma 2.3. Suppose that (F ), (G), (V1) − (V3) are satisfied. Then the set
N 0

λ,μ is empty for (λ, μ) ∈ [λ∗,+∞) × (0, μ∗).
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Proof. If N 0
λ,μ 
= ∅, by (2.4), we have

(1 + γ)‖u‖2
λ,V − (p + γ − 1)

∫
RN

g|u|pdx = 0

and

(2 − p)‖u‖2
λ,V + μ(p + γ − 1)

∫
RN

f |u|1−γdx = 0.

By (2.1), (2.2) and Lemma 2.1, we get that

μ0 − 1
μ0

‖u‖2
λ ≤ p + γ − 1

1 + γ

∫
RN

g|u|pdx ≤ p + γ − 1
1 + γ

|g+|∞Θp‖u‖p
λ

and

μ0 − 1

μ0
‖u‖2

λ ≤ μ(p + γ − 1)

p − 2

∫
RN

f |u|1−γdx ≤ μ(p + γ − 1)

p − 2
|f | p

p+γ−1
Θ

1−γ
p

p ‖u‖1−γ
λ .

Then we get

‖u‖λ ≥
(

(μ0 − 1)(1 + γ)
μ0(p + γ − 1)|g+|∞Θp

) 1
p−2

and

‖u‖λ ≤
(

μ0μ(p + γ − 1)
(μ0 − 1)(p − 2)

|f | p
p+γ−1

Θ
1−γ

p
p

) 1
1+γ

.

Hence, we obtain μ ≥ μ∗, which is impossible. Thus we get the conclusion.
�

Lemma 2.4. Suppose that (F ), (G), (V1) − (V3) are satisfied. Then

(i) if
∫
RN

g|u|pdx ≤ 0, then there is a unique 0 < t+ < tmax, such that

t+u ∈ N+
λ,μ and

Iλ,μ(t+u) = inf
t>0

Iλ,μ(tu);

(ii) if
∫
RN

g|u|pdx > 0, then there are unique t+ and t− with t− > tmax >

t+ > 0, such that t−u ∈ N −
λ,μ, t+u ∈ N+

λ,μ and

Iλ,μ(t+u) = inf
0≤0≤tmax

Iλ,μ(tu), Iλ,μ(t−u) = sup
t≥tmax

Iλ,μ(tu).

Proof. Fix u ∈ Xλ\{0} with
∫
RN

f |u|1−γdx > 0. Note that

N ′
u(t) = t‖u‖2

λ,V − μt−γ

∫
RN

f |u|1−γdx − tp−1

∫
RN

g|u|pdx.

For t > 0, we define

H(t) := t2−p‖u‖2
λ,V − μt1−γ−p

∫
RN

f |u|1−γdx.
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Then for t > 0 and tu ∈ Nλ,μ if and only if t is a solution for H(t) =∫
RN g|u|pdx, and H(t) → −∞ as t → 0+, H(t) → 0 as t → ∞. Since

H ′(t) = (2 − p)t1−p‖u‖2
λ,V − μ(1 − γ − p)t−γ−p

∫
RN

f |u|1−γdx,

then H(t) possesses a unique maximum point

tmax =

(
μ(1 − γ − p)

∫
RN f |u|1−γdx

(2 − p)‖u‖2
λ,V

) 1
γ+1

,

and

H(tmax) =

[(
μ(1 − γ − p)

2 − p

) 2−p

γ+1 − μ

(
μ(1 − γ − p)

(2 − p)

) 1−γ−p

γ+1

]
(
∫
RN f |u|1−γdx)

2−p

γ+1

‖u‖
2(1−γ−p)

γ+1
λ,V

≥ μ
2−p

γ+1 ‖u‖p
λ,V

γ+1
p−2

(
1−γ−p
2−p

) 1−γ−p

γ+1

(
( μ0

μ0−1 )
1−γ

2 |f | p

p+γ−1
Θ

1−γ

p
p

) 2−p

γ+1
.

