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Nonlinear Singular Elliptic Equations of
p-Laplace Type with Superlinear Growth
in the Gradient

Abdelaaziz Sbai, Youssef El Hadfi and Shengda Zeng

Abstract. We consider a singular nonlinear elliptic Dirichlet problems
with lower-order terms, where the combined effects of a superlinear
growth in the gradient and a singular term allow us to establish some
existence and regularity results. The model problem is

{ − div(|∇u|p−2∇u) + μ|u|p−1u = b(x) |∇u|q
uθ + f(x)

uγ in Ω,
u = 0 on ∂Ω,

(0.1)

where Ω is an open and bounded subset of R
N , μ ≥ 0, 0 < θ ≤ 1,

0 ≤ γ < 1 and f is a nonnegative function that belong to some Lebesgue
space.
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p-Laplacian, gradient term with superlinear growth, existence and reg-
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1. Introduction

Singular equations as an important research topic in partial differential equa-
tions have been widely applied to describe and investigate various natural
phenomena and applications, for example, fluid mechanics, pseudo-plastic
flow, chemical reactions (the resistivity of the material), nerve impulses (Fit-
zhugh–Nagumo problems), population dynamics (Lotka–Volterra systems),
combustion, morphogenesis, genetics, etc. The main goal for the study of
singular equations is usually to explore the existence, uniqueness, regular-
ity, and asymptotic behavior of solutions, see, for instance, [3,10–18,20–
28,30,31,33,35–39].
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e investigate the interaction between two regularizing terms in the fol-
lowing nonlinear elliptic equation⎧⎨

⎩
−div a(x,∇u) + μ|u|p−1u = b(x) |∇u|q

uθ + f(x)
uγ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is an open and bounded subset of RN (N ≥ 1), f is a nonnegative
Lm(Ω) function with m ≥ 1 and, given a real number p such that 2 ≤ p < N,
we have that a : Ω × R

N → R
N is a Carathéodory function such that the

following holds: there exist α, β ∈ R
+ such that

(a(x, ξ) − a(x, η)) · (ξ − η) > 0 for a.e. x ∈ Ω and ∀ξ, η ∈ R
N s.t. ξ �= η

(1.2)
a(x, ξ) · ξ � α|ξ|p, (1.3)

for a.e. x ∈ Ω and ∀ξ ∈ R
N

|a(x, ξ)| � β|ξ|p−1, (1.4)

for a.e. x ∈ Ω and ∀ξ ∈ R
N and we assume that

0 ≤ γ < 1, (1.5)
0 ≤ b(x) ∈ L∞(Ω), (1.6)
0 < θ ≤ 1, (1.7)

and

0 ≤ μ, p − 1 ≤ q <
p(p + β)

p + 1
, with β = min(θ, γ). (1.8)

The assumptions on the function a imply that the differential operator A
acting between W 1,p

0 (Ω) and W−1,p′
(Ω) and defined by

A(u) = −div(a(x,∇u)),

is coercive, monotone, surjective and satisfies the maximum principle. The
simplest case is the p-Laplacian, which corresponds to the choice a(x, ξ) =
|ξ|p−2ξ. In the literature we find several papers about elliptic problems with
lower-order terms having a natural or quadratic growth with respect to the
gradient (see [2,4,6,8,28], for example, and the references therein), that is,
for problem {−div(M(x)∇u) = g(x, u)|∇u| + f in Ω

u = 0 on ∂Ω.

In these works it is assumed that M : Ω → R
N2

is a bounded elliptic
Carathéodory map, so that there exists α > 0 such that α|ξ|2 ≤ M(x)ξ · ξ
for every ξ ∈ R

N . Various assumptions are made on g. With no attempt
of being exhaustive, we will describe some recent results where a singu-
lar g has been considered, namely g(x, u) = b(x) × 1/|u|θ. The case where
0 < θ ≤ 1, introduced in [9], has been studied positive source f ∈ Lm(Ω);
if 1 < m < N/2 there exists a strictly positive solution u ∈ Lm∗∗

(Ω); if
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m > N/2, then the solution u belong to L∞(Ω). Furthermore, if 0 < θ < 1/2,
and r = Nm/[N(1 − θ) − m(1 − 2θ)], then

|∇u|
uθ

belong to

{
Lr(Ω) if 1 < m < 2N(1−θ)

N+2−4θ

L2(Ω) if m ≥ 2N(1−θ)
N+2−4θ .

Later, in [29] it is proved the existence result of solutions for the nonlinear
Dirichlet problem of the type⎧⎨

⎩
−div(M(x)∇u) + γup = B |∇u|q

uθ + f in Ω
u > 0 in Ω
u = 0 on ∂Ω,

where Ω is a bounded open subset of RN , N > 2,M(x) is a uniformly elliptic
and bounded matrix, γ > 0, B > 0, 1 ≤ q < 2, 0 < θ ≤ 1 and the source f is
a nonnegative (not identically zero) function belonging to L1(Ω). Olivia [32]
studied the existence and uniqueness of nonnegative solutions to a problem
which is modeled by{−Δpu = u−θ|∇u|p + fu−γ in Ω

u = 0 on ∂Ω,

where Ω is an open bounded subset of R
N (N ≥ 2),Δp is the p-Laplacian

operator (1 < p < N), f ∈ L1(Ω) is nonnegative and θ, γ ≥ 0.
The main novelty in the presence work is to show that the combined

effects of a superlinear growth in the gradient and a singular term, lower-
order term and the singular term has a “regularizing effect” in the sense that
the problem (1.1) has a distributional solution for all f ∈ Lm with m ≥ 1.

