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Zygmund-Type Integral Inequalities for
Complex Polynomials

Abdullah Mir, N. A. Rather and Ishfaq Dar

Abstract. Let Pn be the class of all complex polynomials of degree at
most n, and let T : Pn → Pn be a linear operator. We shall say that T
is a Bn-operator if for every P ∈ Pn having all zeros in the closed unit
disk, T [P ] has all its zeros in the closed unit disk. Recently, Rather
et al. [On the zeros of certain composite polynomials and an opera-
tor preserving inequalities, Ramanujan J., 54 (2021), 605–617] intro-
duced and considered the generalized Bn-operator Nm : Pn → Pn,

defined by Nm[P ](z) :=
∑m

k=0 λk

(
nz
2

)k P (k)(z)
k!

, m ≤ n, where λk ∈ C,

k = 0, 1, 2, . . . , m, are such that the polynomial φ(z) :=
∑m

k=0

(
n
k

)
λkzk

has all its zeros in the half plane Re(z) ≤ n
4
. They established several

sharp Bernstein-type inequalities for this operator giving extensions and
generalizations of various classical polynomial inequalities. In this paper,
we establish sharp integral-norm estimates of Zygmund type for this op-
erator and develop a unified method for getting various Bernstein-type
inequalities and other related inequalities in the supremum-norm as spe-
cial cases.

Mathematics Subject Classification. 26D10, 41A17, 30A10, 26D05.

Keywords. Hp-norm, operators, supremum-norm, polynomial inequali-
ties.

1. Introduction

The study of inequalities and relating the norm between polynomials over
some compact disk is a classical topic in analysis. Bernstein-type inequalities
are known on various regions of the complex plane in different norms and for
different classes of functions. In the past few years, a series of papers related
to polynomial inequalities in both directions have appeared in the literature
and significant advances have been achieved. Here, we study some of the
new inequalities centered around Bernstein-type inequalities that relate the
integral-norm of the generalized Bn-operator and the polynomial under some
conditions.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-022-02229-6&domain=pdf
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By Pn, we denote the class of all complex polynomials P (z) :=
∑n

j=0 ajz
j

of degree at most n. For brevity, we define the Hardy space norm for P ∈ Pn

by

‖P‖Hp =

⎛

⎝ 1
2π

2π∫

0

|P (eiθ)|pdθ

⎞

⎠

1/p

, 0 < p < ∞,

and the Mahler measure by

‖P‖H0 = exp

⎛

⎝ 1
2π

2π∫

0

log |P (eiθ)|dθ

⎞

⎠.

It is well known that limp→0+ ‖P‖Hp = ‖P‖H0 . Also, note that the supremum-
norm of the space H∞ satisfies ‖P‖H∞ := limp→∞ ‖P‖Hp = max|z|=1 |P (z)|.

If P ∈ Pn and σ(z) = Rz, then

‖P ′‖Hp ≤ n‖P‖Hp , 0 ≤ p ≤ ∞ (1.1)

and for R > 1,

‖P ◦ σ‖Hp ≤ Rn‖P‖Hp , p > 0. (1.2)

Inequality (1.1) was originally proved by Bernstein [4] (see also [14,18]) for
p = ∞ and extended to Hardy space norm by Zygmund [21] for p ≥ 1. His
proof uses Riesz’s interpolation formula by means of Minkowski’s inequality, it
was not clear, whether the restriction on p was indeed essential. This question
remained open for a long time in spite of partial answer by Maté and Nevai
[13]. Later, Arestov [2] proved that the inequality (1.1) is true for 0 < p < 1
as well. For p = 0, (1.1) is a consequence of a remarkable inequality of de-
Bruijn and Springer [7]. On the other hand, the inequality (1.2) is a simple
consequence of a result of Hardy [10] and for p = ∞, it is a simple deduction
from the maximum modulus principle [17, p.346].