(2.5)

Moreover, H(t) is increasing on (0, tmax) and decreasing on (tmax,∞).

(i) if
∫
RN

g|u|pdx ≤ 0, then there is a unique 0 < t+ < tmax, such that

H(t+) =
∫
RN

g|u|pdx, H ′(t+) > 0.

Thus, t+u ∈ Nλ,μ and one has

N ′′
t+u(1) = (2 − p)(t+)2‖u‖2

λ,V + μ(p + γ − 1)(t+)1−γ

∫
RN

f |u|1−γdx

= t1+pH ′(t+) > 0.

Then t+u ∈ N+
λ,μ. Since for 0 < t < tmax, one has

d

dt
Iλ,μ(tu) = t‖u‖2

λ,V − μt−γ

∫
RN

f |u|1−γdx − tp−1

∫
RN

g|u|pdx = 0

and
d2

dt2
Iλ,μ(tu) = (2 − p)t2‖u‖2

λ,V + μ(p + γ − 1)t1−γ

∫
RN

f |u|1−γdx > 0

for t = t+. Therefore, Iλ,μ(t+u) = inft>0 Iλ,μ(tu) holds.

(ii) if
∫
RN

g|u|pdx > 0, by (2.2),(2.5) and μ ∈ (0, μ∗), we have

0 <

∫
RN

g|u|pdx ≤ (
μ0

μ0 − 1
)p/2|g+|∞Θp

p‖u‖p
λ,V

= (μ∗)
2−p

γ+1 ‖u‖p
λ,V

1 + γ

p + γ − 1

(
p − 2

p + γ − 1

) p−2
1+γ

(
(

μ0

μ0 − 1
)

1−γ

2 |f | p

p+γ−1
Θ

1−γ

p
p

) 2−p

γ+1

< H(tmax).

There are t+ and t− such that 0 < t+ < tmax < t−,

H(t+) =
∫
RN

g|u|pdx = H(t−)
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and

H ′(t+) > 0 > H ′(t−).

As in (i), we have t+u ∈ N+
λ,μ, t−u ∈ N −

λ,μ, and Iλ,μ(t−u) ≥ Iλ,μ(tu) ≥
Iλ,μ(t+u) for each t ∈ [t+, t−] and Iλ,μ(t+u) = inf0≤0≤tmax Iλ,μ(tu), Iλ,μ(t−u)
= supt≥tmax

Iλ,μ(tu). Thus we get the conclusion. �

We remark that from Lemmas 2.3 and 2.4, one has Nλ,μ = N+
λ,μ ∪ N −

λ,μ

for all (λ, μ) ∈ [λ∗,+∞) × (0, μ∗). Since N+
λ,μ and N −

λ,μ are non-empty, thus,
by Lemma 2.4, we may define

c+
λ,μ = inf

u∈N+
λ,μ

Iλ,μ(u), c−
λ,μ = inf

u∈N −
λ,μ

Iλ,μ(u)

Then we have the following results.

Lemma 2.5. Suppose that the functions f, g and V satisfy the conditions
(F ), (G) and (V1) − (V3). Then for (λ, μ) ∈ [λ∗,+∞) × (0, μ∗), there exists
a positive constant C0 such that c+

λ,μ < 0 < C0 < c−
λ,μ.

Proof. (i) Let u ∈ N+
λ,μ ⊂ Nλ,μ, then we have

(1 + γ)‖u‖2
λ,V − (p + γ − 1)

∫
RN

g|u|pdx > 0.

It follows that

Iλ,μ(u) =
1
2
‖u‖2

λ − 1
2

∫
RN

b(x)u2dx − μ

1 − γ

∫
RN

f |u|1−γdx − 1
p

∫
RN

g|u|pdx

= − 1 + γ

2(1 − γ)
‖u‖2

λ,V +
p + γ − 1
p(1 − γ)

∫
RN

g|u|pdx

< − (p−2)(1+γ)
2p(1−γ) ‖u‖2

λ,V < 0.

Therefore, c+
λ,μ < 0.