The paper is organized as follows. In Sect. 2 we construct an approxi-
mate problem of (1.1), the existence of weak solution of the last one is proved
by Schauder’s fixed point Theorem. In Sect. 3.1 is devoted to prove to the
existence and regularity results both in case q = p− 1, μ = 0 and f ∈ Lm(Ω)
with m > 1. In the last subsection we deal with the case p−1 < q < p, μ > 0
and f ∈ L1(Ω), we prove the existence of solution of problem (1.1). Note that
the presence of the lower-order term μ|u|p−1u is crucial in the sense that it
guarantees the existence of solution when the data f belong only in L1(Ω).
Notations: For a given function v : Ω → R, in what follows, we denote by
v± = max{±v, 0}, i.e., v+ = max{v, 0} and v− = −min{v, 0}. For a fixed
k > 0, we introduce the truncation functions Tk : R → R and Gk : R → R

defined by

Tk(s) := max{−k,min{s, k} } and Gk(s) := (|s| − k)+ sign(s),

where sign(·) is the sign function. It is not difficult to see that for each k > 0
the equality holds

s = Tk(s) + Gk(s) for all s ∈ R.

For convenience’s sake, in the sequel, we denote by∫
Ω

f(x) dx =
∫

Ω

f and |E| = measure of E.
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2. A priori estimates

Since problem (1.1) contains singular terms, this cannot allow us to use the
variational methods to obtain the existence result to problem (1.1). In order
to bypass this obstacle, in the section, we will apply a standard approximation
procedure to prove the existence of solutions to problem (1.1).

Let n ∈ N be arbitrary, let us consider the following approximated
problem ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−div a (x,∇un) + μ|un|p−1un

= b(x) |∇un|q
(1+ 1

n |∇un|q)( 1
n +un)θ + fn

( 1
n +un)γ in Ω

un ≥ 0 in Ω
un = 0 on ∂Ω,

(2.1)

where fn = Tn(f). Then, we have the weak formulation of (2.1) as follows∫
Ω

a(x,∇un)∇ϕ +
∫

Ω

μ|un|p−1unϕ

=
∫

Ω

b(x)
|∇un|q(

1 + 1
n |∇un|q) (

1
n + un

)θ
ϕ +

∫
Ω

fn

( 1
n + un)γ

ϕ, (2.2)

for all ϕ ∈ W 1,p
0 (Ω). Now, we briefly sketch how to deduce the existence

of a nonnegative solution un ∈ W 1,p
0 (Ω) ∩ L∞(Ω) of problem (2.1). For any

nonnegative function v ∈ Lp(Ω) given, it follows from [6, Theorem 1] that
the following nonlinear elliptic equation has a unique positive solution w⎧⎪⎨

⎪⎩
−div a (x,∇w) + μ|w|p−1w

= b(x) |∇w|q
(1+ 1

n |∇w|q)( 1
n +w)θ + fn

( 1
n +v)γ in Ω,

w = 0 on ∂Ω,

(2.3)

and there exists a constant cn > 0 which is independent of v such that
‖w‖L∞(Ω) ≤ cn. So, we denote by T : Lp(Ω) → Lp(Ω) the solution mapping
of problem (2.3), namely, T (v) = w for all v ∈ Lp(Ω), where w is the unique
solution of problem (2.3) corresponding to v. It is obvious that if u is a
fixed point of T , then u is also a solution of problem (2.1). Then, we are
going to utilize Schauder fixed point theorem for examining the existence of
a fixed point of T . Therefore, we will show that T is a completely continuous
function (thus, T is continuous and compact), and maps a closed ball into
itself. Taking w as a test function in (2.3), it yields

α

∫
Ω

|∇w|p ≤ cp||b||L∞(Ω)c(n, θ, γ)|Ω|p′
(∫

Ω

|∇w|pdx

) 1
p

. (2.4)

Whereas, an application of the Poincaré inequality gives that

‖w‖Lp(Ω) ≤
(

cp||b||L∞(Ω)c(n, θ, γ)|Ω|p′

α

)p′

= r,

where cp is the Poincaré constant. This indicates that T maps the closed
ball centered at the origin with the radius r into itself. To show that T is
continuous, let {vk} be a sequence in the ball of radius r which converges
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to v in Lp(Ω) as k → ∞ and let wk = T (vk). Our goal is to prove that wk

converges to w = T (v) in Lp(Ω) as k → ∞. From (2.4), we can see that
{wk} is bounded in W 1,p

0 (Ω) with respect to k. Moreover, it follows from
Lemma 2 of [5] that wk is also bounded in L∞(Ω) with respect to k. The
latter combined with Lemma 4 of [5] deduces that, passing to a subsequence
if necessary, wk converges to a function w in W 1,p

0 (Ω) (indeed, this result
could be obtained by using the pseudomonotonicity and (S+)-property of
u �→-diva(x, u)). This is sufficient to pass to the limit as k → ∞ for the weak
formulation of the equation (2.3) with w = wk and v = vk that w = T (v). For
the compactness, it is sufficient to underline that if vk is bounded in Lp(Ω)
then one can recover that wk is bounded in W 1,p

0 (Ω) with respect to k thanks
to (2.4). Taking into account the compactness of the embedding of W 1,p

0 (Ω)
to Lp(Ω), we obtain that, up to subsequences, {wk} converges to a function
in Lp(Ω), namely, T ({vn}) is relatively compact in Lp(Ω). So, T is compact.

Therefore, all conditions of Schauder fixed point Theorem are verified.
We are now in a position to invoke this theorem to find that T has at least
one fixed point, say un. It is obvious that un solves problem (2.1) too. Recall
that the right-hand side of problem (2.1) is positive. This together with the
hypotheses of a and maximum principle [34] implies that un ≥ 0.