For the class of polynomials P ∈ Pn having no zeros in |z| < 1, the
inequalities (1.1) and (1.2) can be improved as follows:

‖P ′‖Hp ≤ n‖P‖Hp

‖1 + z‖Hp

, 0 ≤ p ≤ ∞, (1.3)

and

‖P ◦ σ‖Hp ≤ ‖Rnz + 1‖Hp

‖1 + z‖Hp

‖P‖Hp , R > 1, 0 ≤ p ≤ ∞. (1.4)

For p = ∞, the inequality (1.3) was conjectured by Erdös and later proved
by Lax [12], while de-Bruijn [6] proved (1.3) for p ≥ 1, and Rahman and
Schmeisser [19] validated it for 0 ≤ p < 1 as well. Whereas, the inequality
(1.4) was proved by Boas and Rahman [5] for p ≥ 1, and Rahman and
Schmeisser [19] have shown that (1.4) holds for 0 ≤ p < 1 as well. The case
p = ∞ of inequality (1.4) is due to Ankeny and Rivlin [1].
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As a compact generalization of inequalities (1.1) and (1.3) for the case
p = ∞, Jain [11] proved that if P ∈ Pn, then for every β ∈ C with |β| ≤ 1,

∥
∥
∥zP ′ + β

n

2
P
∥
∥
∥

H∞
≤ n

∣
∣
∣
∣1 +

β

2

∣
∣
∣
∣ ‖P‖H∞ , (1.5)

and if P (z) �= 0 in |z| < 1, then
∥
∥
∥zP ′ + β

n

2
P
∥
∥
∥

H∞
≤ n

2

{∣
∣
∣
∣1 +

β

2

∣
∣
∣
∣+
∣
∣
∣
∣
β

2

∣
∣
∣
∣

}

‖P‖H∞ . (1.6)

Recently, Rather et al. [20] studied the comparative position of the zeros of
a polynomial which is derived by the ‘composition’ of two polynomials and
obtained the following result:

Theorem A. If all the zeros of polynomial f(z) of degree n lie in |z| ≤ r and
if all the zeros of the polynomial

g(z) = λ0 +
(

n

1

)

λ1z + · · · +
(

n

m

)

λmzm, m ≤ n,

lie in |z| ≤ s|z − σ|, s > 0, then the polynomial

h(z) = λ0f(z) + λ1f
′(z)

(σz)
1!

+ · · · + λmf (m)(z)
(σz)m

m!
has all its zeros in |z| ≤ r max(1, s).

As an application of the above result, they [20] introduced a linear
operator Nm : Pn → Pn, defined by

Nm[P ](z) :=
m∑

k=0

λk

(nz

2

)k P (k)(z)
k!

, (1.7)

where λk ∈ C, k = 0, 1, 2, . . . ,m, are such that the polynomial

φ(z) :=
m∑

k=0

(
n

k

)

λkzk, m ≤ n,

has all its zeros in the half plane Re(z) ≤ n
4 , and established various new

Bernstein-type polynomial inequalities in the supremum-norm. More pre-
cisely they proved:

Theorem B. If P ∈ Pn, then

|N [P ](z)| ≤ |N [ψn](z)| ‖P‖H∞, for |z| ≥ 1, (1.8)

where ψn(z) = zn. The result is sharp and equality in (1.8) holds for P (z) =
eiαMzn, α ∈ R.

Next, they [20] (see also [16]) established the following result for the
class of polynomials having no zeros inside the unit circle |z| = 1.

Theorem C. If P ∈ Pn and P (z) �= 0 in |z| < 1, then

|N [P ](z)| ≤ 1
2

(

|N [ψn](z)| + |λ0|
)

‖P‖H∞, for |z| ≥ 1. (1.9)

The result is best possible and equality in (1.9) holds for P (z) = azn +b, |a| =
|b| �= 0.
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A polynomial P ∈ Pn is said be self-inversive if P (z) = P �(z) where
P �(z) := znP (1/z). In the same paper, Rather et al. [20] proved that the
inequality (1.9) also holds for self-inversive polynomials. These types of in-
equalities for constrained polynomials are nowadays a widely studied topic,
and for the latest development in this direction, we refer the interested reader
to ([9,15,16]). In this manuscript, we are interested to establish the integral-
norm estimates of the above inequalities and their various refinements, for
which we introduce the following notations:

ψn(z) = zn and Λ := Nm[ψn](1) = Nm[zn](1) =
m∑

k=0

λk

(n

k

)(n

2

)k
. (1.10)

2. Main Results

In this paper, we establish certain estimates in Hp-norm for |Nm[P ◦ σ] −
αNm[P ]| which among other things shows that the operator Nm preserves
Zygmund-type polynomial inequalities. In this direction, we first present the
following result, which extends Theorem B to Hp-norm.

Theorem 2.1. If P ∈ Pn then for α ∈ C with |α| ≤ 1, 0 ≤ p < ∞ and
R ≥ 1,

‖Nm[P ◦ σ](z) − αNm[P ](z)‖Hp ≤ |Rn − α| |Nm[zn](1)| ‖P (z)‖Hp , (2.1)

where Nm[zn](1) is given by (1.10). The result is best possible and equality
in (2.1) holds for P (z) = czn, c �= 0.

If we choose α = 0 in (2.1), we get the following result.

Corollary 2.1. If P ∈ Pn then for 0 ≤ p < ∞ and R > 1,

‖Nm[P ◦ σ](z)‖Hp ≤ Rn |Nm[zn](1)| ‖P (z)‖Hp , (2.2)

where Nm[zn](1) is given by (1.10). The result is sharp and equality in (2.2)
holds for P (z) = zn.

Taking λi = 0 ∀ i < m and λm �= 0 in Corollary2.1, it follows that if
P ∈ Pn, then we get for R ≥ 1 and 0 ≤ p < ∞,

‖P (m) ◦ ϕ‖Hp ≤ n! Rn−m

(n − m)!
‖P‖Hp , m ≤ n,

which includes inequalities (1.1) and (1.2) as a special cases. Taking R = 1
in Corollary 2.1, we get the following result:

Corollary 2.2. If P ∈ Pn and ψn(z) = zn, then for every 0 ≤ p < ∞,

‖Nm[P ]‖Hp ≤ |Nm[ψn](1)| ‖P‖Hp .

The result is sharp, as shown by P (z) = azn, a �= 0.

If we let p → ∞, then Corollary 2.2 reduces to Theorem B. Taking

λ0 =
n!

(n − m)!
β

2m
,

λk = 0, for k = 1, 2, . . . ,m − 1,
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and λm =
2mm!
nm

,

in (1.7) then φ(z) = n!
(n−m)!2m

{
β +
(
4z
n

)m} has all its zeros in the half plane
Re(z) ≤ n

4 for every β ∈ C with |β| ≤ 1. Thus, from Corollary 2.2, we obtain
the following extension of (1.5) in Hp-norm in a more generalized form.

Corollary 2.3. If P ∈ Pn, then for every β ∈ C with |β| ≤ 1 and 0 ≤ p < ∞,
∥
∥
∥
∥z

mP (m) +
n!

(n − m)!

β

2m
P

∥
∥
∥
∥

Hp

≤ n!

(n − m)!

∣
∣
∣
∣1 +

β

2m

∣
∣
∣
∣ ‖P‖Hp , m = 1, 2, . . . , n. (2.3)

If we let p → ∞ in (2.3), we recover (1.5) when m = 1. The following
estimate for the two leading coefficients of a polynomial readily follows from
the above corollary by taking β = 0 and m = n − 1.

Corollary 2.4. If P ∈ Pn and P (z) =
∑n

j=0 ajz
j , then for 0 ≤ p < ∞,

∥
∥
∥anz +

an−1

n

∥
∥
∥

Hp
≤ ‖P‖Hp .

Theorem 2.1 can be sharpened if we restrict ourselves to the class of
polynomials P ∈ Pn which does not vanish in |z| < 1. In this direction, we
next establish the following result, which extends Theorem C to Hp-norm.