(ii) Let u ∈ N −
λ,μ, then we have

(1 + γ)‖u‖2
λ,V − (p + γ − 1)

∫
RN

g|u|pdx < 0.

According to (2.1), we get

μ0 − 1
μ0

‖u‖2
λ ≤ ‖u‖2

λ,V <
p + γ − 1

1 + γ

∫
RN

g|u|pdx ≤ p + γ − 1
1 + γ

|g+|∞Θp‖u‖p
λ.

Therefore, we can show that

‖u‖λ >

(
(μ0 − 1)(1 + γ)

μ0(p + γ − 1)|g+|∞ Θp

) 1
p−2

:= C.

Then, we know

Iλ,μ(u) ≥ (p − 2)(μ0 − 1)
2pμ0

‖u‖2
λ − μ(p − 1 + γ)

p(1 − γ)
|f | p

p−1+γ
Θ1−γ

p ‖u‖1−γ
λ

> C1−γ
[

(p−2)(μ0−1)
2pμ0

C1+γ − μ(p−1+γ)
p(1−γ) |f | p

p−1+γ
Θ1−γ

p

]
:= C0.
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Since (λ, μ) ∈ [λ∗,+∞)× (0, μ∗), we can verify that C0 > 0. Hence Iλ,μ(u) >
C0 > 0 for all u ∈ N −

λ,μ and the proof is completed. �

Lemma 2.6. Suppose that the functions f, g and V satisfy the conditions
(F ), (G) and (V1) − (V3). Then N −

λ,μ is a closed subset in Xλ for (λ, μ) ∈
[λ∗,+∞) × (0, μ∗).

Proof. In order to prove that N −
λ,μ is a closed subset in Xλ, let us con-

sider a sequence {un} ⊂ N −
λ,μ such that un → u in Xλ. It is obvious that

〈I ′
λ,μ(u), u〉 = 0. By the proof of Lemma 2.5, we have

‖u‖λ = lim
n→∞ ‖un‖λ ≥ C > 0.

Thus, u ∈ Nλ,μ. By the definition of N −
λ,μ, it holds

(1 + γ)‖un‖2
λ,V − (p + γ − 1)

∫
RN

g|un|pdx < 0.

Combining with Lemma 2.1, one has

(1 + γ)‖u‖2
λ,V − (p + γ − 1)

∫
RN

g|u|pdx ≤ 0,

which implies that u ∈ N −
λ,μ ∪ N 0

λ,μ. By Lemma 2.3, we know N 0
λ,μ = ∅.

Therefore, u ∈ N −
λ,μ. Thus, N −

λ,μ is a closed subset in Xλ. �

Lemma 2.7. Suppose u ∈ N+
λ,μ and v ∈ N −

λ,μ are minimizers of Iλ,μ on N+
λ,μ

and N −
λ,μ. Then for every nonnegative w ∈ Xλ, we have

(i) there exists ε0 > 0 such that Iλ,μ(u + εw) ≥ Iλ,μ(u) for all 0 ≤ ε ≤ ε0.
(ii) tε → 1 as ε → 0+, for ε ≥ 0, where tε is the unique positive real number
satisfying tε(v + εw) ∈ N −

λ,μ.

Proof. (i) Let w ≥ 0 and for each ε ≥ 0, set

σ(ε) = ‖u + εw‖2
λ,V + μγ

∫
RN

f |u + εw|1−γdx − (p − 1)
∫
RN

g|u + εw|pdx.

Then by using continuity of σ and σ(0) = N ′′
u (1) > 0, there exists ε0 > 0

such that σ(ε) > 0 for all 0 ≤ ε ≤ ε0. Similar to the proof of Lemma 2.4,
for each ε > 0, there exists sε > 0 such that sε(u + εw) ∈ N+

λ,μ, such that
Iλ,μ(sε(u + εw)) = inft>0 Iλ,μ(t(u + εw)), then for each ε ∈ [0, ε0], we have

Iλ,μ(u + εw) ≥ Iλ,μ(sε(u + εw)) ≥ Iλ,μ(u).