Lemma 2.1. Let un be a solution to (2.1) then for every ω ⊂⊂ Ω there exists
a constant cω > 0 which does not depend on n and such that

un ≥ cω a.e. in ω (2.5)

Proof. μ ≥ 0 and fn ≥ 0. Let v ∈ W 1,p
0 (Ω) ∩ L∞(Ω) be the unique solution

of the following elliptic equation (see [1, Lemma 2.1])⎧⎨
⎩

−div(a(x,∇v)) + μ|v|p−1v = fn

(v+ 1
n )γ in Ω,

v ≥ 0 in Ω,
v = 0 on ∂Ω.

(2.6)

But, [1, Lemma 2.2] points out that for any ω ⊂⊂ Ω there exists cω > 0 such
that

v ≥ cω a.e. in ω. (2.7)
We take (v − un)+ as a test function in (2.1) and (2.6), respectively. Rear-
ranging the resulting equalities, we have∫

Ω

(a(x,∇v) − a (x,∇un)) ∇ (v − un)+ +
∫

Ω

(|v|p−1v − |un|p−1un

)
(v − un)+

=
∫

Ω

fn

(
un + 1

n

)γ − (
v + 1

n

)γ

(
un+ 1

n

)γ (
v + 1

n

)γ (v − un)+

−
∫

Ω

b(x)
|∇un|q (v − un)+(

1 + 1
n |∇un|q) (

1
n + un

)θ
≤ 0.

However, the monotonicity of the second term on the left-hand side to
the above inequality concludes∫

Ω

(a(x,∇v) − a (x,∇un)) · ∇ (v − un)+ ≤ 0.
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This means that un ≥ v almost everywhere in Ω. Consequently, the desired
conclusion is a direct consequence of (2.7). �

3. The Main Results and Their Proof

3.1. The Case q = p − 1, μ = 0 and f ∈ Lm (Ω) with m > 1
In this subsection, we want to analyze the case 0 ≤ γ < 1, μ = 0, 0 ≤ f ∈
Lm(Ω)(m > 1). We first give the definition of a distributional solution to
problem (1.1)

Definition 3.1. Let f be a nonnegative (not identically zero) function in
Lm(Ω) function, with m > 1. A positive and measurable function u is a
distributional solution to problem (1.1) if u ∈ W 1,1

0 (Ω) , if |a(x,∇u)|, |∇u|p−1

uθ

∈ L1
loc(Ω),

∀ω ⊂⊂ Ω, ∃cω > 0 : u ≥ cω in ω (3.1)

and if∫
Ω

a(x,∇u)∇ϕ =
∫

Ω

b(x)
|∇u|p−1

uθ
ϕ +

∫
Ω

f(x)
uγ

ϕ, ∀ϕ ∈ C1
c (Ω). (3.2)

The main results of this subsection are as follows

Theorem 3.2. Assume (1.3),(1.4) and (1.5). Then, if m1 = mN(p−1+γ)
N−pm and

m̃ = Nm(p−1+γ)
N+m(1−γ) there exists a distributional solution u of (1.1)

u ∈
{

Lm1(Ω) if 1 < m < N/p,
L∞(Ω) if m > N/p,

|∇u| ∈
{

Lm̃(Ω) if 1 < m < pN/[N(p − 1 + γ) + p(1 − γ)],
Lp(Ω) if m ≥ pN/[N(p − 1 + γ) + p(1 − γ)],

and if r = m̃
p−1 , we have

|∇u|p−1

uθ
∈

{
Lr

loc(Ω) if 1 < m < pN/[N(p − 1 + γ) + p(1 − γ)],
Lp′

loc(Ω) if m ≥ pN/[N(p − 1 + γ) + p(1 − γ)].

Furthermore, if 0 < θ < (p − 1)(1 − γ)/p and r = Nm(p − 1 + γ)/[N(p − 1 −
θ) − m[(p − 1)(1 − γ) − pθ], then

|∇u|p−1

uθ
∈

⎧⎨
⎩

Lr(Ω) if 1 < m < p(p−1)N(1−θ)
N(p−1)(p−1+γ)+p(p−1)(1−γ)−p2θ ,

Lp′
(Ω) if m ≥ p(p−1)N(1−θ)

N(p−1)(p−1+γ)+p(p−1)(1−γ)−p2θ .

Remark 3.3. In the case where the lower-order term does not exist (i.e.,
b(x) = 0), the results of previous theorem coincide with regularity results
obtained in ([19, Theorem 4.4]).

Remark 3.4. If p = 2 and γ = 0; the result of Theorem 3.2 coincides with
regularity results of [9].

Now, we can prove the following existence and regularity result
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Lemma 3.5. Let un be a solution of problem (2.1) and suppose that (1.3)–
(1.7) hold true, let f be a nonnegative function in Lm(Ω), with 1 < m <
N/p, σ = min (m̃, p) , r = m̃

p−1 . Then we have

• the sequence {un} is bounded in Lm1(Ω) ∩ W 1,σ
0 (Ω), (3.3)

• the sequence

{
|∇un|p−1

uθ
n

}
is bounded inLr

loc(Ω) ∩ Lp′
loc(Ω), (3.4)

with m̃ and m1 are defined in the Theorem 3.2.

Proof. Here, and in the following, we will denote by C the generic constant
which is independent of n ∈ N. Define, for k > 0 and s > 0

ηk(s) =
1
k

Tk (G1(s)) =

⎧⎨
⎩

0 if 0 ≤ s < 1,
s−1

k if 1 ≤ s < 1 + k,
1 if s ≥ 1 + k.