Theorem 2.2. If P ∈ Pn and P (z) does not vanish for |z| < 1, then for α ∈ C

with |α| ≤ 1, 0 ≤ p < ∞ and R ≥ 1,

‖Nm[P ◦ σ](z) − αNm[P ](z)‖Hp ≤ ‖(Rn − α)Nm[zn](1)z + (1 − α)λ0‖Hp

‖1 + z‖Hp
‖P (z)‖Hp ,

(2.4)

where Nm[zn](1) is defined by (1.10). The result is best possible and equality
in (2.4) holds for P (z) = azn + b, |a| = |b| = 1.

For α = 0, Theorem 2.2 reduces to the following result.

Corollary 2.5. If P ∈ Pn and P (z) does not vanish for |z| < 1, then for
0 ≤ p < ∞ and R > 1,

‖Nm[P ◦ σ](z)‖Hp ≤ ‖RnNm[zn](1)z + λ0‖Hp

‖1 + z‖Hp

‖P (z)‖Hp , (2.5)

where Nm[zn](1) is defined by (1.10). The result is sharp as shown by P (z) =
azn + b, |a| = |b| = 1.

For m = 0, inequality (2.5) reduces to inequality (1.4). On taking R = 1
and letting p → ∞, Corollary 2.5 reduces to Theorem C. Again, if we choose
λ0 = n!

(n−m)!
β
2m , where β ∈ C with |β| ≤ 1, λk = 0 for k = 1, 2, . . . ,m−1 and

λm = 2mm!
nm , in (2.5), then similarly as in the case of Corollary 2.3, we get

the following result, which includes Hp-norm extension of inequality (1.6) as
a special case.

Corollary 2.6. If P ∈ Pn, has no zero in |z| < 1, then for every β ∈ C with
|β| ≤ 1 and 0 ≤ p < ∞,
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∥
∥
∥
∥z

mP (m) +
n!

(n − m)!
β

2m
P

∥
∥
∥
∥

Hp

≤ n!
(n − m)!

∥
∥
∥
∥

(

1 +
β

2m

)

z +
β

2m

∥
∥
∥
∥

Hp

‖P‖Hp ,m = 1, 2, . . . , n.

The result is best possible and the extremal polynomial is P (z) = zn + 1.

By choosing λi = 0 ∀ i < m and λm �= 0 in Corollary 2.5, we obtain the
following result which includes inequality (1.3) is a special case.

Corollary 2.7. If P ∈ Pn and P (z) �= 0 in |z| < 1, then

‖P (m) ◦ ϕ‖Hp ≤ n! Rn−m

(n − m)! ‖1 + z‖Hp

‖P (z)|Hp , 1 ≤ m ≤ n.

Finally, we establish the following result for self-inversive polynomials.

Theorem 2.3. If P ∈ Pn and P (z) is a self-inversive polynomial, then for
α ∈ C with |α| ≤ 1, 0 ≤ p < ∞ and R > 1,

‖Nm[P ◦ σ](z) − αNm[P ](z)‖Hp ≤ ‖(Rn − α)Nm[zn](1)z + (1 − α)λ0‖Hp

‖1 + z‖Hp
‖P (z)‖Hp ,

(2.6)

where Nm[zn](1) is given by (1.10). The result is sharp and the extremal
polynomial is P (z) = c(azn + a), ac �= 0.

Setting α = 0 in the above theorem, we get the following result.

Corollary 2.8. If P ∈ Pn and P (z) is a self-inversive polynomial, then for
0 ≤ p < ∞ and R > 1,

‖Nm[P ◦ σ](z)‖Hp ≤ ‖RnNm[zn](1)z + λ0‖Hp

‖1 + z‖Hp
‖P (z)‖Hp , (2.7)

where Nm[zn](1) is given by (1.10). The result is sharp.

The following result is an immediate consequence of Corollary 2.8.