(ii) For each v ∈ N −
λ,μ, we define J : (0,∞) × R

3 → R by

J(t, l1, l2, l3) = l1t − μl2t
−γ − l3t

p−1,

for (t, l1, l2, l3) ∈ (0,∞) × R
3. Since v ∈ N −

λ,μ, one obtains

∂J

∂t
(1, ‖v‖2

λ,V ,

∫
RN

f |v|1−γdx,

∫
RN

g|v|pdx) = N ′′
v (1) < 0.

Moreover, for each ε > 0,

J(tε, ‖v + εw‖2
λ,V ,

∫
RN

f |v + εw|1−γdx,

∫
RN

g|v + εw|pdx) = 0.
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We also have

J(1, ‖v‖2
λ,V ,

∫
RN

f |v|1−γdx,

∫
RN

g|v|pdx) = N ′
v(1) = 0.

Applying the implicit function theorem, there exists an open neighbourhood
A ⊂ (0,∞) and B ⊂ R

3 containing 1 and (‖v‖2
λ,V ,

∫
RN f |v|1−γdx,

∫
RN g|v|pdx)

respectively such that for all J(t, y) = 0 has a unique solution t = j(y) with
j : B → A being a smooth function. Then one has

(‖v + εw‖2
λ,V ,

∫
RN

f |v + εw|1−γdx,

∫
RN

g|v + εw|pdx) ∈ B,

and

j(‖v + εw‖2
λ,V ,

∫
RN

f |v + εw|1−γdx,

∫
RN

g|v + εw|pdx) = tε.

Since

J(tε, ‖v + εw‖2
λ,V ,

∫
RN

f |v + εw|1−γdx,

∫
RN

g|v + εw|pdx) = 0.

Thus, by continuity of g, we get tε → 1 as ε → 0+. �

Lemma 2.8. Suppose u ∈ N+
λ,μ and v ∈ N −

λ,μ are minimizers of Iλ,μ on N+
λ,μ

and N −
λ,μ. Then for every nonnegative w ∈ Xλ, we have

〈u,w〉λ,V − μ

∫
RN

fu−γwdx −
∫
RN

gup−1wdx ≥ 0,

〈v, w〉λ,V − μ

∫
RN

fv−γwdx −
∫
RN

gvp−1wdx ≥ 0.

Proof. Let w ∈ Xλ be a nonnegative function, then by Lemma 2.7, for each
ε ∈ (0, ε0), we have

0 ≤ Iλ,μ(u + εw) − Iλ,μ(u)
ε

=
1
2ε

(‖u + εw‖2
λ,V − ‖w‖2

λ,V ) − μ

(1 − γ)

∫
RN

f
(u + εw)1−γ − u1−γ

ε
dx

−1
p

∫
RN

g
(u + εw)p − up

ε
dx.

(2.6)

By (G) and the Lebesgue dominate convergence theorem, we have

lim
ε→0+

1
p

∫
RN

g
(u + εw)p − up

ε
dx =

∫
RN

gup−1wdx.

For 0 < γ < 1 and f is a positive continuous function, we have

f((u + εw)1−γ − u1−γ) ≥ 0.

It follows from (2.6) that

lim inf
ε→0+

∫
RN

f
(u + εw)1−γ − u1−γ

ε
dx < ∞.
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Then, by (2.6) and Fatou’s lemma, we get

μ

∫
RN

fu−γwdx ≤ μ

1 − γ
lim inf
ε→0+

∫
RN

f
(u + εw)1−γ − u1−γ

ε
dx

≤ 〈u,w〉λ,V −
∫
RN

gup−1wdx,

consequently, for each nonnegative w ∈ Xλ, we have

〈u,w〉λ,V − μ

∫
RN

fu−γwdx −
∫
RN

gup−1wdx ≥ 0.