We choose vn = u
pλ−(p−1)
n ηk (un) as test function in the weak formulation

of (2.2) (this choice is possible since every un belong to W 1,p
0 (Ω) ∩ L∞(Ω)).

Noting that since fn ≤ f and let λ > 1/p′, dropping a first nonnegative term,
we obtain

α(pλ − (p − 1))

∫
Ω

|∇un|p upλ−p
n ηk (un)

≤
∫

Ω

b(x)
|∇un|p−1 u

pλ−(p−1)
n(

1 + 1
n

|∇un|p−1
) (

1
n

+ un

)θ
ηk (un) +

∫
Ω

fnupλ−(p−1)−γ
n ηk (un)

≤ ‖b‖L∞(Ω)

∫
Ω

|∇un|p−1 u(p−1)(λ−1)
n ηk (un) uλ−θ

n +

∫
Ω

fupλ−(p−1)−γ
n ηk (un) .

Let ε > 0 be such that 0 < ε‖b‖L∞(Ω) < α(pλ− (p−1)). By Young inequality
with ε, we deduce that

[α(pλ − (p − 1)) − ‖b‖L∞(Ω)]
∫

Ω

|∇un|p upλ−p
n ηk (un)

≤ C‖b‖p
L∞(Ω)

∫
Ω

ηk (un) up(λ−θ)
n +

∫
Ω

fupλ−(p−1)−γ
n ηk (un) .

Letting k tend to zero, and Lebesgue Theorem in the right-hand side using
and Fatou Lemma in the left-hand side, we get

C

∫
{un≥1}

|∇un|p upλ−p
n ≤

∫
{un≥1}

up(λ−θ)
n +

∫
{un≥1}

fupλ−(p−1)−γ
n (3.5)

We now remark that for every t ≥ 1 and δ > 0, there exists Cδ > 0 such that

tp(λ−θ) ≤ δtpλ + Cδ. (3.6)

The inequality is trivially true if θ ≥ λ, while is a consequence of Young
inequality if λ > θ. Recall that the estimate (3.5), we have∫

{un≥1}
|∇un|p upλ−p

n ≤ δ

∫
{un≥1}

upλ
n +|Ω|Cδ+

∫
{un≥1}

fupλ−(p−1)−γ
n . (3.7)
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Taking into account that 0 ≤ un = T1 (un) + G1 (un) ≤ 1 + G1 (un) , and
using Poincaré inequality, we conclude that

C

∫
Ω

∣∣∣∇G1 (un)λ
∣∣∣p ≤ δ

∫
Ω

G1 (un)pλ + C +
∫

Ω

fG1 (un)pλ−(p−1)−γ

≤ δ

λ1

∫
Ω

∣∣∣∇G1 (un)λ
∣∣∣p + C +

∫
Ω

fG1 (un)pλ−(p−1)−γ
,

where λ1 is the Poincaré constant for Ω (i.e., the first eigenvalue of the Lapla-
cian with homogeneous Dirichlet boundary conditions). Choosing δ small
enough, we thus have∫

Ω

|∇G1 (un)λ |p ≤ C + C

∫
Ω

fG1 (un)pλ−(p−1)−γ
.

Following the same technique as in [6], choosing λ = m1
p∗ , it is easy to see

that if λ = m(N−p)[p−1+γ]
p(N−pm) > (N−p)[p−1+γ]

p(N−p) = p−1+γ
p if only if m > 1. Note

that with such a choice, we have that λp∗ = m1, and (pλ − (p − 1) − γ)m′ =
λp∗ = m1 = Nm[p−1+γ]

N−pm . Therefore, using Sobolev and Hölder inequalities,
we get

S
(∫

Ω

G1 (un)m1

) p
p∗

≤
∫

Ω

∣∣∣∇G1 (un)λ
∣∣∣p ≤ C + C

∫
Ω

fG1 (un)pλ−(p−1)−γ

≤ C + C‖f‖Lm(Ω)

(∫
Ω

G1 (un)m1

) 1
m′

,

where S is the Sobolev constant, thanks to the assumption m < N/p, we
have p/p∗ > 1/m′, putting to gather all the previous estimates we conclude
that

‖G1 (un)‖Lm1 (Ω) ≤ C‖f‖Lm(Ω). (3.8)

Note that from the boundedness of {G1 (un)} in Lm1(Ω) it trivially follows
the boundedness of {un} in Lm1(Ω) since, as before, 0 ≤ un ≤ 1 + G1 (un) .

Now we point out that m ≥ pN
N(p−1)+p(1−γ)+γN , since λ ≥ 1. Therefore from

(3.7) and (3.8) (note that the right-hand side is bounded), we have that∫
Ω

|∇G1 (un)|p ≤
∫

{un≥1}
|∇un|p upλ−p

n ≤ C,

we deduce that the sequence {G1 (un)} is bounded in W 1,p
0 (Ω). If on the

other hand 1 < m < pN
N(p−1)+p(1−γ)+γN , then λ < 1 and we have to proceed

differently. Let now σ be such that the use of by Hölder inequality, σ < p we
obtain∫

Ω

|∇G1 (un)|σ =
∫

Ω

|∇G1 (un)|σ
u

σ(1−λ)
n

uσ(1−λ)
n

≤
(∫

{un≥1}
|∇un|p upλ−p

n

)σ
p

(∫
{un≥1}

u
pσ(1−λ)

p−σ
n

) p−σ
p

.
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Imposing σ = Nm(p+γ−1)
N−m(1−γ) (= m̃), we obtain pσ(1−λ)

p−σ = m1, so that the above
inequality becomes, thanks to (3.7) and (3.8)∫

Ω

|∇G1 (un)|m̃ ≤ C.