Corollary 2.9. If P ∈ Pn and P (z) is a self-inversive polynomial, then for
0 ≤ p < ∞ and R > 1,

‖Nm[P ◦ σ](z)‖Hp ≤ Rn |Nm[zn](1)| + |λ0|
‖1 + z‖Hp

‖P (z)‖Hp , (2.8)

where Nm[zn](1) is given by (1.10).

Remark 2.1. As the conclusion of Theorem 2.3 is the same as that of The-
orem 2.2, consequently Corollaries 2.6 and 2.7 hold for self-inversive poly-
nomials as well. Various results concerning self-inversive polynomials due to
Aziz and Rather [3], and Dewan and Govil [8] can also be obtained from
Theorem 2.3.
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3. Auxiliary Results

For the proofs of these theorems, we need the following lemmas. The first
lemma follows by taking r = s = 1 and σ = n

2 in Theorem A.

Lemma 3.1. If all the zeros of a polynomial P (z) of degree n lie in |z| ≤ 1,
then all the zeros of Nm[P ](z) also lie in |z| ≤ 1.

Lemma 3.2. If P ∈ Pn and P (z) have all its zeros in |z| ≤ 1 then for every
R > 1, and |z| = 1,

|P (Rz)| ≥
(

R + 1
2

)n

|P (z)| .

Proof. Since all the zeros of P (z) lie in |z| ≤ 1, we write

P (z) = C
n∏

j=1

(
z − rje

iθj
)
,

where rj ≤ 1. Now for 0 ≤ θ < 2π, R > 1, we have

∣
∣
∣
∣
Reiθ − rje

iθj

eiθ − rjeiθj

∣
∣
∣
∣ =

{
R2 + r2j − 2Rrj cos(θ − θj)

1 + r2j − 2rj cos(θ − θj)

}1/2

≥
{

R + rj

1 + rj

}

≥
{

R + 1
2

}

, for j = 1, 2, · · · , n.

Hence,
∣
∣
∣
∣
P (Reiθ)
P (eiθ)

∣
∣
∣
∣ =

n∏

j=1

∣
∣
∣
∣
Reiθ − rje

iθj

eiθ − rjeiθj

∣
∣
∣
∣

≥
n∏

j=1

(
R + 1

2

)

=
(

R + 1
2

)n

,

for 0 ≤ θ < 2π. This implies for |z| = 1 and R > 1,

|P (Rz)| ≥
(

R + 1
2

)n

|P (z)| ,

which completes the proof of Lemma 3.2. �

Lemma 3.3. If P ∈ Pn and P (z) has no zero in |z| < 1, then for every α ∈ C

with |α| ≤ 1, R > 1 and |z| ≥ 1,

|Nm[P ◦ σ](z) − αNm[P ](z)| ≤ |Nm[P � ◦ σ](z) − αNm[P �](z)| , (3.1)

where P �(z) = znP (1/z).
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Proof. Since the polynomial P (z) has all its zeros in |z| ≥ 1, therefore,
for every real or complex number λ with |λ| > 1, the polynomial f(z) =
P (z) − λP �(z), where P �(z) = znP (1/z), has all zeros in |z| ≤ 1. Apply-
ing Lemma 3.2 to the polynomial f(z), we obtain for every R > 1 and
0 ≤ θ < 2π,

|f(Reiθ)| ≥
(

R + 1
2

)n

|f(eiθ)|. (3.2)

Since f(Reiθ) �= 0 for every R > 1, 0 ≤ θ < 2π and R+1 > 2, it follows from
(3.2) that

|f(Reiθ)| >

(
R + 1

2

)n

|f(Reiθ)| ≥ |f(eiθ)|,

for every R > 1 and 0 ≤ θ < 2π. This gives

|f(z)| < |f(Rz)| for |z| = 1, and R > 1.