Next, we will show that these properties are also held for v ∈ N −
λ,μ. For each

ε > 0, there exists tε > 0 such that tε(v + εw) ∈ N −
λ,μ. By Lemma 2.7, for

ε > 0 small enough, we get

Iλ,μ(tε(v + εw)) ≥ Iλ,μ(v),

which implies Iλ,μ(tε(v + εw)) − Iλ,μ(v) ≥ 0. Thus, one obtains

μt1−γ
ε

(1 − γ)

∫
RN

f
(v + εw)1−γ − v1−γ

ε
dx ≤ t2ε

2ε
(‖v + εw‖2

λ,V − ‖v‖2
λ,V )

− tpε
p

∫
RN

g
(v + εw)p − vp

ε
dx.

Using the similar argument as in the previous case, we have

〈v, w〉λ,V − μ

∫
RN

fv−γwdx −
∫
RN

gvp−1wdx ≥ 0.

�

3. Proof of Theorem 1.1

Since Iλ,μ(u) = Iλ,μ(|u|), we can assume that u ≥ 0 for every u ∈ Xλ. To get
the main result, it is necessary to prove the following lemmas.

Lemma 3.1. Suppose that 0 < γ < 1 and 2 < p < 2∗∗, and the conditions
(F ), (G) and (V1) − (V3) are satisfied. Then for (λ, μ) ∈ [λ∗,+∞) × (0, μ∗),
Iλ,μ has a minimizer u0 in N+

λ,μ such that Iλ,μ(u0) = c+
λ,μ.

Proof. By the Ekeland variational principle ([1]), there exists a minimizing
sequence {un} ⊂ N+

λ,μ satisfying
(i) c+

λ,μ < Iλ,μ(un) < c+
λ,μ + 1

n ,
(ii) Iλ,μ(u) ≥ Iλ,μ(un) − 1

n‖un − u‖.
Moreover, by Lemma 2.2, one has {un} is bounded in Xλ. Then there

exists a subsequence of {un}(still denotes{un}) such that

un ⇀ u0, in Xλ,

un → u0, in Lp(RN ), p ∈ [2, 2∗∗),

with u0 ≥ 0. For 0 < γ < 1, f ∈ L
p

p+γ−1 (RN ) is a positive continuous
function, by the Vitali convergence theorem, one has

lim
n→∞

∫
RN

f |un|1−γdx =
∫
RN

f |u0|1−γdx.
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Step1: We prove that un → u0 in Xλ and u0 ∈ N+
λ,μ.

First, we show that u0 
= 0. Using the weak lower semi-continuity norm,
we have

Iλ,μ(u0) ≤ lim inf
n→∞ Iλ,μ(un) = c+

λ,μ < 0.

If u0 = 0, then Iλ,μ(u0) = 0, which is a contradiction.
Next, we prove that un → u0 in Xλ. Suppose the contrary, by (2.1), one

has

‖u0‖2
λ,V < lim inf

n→∞ ‖un‖2
λ,V .

For un ∈ N+
λ,μ, one has

‖u0‖2
λ,V − μ

∫
RN

f |u0|1−γdx −
∫
RN

g|u0|pdx < 0. (3.1)

Now, we prove that for u0, there exists 0 < t+ 
= 1 such that t+u0 ∈ N+
λ,μ.

If
∫
RN

g|u|pdx ≤ 0, then by Lemma 2.4(i), there exists t+ > 0 such

that t+u0 ∈ N+
λ,μ and I ′

λ,μ(t+u0) = 0. By (3.1), we obtain that I ′
λ,μ(u0) 
= 0.

Hence, t+ 
= 1.

If
∫
RN

g|u|pdx > 0, then by Lemma 2.4(ii), there exists 0 < t+ 
= 1 such

that t+u0 ∈ N+
λ,μ.

Since t+u0 is a minimizer of Iλ,μ in Xλ, then

Iλ,μ(t+u0) < Iλ,μ(u0) ≤ lim
n→∞ Iλ,μ(un) = c+

λ,μ,

which contradicts c+
λ,μ = infu∈N+

λ,μ
Iλ,μ(u). Then, we obtain un → u0 in Xλ.