Summing up, we have therefore proved that the sequence:

{G1 (un)} is bounded in Lm1(Ω) ∩ W 1,σ
0 (Ω), σ = min (m̃, p) . (3.9)

On the other hand, taking T1 (un) as test function in (2.1) , we have

α

∫
Ω

|∇T1 (un)|p ≤ ‖b‖L∞(Ω)

∫
Ω

|∇T1 (un)|p−1

(
1
n + un

)θ
T1 (un)

+ ‖b‖L∞(Ω)

∫
Ω

|∇G1 (un)|p−1 +
∫

Ω

f

≤ ‖b‖L∞(Ω)

∫
Ω

|∇T1 (un)|p−1

+ ‖b‖L∞(Ω)

∫
Ω

|∇G1 (un)|p−1 +
∫

Ω

f,

which implies (thanks to (3.9) ) that the sequence {T1 (un)} is bounded in
W 1,p

0 (Ω). This estimate and the estimate (3.9) give (3.3). First case: The
proof of (3.4) is then a simple consequence of (2.5) and (3.3), if w ⊂⊂ Ω,
then ∫

w

(
|∇un|p−1

uθ
n

)p′

≤ 1

cp′θ
w

∫
Ω

|∇un|p ≤ C. (3.10)

In the second case, we take r = m̃
p−1 , then by (2.5) and (3.3), we have

∫
w

(
|∇un|p−1

uθ
n

)r

≤ 1
crθ
w

∫
Ω

|∇un|m̃ ≤ C. (3.11)

Using (3.10) and (3.11), we deduce that (3.4) holds true. �

Lemma 3.6. Let un be a solution of (2.1) under assumptions(1.3)–(1.7) and
let f be a nonnegative function in Lm(Ω). Then, if m > N/p

• the sequence {un} is bounded inL∞(Ω) ∩ W 1,p
0 (Ω), (3.12)

• the sequence

{
|∇un|p−1

uθ
n

}
is bounded inLp′

loc(Ω). (3.13)

Proof. We take vn = Gk (un) as test function in (2.1). Using (1.3), (1.4) and
(1.5), we obtain

α

∫
{un≥k}

|∇un|p ≤ ‖b‖L∞(Ω)

∫
{un≥k}

|∇un|p−1 Gk (un)

uθ
n

+

∫
{un≥k}

fGk (un)

(un + 1
n
)γ

≤ 1

kθ
‖b‖L∞(Ω)

∫
{un≥k}

|∇un|p−1 Gk (un) +

∫
{un≥k}

fGk (un)

(un + 1
n
)γ

.



32 Page 10 of 20 A. Sbai et al. MJOM

Noting that un + 1
n ≥ k ≥ 1 on the set An,k, where Gk (un), we have

α

∫
{un≥k}

|∇un|p ≤ 1

kθ
‖b‖L∞(Ω)

∫
{un≥k}

|∇un|p−1 Gk (un) +

∫
{un≥k}

fGk (un) .

and by Young and Poincaré inequalities, we have that
∫

{un≥k}
|∇un|p−1

Gk (un) ≤ 1
p′

∫
{un≥k}

|∇un|p +
1
p

∫
{un≥k}

Gk (un)p

≤ 1 + λ1(p − 1)
pλ1

∫
{un≥k}

|∇un|p .

Therefore,
⎛
⎝α − 1

kθ

‖b‖(1+λ1(p−1))
L∞(Ω)

pλ1

⎞
⎠ ∫

{un≥k}
|∇un|p ≤

∫
{un≥k}

fGk (un) .

Next, we can take k > k0, with

k0 =
(‖b‖L∞(Ω) (1 + λ1(p − 1))

αλ1

) 1
θ

, (3.14)

we have

α

p′

∫
{un≥k}

|∇un|p ≤
∫

{un≥k}
fGk (un) .

From this point outwards, we can proceed as in the proof of [8, Theorem 1.1],
to prove that the sequence {un} is bounded in L∞(Ω), as desired and the
proof of (3.13) is essentially the same technique used in (3.10). �

If 0 < θ < (1 − γ)/p′, the estimates on the right-hand side |∇un|p−1

uθ
n

are
not only local but also global.

Lemma 3.7. Let un be a solution of (2.1), let us assume that (1.3)–(1.6) and
0 < θ < (1−γ)/p′, hold true and that f be a nonnegative function in Lm(Ω),
with

m ≥ p(p − 1)N(1 − θ)
N(p − 1)(p − 1 + γ) + p(p − 1)(1 − γ) − p2θ

, (3.15)

then,

the sequence

{
|∇un|p−1

uθ
n

}
is bounded in Lp′

(Ω). (3.16)

Proof. We fix λ > (p − 1 + γ)/p, let 0 < ε < 1/n, and choose vn =
(un + ε)pλ−(p−1) − εpλ−(p−1) as test function in (2.1) this choice is possi-
ble since every un belong to W 1,p

0 (Ω) ∩ L∞(Ω). We obtain, dropping some
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negative terms

α(pλ − (p − 1))

∫
Ω

|∇un|p (un + ε)pλ−p

≤
∫

Ω

b(x)
|∇un|p−1 (un + ε)pλ−(p−1)

(
1 + 1

n
|∇un|p−1

) (
1
n

+ un

)θ
+

∫
Ω

fn (un + ε)pλ−(p−1)−γ

≤ ‖b‖L∞(Ω)

∫
Ω

|∇un|p−1 (un + ε)(p−1)(λ−1)+(λ−θ) +

∫
Ω

f (un + ε)pλ−(p−1)−γ .