Using Rouché’s theorem and noting that all the zeros of f(Rz) lie in |z| ≤
1/R < 1, we conclude that the polynomial

T (z) = f(Rz) − αf(z) = {P (Rz) − αP (z)} − λ {P �(Rz) − αP �(z)}
has all its zeros in |z| < 1 for every real or complex α with |α| ≥ 1 and
R > 1. Applying Lemma 3.1 to polynomial T (z) and noting that Nm is a
linear operator, it follows that all the zeros of polynomial

Nm[T ](z) = Nm[f ◦ σ](z) − αNm[f ](z)

= {Nm[P ◦ σ](z) − αNm[P ](z)}−λ {Nm[P � ◦ σ](z)−αNm[P �](z)}
lie in |z| < 1 where σ(z) = Rz. This implies

|Nm[P ◦ σ](z) − αNm[P ](z)| ≤ |Nm[P � ◦ σ](z) − αNm[P �](z)| (3.3)

for |z| ≥ 1 and R > 1. If inequality (3.3) is not true, then there exists a point
z = z0 with |z0| ≥ 1 such that

|Nm[P ◦ σ](z0) − αNm[P ](z0)| > |Nm[P � ◦ σ](z0) − αNm[P �](z0)|. (3.4)

But all the zeros of P �(Rz) lie in |z| < 1/R < 1; therefore, it follows (as in
case of f(z)) that all the zeros of P �(Rz) − αP �(z) lie in |z| < 1. Hence, by
Lemma 3.1, we have

Nm[P � ◦ σ](z0) − αNm[P �](z0) �= 0.

We take

λ =
Nm[P ◦ σ](z0) − αNm[P ](z0)

Nm[P � ◦ σ](z0) − αNm[P �](z0)
,

then λ is well-defined real or complex number with |λ| > 1 and with this
choice of λ, we obtain Nm[T ](z0) = 0 where |z0| ≥ 1. This contradicts the
fact that all the zeros of Nm[T ](z) lie in |z| < 1. Thus (3.3) holds true for
|α| ≤ 1 and R > 1. �
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Next we describe a result of Arestov [2].
For δ = (δ0, δ1, · · · , δn) ∈ C

n+1 and P (z) =
∑n

j=0 ajz
j ∈ Pn, we define

ΛδP (z) =
n∑

j=0

δjajz
j .

The operator Λδ is said to be admissible if it preserves one of the fol-
lowing properties:

(i) P (z) has all its zeros in {z ∈ C : |z| ≤ 1} ,

(ii) P (z) has all its zeros in{z ∈ C : |z| ≥ 1} .

The result of Arestov [2, Theorem 4] may now be stated as follows.

Lemma 3.4. Let φ(x) = ψ(logx) where ψ is a convex non decreasing function
on R. Then, for all P ∈ Pn and each admissible operator Λδ,

∫ 2π

0

φ(|ΛδP (eiθ)|)dθ ≤
∫ 2π

0

φ(C(δ, n)|P (eiθ)|)dθ,

where C(δ, n) = max(|δ0|, |δn|).
In particular, Lemma 3.4 applies with φ : x → xp for every p ∈ (0,∞)

and with φ : x → log x as well. Therefore, we have for 0 ≤ p < ∞,
{∫ 2π

0

(|ΛδP (eiθ)|p)dθ

}1/p

≤ C(δ, n)
{∫ 2π

0

|P (eiθ)|pdθ

}1/p

. (3.5)

We use (3.5) to prove the following interesting result.

Lemma 3.5. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every
p > 0, R > 1 and for γ real, 0 ≤ γ < 2π,

∫ 2π

0

∣
∣
∣
{

Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)
}

eiγ

+
{
Nm[P � ◦ σ]�(eiθ) − αNm[P �]�(eiθ)

} ∣∣
∣
p

dθ

≤
∣
∣
∣(Rn − α)Λeiγ + (1 − α)λ0

∣
∣
∣
p
∫ 2π

0

∣
∣P (eiθ)

∣
∣p dθ, (3.6)

where Nm[P � ◦ σ]�(z) := (Nm[P � ◦ σ](z))� and Λ is defined by (1.10).