Finally, we claim that u0 ∈ N+
λ,μ. Suppose the contrary, assume that

u0 ∈ N −
λ,μ. It follows from (2.4) and u0 ∈ N −

λ,μ that∫
RN

g|u0|pdx > 0.

Then, by Lemma 2.4(ii), there exist unique t+ > 0, t− > 0 with t− > t+ > 0,
such that t+u0 ∈ N+

λ,μ, t−u0 ∈ N −
λ,μ and

Iλ,μ(t+u0) = inf
0≤0≤tmax

Iλ,μ(tu0), Iλ,μ(t−u0) = sup
t≥tmax

Iλ,μ(tu0).

For u0 ∈ N −
λ,μ, it suffices to prove that

d

dt
Iλ,μ(u0) = 0,

d2

dt2
Iλ,μ(u0) < 0.

This indicates t− = 1. Also, since

d

dt
Iλ,μ(t+u0) = 0,

d2

dt2
Iλ,μ(t+u0) > 0,

then there exists t ∈ (t+, 1], such that

c+
λ,μ ≤ Iλ,μ(t+u0) < Iλ,μ(tu0) ≤ Iλ,μ(u0) = c+

λ,μ,
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this is a contradiction. Therefore, u0 ∈ N+
λ,μ.

Step2: u0 is a solution of (1.1).
In the following, we show the solution u0 is a weak solution of (1.1). Let

v ∈ Xλ and ε > 0. Set Ω+ = {x ∈ R
N : u0 + εv ≥ 0} and Ω− = {x ∈ R

N :
u0 + εv < 0}, then by Lemma 2.8, we obtain that

0 ≤
∫

Ω+

(Δu0Δ(u0 + εv) + Vλ(x)u0(u0 + εv)) dx − μ

∫
Ω+

fu−γ
0 (u0 + εv)dx

−
∫

Ω+

gup−1
0 (u0 + εv)dx

= ‖u0‖2
λ,V − μ

∫
RN

fu1−γ
0 dx −

∫
RN

gup
0dx

+ε

(
〈u0, v〉λ,V − μ

∫
RN

fu−γ
0 vdx −

∫
RN

gup−1
0 vdx

)

−
(∫

Ω−
(Δu0Δ(u0 + εv) + Vλ(x)u0(u0 + εv))dx − μ

∫
Ω−

fu−γ
0 (u0 + εv)dx

−
∫

Ω−
gup−1

0 (u0 + εv)dx

)
.

Then, for the fact u0 ∈ N+
λ,μ and f(x) is a positive continuous function, we

have

0 ≤ ε

(
〈u0, v〉λ,V − μ

∫
RN

fu−γ
0 vdx −

∫
RN

gup−1
0 vdx

)

−ε

∫
Ω−

(Δu0Δv + Vλ(x)u0v) dx +
∫

Ω−
gup−1

0 (u0 + εv)dx.

(3.2)

Since the measure of the domain of integration Ω− = {x ∈ R
N : u0 + εv < 0}

tends to 0 as ε → 0+, it follows that

|
∫

Ω−
(Δu0Δv + Vλ(x)u0v) dx| → 0.

Moreover, by (G) and Lemma 2.1, when ε → 0+, one has∣∣∣∣
∫

Ω−
gup−1

0 (u0 + εv)dx

∣∣∣∣ ≤ |g|∞
∫

Ω−
g|u0|pdx + ε|g|∞

∣∣∣∣
∫

Ω−
g|u0|p−1vdx

∣∣∣∣ → 0.

Dividing by ε and letting ε → 0 in (3.2), one obtains

〈u0, v〉λ,V − μ

∫
RN

fu−γ
0 vdx −

∫
RN

gup−1
0 vdx ≥ 0.

Since v is arbitrary, the inequality above holds for −v. Hence, for all v ∈ Xλ,
one has

〈u0, v〉λ,V − μ

∫
RN

fu−γ
0 vdx −

∫
RN

gup−1
0 vdx = 0.