In view of the latter estimate we have used that 0 ≤ fn ≤ f. We can
apply Young inequality, we thus obtain

cα(pλ − (p − 1))/p

∫
Ω

|∇un|p (un + ε)pλ−p

≤ C

∫
Ω

(un + ε)p(λ−θ) + C

∫
Ω

f (un + ε)pλ−(p−1)−γ
.

Letting ε tend to zero, and using Lebesgue Theorem (in the right one, recall
that un is in L∞(Ω)) and Fatou Lemma (in the left-hand side), we arrive at∫

Ω

|∇un|p upλ−p
n ≤ C

∫
Ω

up(λ−θ)
n + C

∫
Ω

fupλ−(p−1)−γ
n ,

since now our assumption is 0 < θ < (p − 1 + γ)/p and λ > (p − 1 + γ)/p, we
have that λ > θ; thus, using Young inequality we have that, for δ > 0∫

Ω

|∇un|p upλ−p
n ≤ δ

∫
Ω

upλ
n + |Ω|Cδ + C

∫
Ω

fupλ−(p−1)−γ
n

≤ δ

λ1

∫
Ω

|∇un|p upλ−p
n + C + C

∫
Ω

fupλ−(p−1)−γ
n ,

where in the last inequality we have used Poincaré inequality. Thus, if δ is
small enough, we have∫

Ω

|∇un|p upλ−p
n ≤ C + C

∫
Ω

fupλ−(p−1)−γ
n .

If 1 < m < pN
N(p−1)+p(1−γ)+γN , the choice λ(m) = m(N−p)(p−1+γ)

p(N−pm) implies
p−1+γ

p < λ(m) < 1 and (reasoning as in the proof of Lemma 3.5)
∫

Ω

|∇un|p
u

p(1−λ(s))
n

≤ C
(‖f‖Lm(Ω)

)
. (3.17)

Let m̄ be a real number, such that

m̄ =
pN(1 − θ)

N(p − 1)(p − 1 + γ) + p(p − 1)(1 − γ) − p2θ
,

we have that λ(m) = 1 − θ
p−1 , and so (3.17) becomes

∫
Ω

(
|∇un|p−1

uθ
n

)p′

≤ C‖f‖Lm̄(Ω), (3.18)
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which is (3.16) if m = m̄. Since Ω has finite measure, if m > m̄ and if f
belong to Lm(Ω), then it is also inLm̄(Ω), so that (3.18) still holds for these
values of m. �

Lemma 3.8. Let un be a solution of (2.1). Suppose that (1.3)–(1.6) and 0 <

θ < (1 − γ)/p′ hold true. Then if r = Nm(p−1+γ)
N(p−1−θ)−m[(p−1)(1−γ)−pθ] and that

0 ≤ f ∈ Lm(Ω), with

1 < m <
pN(p − 1 − θ)

N(p − 1)(p − 1 + γ) + p(p − 1)(1 − γ) − p2θ
, (3.19)

then,

the sequence

{
|∇un|p−1

uθ
n

}
is bounded in Lr(Ω). (3.20)

Proof. Let θ > 0 and N > p, we have m < pN
N(p−1)+p(1−γ)+γN .

Let 1 < r < p′; then, we used Hölder inequality with exponents p′

r and p′

p′−r ,

we obtain∫
Ω

(
|∇un|p−1

uθ
n

)r

=
∫

Ω

|∇un|r(p−1)

u
r(p−1)(1−λ(m))
n

u
r(p−1)(1−λ(m)− θ

p−1 )
n

≤
(∫

Ω

|∇un|p
u

p(1−λ(m))
n

) r
p′

(∫
Ω

u

pr(1−λ(m)− θ
p−1 )

p′−r
n

) p′−r
p′

.

Moreover, using (3.17) which is admissible since m < pN
N(p−1)+p(1−γ)+γN , we

thus obtain

∫
Ω

(
|∇un|p−1

uθ
n

)r

≤ C‖f‖Lm(Ω)

(∫
Ω

u

pr(1−λ(m)− θ
p−1 )

p′−r
n

) p′−r
p′

. (3.21)

Taking r = r(m) such that
pr(m)(1−λ(m)− θ

p−1 )

p′−r(m) = Nm(p−1+γ)
N−pm , that is r(m) =

Nm(p−1+γ)
N(p−1−θ)−m[(p−1)(1−γ)−pθ] ; the assumptions on m, and the fact that r(m) is
increasing, imply that
1 < N(p−1+γ)

N(1−θ)−(1−γ−pθ) < r(m) < r
(

pN(p−1−θ)
N(p−1)(p−1+γ)+p(p−1)(1−γ)−p2θ

)
= p′,

hence by (3.21) we derive that
∫

Ω

(
|∇un|p−1

uθ
n

)r

≤ C‖f‖Lm(Ω),

as desired. �

Now, we are going to prove Theorem 3.2.

Proof of Theorem 3.2. Thanks to (3.3) (or (3.12)), the sequence {un} of so-
lutions of (2.1) is bounded in W 1,σ

0 (Ω), with σ = min (m̃, p) . Thus, up to
subsequences, un weakly converges to some function u in W 1,σ

0 (Ω), with σ
as above and therefore u satisfies the boundary condition. However, due to
the nonlinear nature of the lower-order term, the weak convergence of un is
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not enough to pass to the limit in the distributional formulation of (2.1). In
order to proceed, we use the fact that, thanks to (3.4) (or (3.13)), we have
that the right-hand side

b(x)
|∇un|p−1(

1 + 1
n |∇un|p−1

) (
1
n + un

)θ
is bounded in (at least) L1

loc(Ω).

Therefore, thanks to Remark 2.2 after Theorem 2.1 of [7] (see also [1] and
[32]), we have that ∇un(x) almost everywhere converges to ∇u(x) in Ω; this
implies that

lim
n→+∞

|∇un|p−1(
1 + 1

n |∇un|p−1
) (

1
n + un

)θ
=

|∇u|p−1

uθ
almost everywhere in Ω.

This almost everywhere convergence, and the local boundedness of the se-
quence in Lr(Ω), with r = m̃

p−1 or r = p′, yield that

lim
n→+∞

|∇un|p−1(
1 + 1

n |∇un|p−1
) (

1
n + un

)θ
=

|∇u|p−1

uθ
locally weakly in Lr(Ω).

Next we note that, for all 0 ≤ γ < 1 and ϕ ∈ C1
0 (Ω), if ω = {x ∈ Ω : |ϕ| > 0},

we have ∣∣∣∣ fnϕ

(un + 1/n)γ

∣∣∣∣ � ‖ϕ‖∞f

cγ
ω

∈ L1(Ω)

and that, for n → ∞
fnϕ

(un + 1/n)γ −→ fϕ

uγ
a.e in Ω.

Here we use the convention that if u = +∞, then fϕ
uγ = 0. Therefore, by

Lebesgue Theorem, it follows that

lim
n→∞

∫
Ω

fnϕ

(un + 1/n)γ =
∫

Ω

fϕ

uγ
. (3.22)

Concerning the left hand side of (2.2), we can use the assumption (1.4) on a
and the generalized Lebesgue Theorem, we can pass to the limit for n −→ ∞
obtaining

lim
n→∞

∫
Ω

a(x,∇un)∇ϕ =
∫

Ω

a(x,∇u)∇ϕ.

We now take ϕ in C1
c (Ω) as test function in (2.1), to have that∫

Ω

a(x,∇un) · ∇ϕ =
∫

Ω

b(x)
|∇un|p−1(

1 + 1
n |∇un|p−1

) (
1
n + un

)θ
ϕ +

∫
Ω

fn

( 1
n + un)γ

ϕ.

Passing to the limit in n, we obtain∫
Ω

a(x,∇u) · ∇ϕ =
∫

Ω

b(x)
|∇u|p−1

uθ
ϕ +

∫
Ω

f

uγ
ϕ,

for every ϕ in C1
c (Ω), so that u is a solution in the sense of distributions. �
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3.2. The Case p − 1 ≤ q < p(p+β)
p+1

, μ > 0 and 0 ≤ f ∈ L1(Ω).

In this subsection, we treat the case where 0 ≤ f ∈ L1(Ω), β = min(θ, γ),
μ > 0 and p − 1 ≤ q < p(p+β)

p+1 . Here, we give our main existence result for
this subsection

Theorem 3.9. Assume that (1.3)–(1.7) hold true and let f be a nonnegative
function in L1(Ω). Then there exists a solution u for (1.2), in the sense that:
u ∈ W 1,r

0 (Ω) ∩ Lp+β(Ω), with β = min(θ, γ), 1 ≤ r < p(p+β)
p+1 , |∇u|q

uθ ∈ L1
loc(Ω)

∀ω ⊂⊂ Ω, ∃cω > 0 : u ≥ cω in ω (3.23)

and that∫
Ω

a(x,∇u)∇ϕ + μ

∫
Ω

upϕ =
∫

Ω

b(x)
|∇u|q

uθ
ϕ +

∫
Ω

f

uγ
ϕ, ∀ϕ ∈ C1

c (Ω).

The next Lemma will be used in the proof of Theorem 3.9, we state
some a priori estimates on the solution un and on the lower-order term of the
approximate problem (2.1).

Lemma 3.10. Let un be a solution of (2.1). Suppose that f be a nonnegative
function in L1(Ω) and (1.3)–(1.7) hold true. Then the sequence un is bounded
in W 1,r

0 (Ω) ∩ Lp+β(Ω), with β = min(θ, γ), 1 ≤ r < p(p+β)
p+1 and |∇un|q

uθ
n

is
bounded in L1

loc(Ω).

Proof. In the case θ ≥ γ, let
(
G1(un)

)γ as test function in (2.1), using (1.3),
(1.4) and the fact that 0 ≤ fn ≤ f, we thus have

γα

∫
{un≥1}

|∇un|p
u1−γ

n

+
∫

{un≥1}
up+γ

n ≤ ||b||L∞(Ω)

∫
{un≥1}

|∇un|q
uθ−γ

n

+
∫

Ω

f (3.24)

and then, by Young inequality, we deduce that

||b||L∞(Ω)

∫
{un≥1}

|∇un|q
uθ−γ

n

≤ ||b||L∞(Ω)

∫
{un≥1}

|∇un|q

= ||b||L∞(Ω)

∫
{un≥1}

|∇un|q

u
q(1−γ)

p
n

u
q(1−γ)

p
n

≤ γα

p

∫
{un≥1}

|∇un|p
u1−γ

n

+ C

∫
{un≥1}

u
q(1−γ)

p−q
n ,

which implies from (3.24) that

γα

p′

∫
{un≥1}

|∇un|p
u1−γ

n

+
∫

{un≥1}
up+γ

n ≤ C

∫
{un≥1}

u
q(1−γ)

p−q
n +

∫
{un≥1}

f, (3.25)

thanks to (3.25) we have

γα

p′

∫
{un≥1}

|∇un|p
u1−γ

n

+
1
p

∫
{un≥1}

up+γ
n ≤ C

∫
{un≥1}

u
q(1−γ)

p−q
n + C.