Then u0 is a positive solution for (1.1). �

Lemma 3.2. Suppose that 0 < γ < 1 and 2 < p < 2∗∗, and the conditions
(F ), (G) and (V1) − (V3) are satisfied. Then for (λ, μ) ∈ [λ∗,+∞) × (0, μ∗),
Iλ,μ has a minimizer v0 in N −

λ,μ such that Iλ,μ(v0) = c−
λ,μ.
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Proof. On account of Iλ,μ is also coercive on N −
λ,μ, we apply the Ekeland’s

variational principle to the minimization problem c−
λ,μ = infu∈N −

λ,μ
Iλ,μ(u),

there exists a minimizing sequence {vn} ⊂ N −
λ,μ of Iλ,μ with the following

properties
(i) c−

λ,μ < Iλ,μ(vn) < c−
λ,μ + 1

n ,
(ii) Iλ,μ(v) ≥ Iλ,μ(vn) − 1

n‖vn − v‖.
Moreover, {vn} is bounded in Xλ, then there exists a subsequence of

{vn}(still denotes{vn}) such that

vn ⇀ v0, in Xλ,

vn → v0, in Lp(RN ), p ∈ [2, 2∗∗),

with v0 ≥ 0. Then we have

lim
n→∞

∫
RN

f |vn|1−γdx =
∫
RN

f |v0|1−γdx

and

lim
n→∞

∫
RN

g|vn|pdx =
∫
RN

g|v0|pdx.

We will show that v0 
= 0. If v0 = 0, then vn converges to 0 strongly in Xλ,
which contradicts Lemma 2.5. Next, we prove that vn → v0 in Xλ. If vn 
→ v0

in Xλ then

‖v0‖2
λ,V − μ

∫
RN

f |v0|1−γdx −
∫
RN

g|v0|pdx

< lim inf
n→∞

[
‖vn‖2

λ,V − μ

∫
RN

f |vn|1−γdx −
∫
RN

g|vn|pdx

]
= 0.

(3.3)

Since {vn} ⊂ N −
λ,μ, we deduce from (2.4) that

μ(1 + γ)
∫
RN

f |v0|1−γdx + (2 − p)
∫
RN

g|v0|pdx ≤ 0.

Consequently, one has
∫
RN g|v0|pdx > 0. Then by Lemma 2.5(ii), there exists

a t− > 0 such that I ′
λ,μ(t−v0) = 0 and t−v0 ∈ N −

λ,μ. Note that I ′
λ,μ(v0) 
= 0

by (3.3). Thus, t− 
= 1. Since t−vn ⇀ t−v0 and t−vn 
→ t−v0 in Xλ. Hence,

Iλ,μ(t−v0) < lim inf
n→∞ Iλ,μ(t−vn).

Observe that Iλ,μ(tvn) attains its maximum at t = 1. Thus, one obtains

Iλ,μ(t−v0) < lim inf
n→∞ Iλ,μ(t−vn) ≤ lim

n→∞ Iλ,μ(vn) = c−
λ,μ,

which is absurd. Therefore, we obtain that vn → v0 in Xλ. Since N −
λ,μ is

closed by Lemma 2.6, it follows that v0 ∈ N −
λ,μ. By Lemmas 2.7 and 2.8,

similar to Lemma 3.1, we deduce that v0 is also a positive solution of (1.1).
�
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Proof of Theorem 1.1. According to Lemmas 3.1 and 3.2, for (λ, μ) ∈ [λ∗,+∞)
× (0, μ∗), we know that (1.1) admits at least two positive solutions u0 ∈ N+

λ,μ

and v0 ∈ N −
λ,μ. Since N+

λ,μ ∩ N −
λ,μ = ∅, the two solutions are different. This

finishes the proof. �

Data Availability Statement This paper has no associate data.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive
rights to this article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing agreement and
applicable law.

References

[1] Aubin, J., Ekeland, I.: Applied Nonlinear Analysis. Wiley-Interscience Publi-
cations, New York, Pure and Applied Mathematics (1984)

[2] An, Y.K., Liu, R.Y.: Existence of nontrivial solutions of an asymptotically
linear fourth-order elliptic equation. Nonlinear Anal. 68(11), 3325–3331 (2008)

[3] Badiale, M., Greco, S., Rolando, S.: Radial solutions of a biharmonic equation
with vanishing or singular radial potentials. Nonlinear Anal. 185, 97–122 (2019)

[4] Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear
elliptic problems on RN . Commun. Part. Diff. Equa. 20, 1725–1741 (1995)

[5] Chen, Y., McKenna, P.J.: Traveling waves in a nonlinear suspension beam: the-
oretical results and numerical observations. J. Diff. Equa. 135, 325–355 (1997)

[6] Harrabi, A.: Fourth-order elliptic equations. Adv. Nonlinear Stud. 14, 593–604
(2014)

[7] Jiang, R.T., Zhai, C.B.: Multiple solutions for generalized biharmonic equations
with singular potential and two parameters. Rocky Mountain J. Math. 50(4),
1355–1368 (2020)

[8] Liu, J., Chen, S.X., Wu, X.: Existence and multiplicity of solutions for a class
of fourth-order elliptic equations in R

N . J. Math. Anal. Appl. 35(2), 608–615
(2012)

[9] Lazer, A., McKenna, P.: Large-amplitude periodic oscillations in suspension
bridges: some new connections with nonlinear analysis. SIAM Rev. 32, 537–
578 (1990)

[10] Lazer, A., McKenna, P.: Global bifurcation and a theorem of Tarantello. J.
Math. Anal. Appl. 181, 648–655 (1994)

[11] Li, T.X., Sun, J.T., Wu, T.F.: Existence of homoclinic solutions for a fourth
order differential equation with a parameter. Appl. Math. Comput. 251, 499–
506 (2015)

[12] Micheletti, A., Pistoia, A.: Nontrivial solutions for some fourth order semilinear
elliptic problems. Nonlinear Anal., 34509–523 (1998)

151Page 15 of 16



R. Jiang et al. MJOM

[13] Mao, A.M., Zhao, Y.Y.: Solutions to a fourth-order elliptic equation with steep
potential. Appl. Math. Lett. 118, 107155 (2021)

[14] McKenna, P., Walter, W.: Traveling waves in a suspension bridge. SIAM J.
Appl. Math. 50, 703–715 (1990)

[15] Sun, J.T., Chu, J.F., Wu, T.F.: Existence and multiplicity of nontrivial solu-
tions for some biharmonic equations with p-Laplacian. J. Diff. Equa. 262(2),
945–977 (2016)

[16] Wang, J.C., Zhang, Y.M.: A biharmonic eigenvalue problem and its application.
Acta Math. Sci. Engl. Ed. 32(3), 1213–1225 (2016)

[17] Xiong, H., Shen, Y.T.: Nonlinear biharmonic equations with critical potential.
Acta Math. Sci. Ser. B Engl. Ed., 21(6): 1285–1294 (2005)

[18] Ye, Y.W., Tang, C.L.: Existence and multiplicity of solutions for fourth-order
elliptic equations in RN . J. Math. Anal. Appl. 406(1), 335–351 (2013)

[19] Zhang, W., Tang, X., Zhang, J., Luo, Z.: Multiplicity and concentration of
solutions for fourth-order elliptic equations with mixed nonlinearity. Electron.
J. Differ. Equ. 2017, 1–15 (2017)

Ruiting Jiang and Meiyan Jiao
College of Applied Mathematics
Shanxi University of Finance and Economics
Taiyuan 030031
People’s Republic of China
e-mail: rtjiang@sxufe.edu.cn

Yongjie Liu
Shanxi Provincial Forestry and Grassland Resources Investigation and Detection
Center
Taiyuan 030012
Shanxi
People’s Republic of China

Received: May 5, 2022.

Revised: September 9, 2022.

Accepted: January 5, 2023.

151 Page 16 of 16


	Multiple Solutions for Generalized Biharmonic Equations with Two Singular Terms
	Abstract
	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	References