Since, q(1−γ)
p−q < p + γ the above estimate implies that∫

{un≥1}

|∇un|p
u1−γ

n

≤ C (3.26)
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and ∫
{un≥1}

up+γ
n ≤ C. (3.27)

Now we choose ε < 1/n and use (T1 (un) + ε)θ −εθ as test function, dropping
the positive term and using (1.3), (1.4) we obtain

αθ

∫
Ω

|∇T1 (un)|p
(T1 (un) + ε)1−θ

≤ ||b||L∞(Ω)

∫
Ω

|∇un|q(
un + 1

n

)θ
(T1 (un) + ε)θ

+

∫
Ω

fn (T1 (un) + ε)θ−γ ≤ ||b||L∞(Ω)

∫
{un≥1}

|∇un|q

+||b||L∞(Ω)

∫
{un<1}

|∇un|q + (1 + ε)θ−γ

∫
Ω

f. (3.28)

Using Young inequality together with (3.26) and (3.27) and the fact that
q(1−γ)

p−q < p + γ yields that
∫

{un≥1}
|∇un|q =

∫
{un≥1}

|∇un|q

u
(1−γ)q

p
n

u
(1−γ)q

p
n ≤ C

∫
{un≥1}

|∇un|p
u

(1−γ)
n

+ C

∫
Ω

up+γ
n

≤ C.

Then we deduce from (3.28) and the above estimate, using again young in-
equality, we obtain

αθ

∫
Ω

|∇T1 (un)|p
(T1 (un) + ε)1−θ

≤ ||b||L∞(Ω)

∫
Ω

|∇T1 (un)|q (T1 (un) + ε)
q
p (1−θ)

(T1 (un) + ε)
q
p (1−θ)

+ (1 + ε)θ−γ

∫
Ω

f + C

≤ αθ

p

∫
Ω

|∇T1 (un)|p
(T1 (un) + ε)1−θ

+ C(1 + ε)
q

p−q (1−θ) + (1 + ε)θ−γ

∫
Ω

f + C,

(3.29)
it follows that∫

Ω

|∇T1 (un)|p
(T1 (un) + ε)1−θ

≤ C
(
(1 + ε)

q
p−q (1−θ) + (1 + ε)θ−γ

)
.

Thus, we obtain∫
Ω

|∇T1 (un)|p =
∫

Ω

|∇T1 (un)|p
(T1 (un) + ε)1−θ

(T1 (un) + ε)1−θ

≤ C(1 + ε)1−θ
(
(1 + ε)

q
p−q (1−θ) + (1 + ε)θ−γ

)
.

Hence, taking ε tends to 0, we deduce that∫
Ω

|∇T1 (un)|p ≤ C, (3.30)

from (3.26) and (3.30) we conclude that∫
Ω

|∇un|p
(1 + un)1−γ ≤

∫
{un≥1}

|∇un|p
u1−γ

n

+
∫

Ω

|∇T1 (un)|p ≤ C. (3.31)
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Let 1 ≤ r < p, using the estimate (3.31) together with Hölder inequality we
arrive at∫

Ω

|∇un|r ≤
∫

Ω

|∇un|r

(1 + un)
r(1−γ)

p

(1 + un)
r(1−γ)

p ≤ C

(∫
Ω

(1 + un)
r(1−γ)

p−r

)1− r
p

,

(3.32)
starting from (3.32) and thanks to (3.27) noticing that r(1−γ)

p−r ≤ p + γ is

equivalent to r ≤ p(p+γ)
p+1 , we Thus obtain

∫
Ω

|∇un|r ≤ C, ∀1 ≤ r ≤ p(p + γ)
p + 1

< p. (3.33)

Thus, recalling (2.5), (1.5), estimate (3.33) and by means of Hölder inequality,
it follows for every ω ⊂⊂ Ω that

∫
ω

|∇un|q
uθ

n

≤ |Ω| r−q
r

cθ
ω

‖un‖q

W 1,r
0 (Ω)

≤ C. (3.34)

In the case γ ≥ θ, we can obtaining the results, changing γ by θ in the
exponents of the test functions and namely arguing exactly as above. Then
Lemma 3.10 is completely proved.

We prove now the following convergence result.

Proposition 3.11. Under assumption (1.3), we have

up
n → up strongly in L1(Ω).

Proof. We take T1 (un − Th (un)) as test function in (2.1) dropping the pos-
itive term, using (1.3), (1.4) and we then have

α

∫
{h≤un≤h+1}

|∇un|p + μ

∫
{un≥h+1}

up
n

≤ ||b||L∞(Ω)

∫
{h≤un≤h+1}

|∇un|q

+||b||L∞(Ω)

∫
{un>h+1}

|∇un|q +
1
hγ

∫
{un≥h}

f,

which implies using (3.33), Young together with Hölder inequalities that

α

p

∫
{h≤un≤h+1}

|∇un|p + μ

∫
{un≥h+1}

up
n

≤ C|un > h|1− q
p + ||b||L∞(Ω) ‖un‖q

W 1,r
0 (Ω)

|un > h| r−q
r +

1
hγ

∫
{un≥h}

f

≤ C|un > h|1− q
p + C|un > h| r−q

r +
1
hγ

∫
{un≥h}

f.

Letting n → +∞ and then h → +∞, we obtain∫
{un≥h+1}

up
n ≤ w(n, h), (3.35)
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where w(n, h) tends to zero when n → +∞ and h → +∞. Let E be a
measurable subset of Ω, we have∫

E

up
n ≤

∫
{un>h}

up
n + hp|E|.

Then, thanks to (3.35), we take the limit as |E| tends to zero, h tends to
infinity and since up

n converges to up almost everywhere, we easily conclude
by Vitali’s Theorem the proof of Proposition 3.11. �
Proof of Theorem 3.9. Using Proposition 3.11 and Lemma 3.10, we can ob-
tain a solution passing to the limit, namely arguing exactly as in Theorem
3.2. �
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