Proof. Recall that P ∈ Pn has all zeros in |z| ≥ 1 and P ∗(z) = znP
(
1/z
)
,

by Lemma 3.3, we have

|Nm[P ◦ σ](z) − αNm[P ](z)| ≤ |Nm[P ∗ ◦ σ](z) − αNm[P ∗](z)| for |z| = 1. (3.7)

Also, P ∗ ◦σ(z)−αP ∗(z) = P ∗(Rz)−αP ∗(z) = RnznP
(
1/Rz

)−αznP
(
1/z
)
,

this implies,

Nm[P ∗ ◦ σ − αP ∗](z) = Nm[P ∗ ◦ σ](z) − αNm[P ∗](z)

= λ0

[
RnznP

(
1/Rz

)− α
(
znP
(
1/z
))]

+λ1

(
nz

2

)[(
n

1

)

Rnzn−1P
(
1/Rz

)−
(

n

0

)

Rn−1zn−2P ′(1/Rz
)
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−α

((
n

1

)

zn−1P
(
1/z
)−
(

n

0

)

zn−2P ′(1/z
)
)]

+ . . . +
λm

m!

(
nz

2

)m
[

m!
0!

(
n

m

)

Rnzn−mP
(
1/Rz

)

−m!
1!

(
n

m − 1

)

Rn−1zn−m−1P ′(1/Rz
)

+ . . .

+(−1)m m!
m!

(
n

0

)

Rn−mzn−2mP (m)
(
1/Rz

)

−α

(
m!
0!

(
n

m

)

zn−mP
(
1/z
)− m!

1!

(
n

m − 1

)

zn−m−1P ′(1/z
)

+ . . .

+(−1)m m!
m!

(
n

0

)

zn−2mP (m)
(
1/z
)
)]

.

This gives

Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z) = (Nm[P ∗ ◦ σ − αP ∗])∗(z)

=

{

λ0 + λ1
n

2

(n

1

)
+ .... + λm

(
n

2

)m(n

m

)}

{RnP (z/R) − αP (z)}

−
{

λ1
n

2
+ λ2

(n

2

)2 (n

1

)
+ . . . + λm

(
n

2

)m( n

m − 1

)}{
Rn−1zP ′(z/R) − αzP ′(z)

}

+ . . . + (−1)m
λm

m!

(
n

2

)m(n

0

){
Rn−mzmP (m)(z/R) − αzmP (m)(z)

}
. (3.8)

Also, |Nm[P ∗ ◦ σ](z) − αNm[P ∗](z)| = |Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z)| for
|z| = 1; therefore, by using (3.7), we get

|Nm[P ◦ σ](z) − αNm[P ](z)| ≤ |Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z)| for |z| = 1, R > 1.

Since P ∗ ◦ σ − αP ∗ ∈ Pn has all zeros in |z| < 1 then by Lemma 3.1,
Nm[P ∗ ◦ σ − αP ∗] ∈ Pn has all zeros in |z| < 1. This implies the polynomial
Nm[P ∗ ◦ σ − αP ∗]∗(z) = Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z) ∈ Pn has all zeros
in |z| > 1. Hence, by the maximum modulus principle,

|Nm[P ◦ σ](z) − αNm[P ](z)| ≤ |Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z)| for |z| < 1. (3.9)

A direct application of Rouché’s theorem shows that if P (z) = anzn +
an−1z

n−1 + .... + a0, then

CδP (z) = {Nm[P ◦ σ](z) − αNm[P ](z)} e
iγ

+ Nm[P
∗ ◦ σ]

∗
(z) − αNm[P

∗
]
∗
(z)

=

{

(R
n − α)

(

λ0 + λ1
n

2

(n

1

)
+ . . . + λm

(
n

2

)m(n

m

))

e
iγ

+ (1 − α)λ0

}

anz
n

+ . . . +

{

(R
n − α)

(

λ0 + λ1
n

2

(n

1

)
+ . . . + λm

(
n

2

)m(n

m

))

+ e
iγ

(1 − α)λ0

}

a0,
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has all zeros in |z| ≥ 1 for every γ ∈ R, that is Cδ is an admissible operator.
Note that

Λ=λ0 + λ1
n

2

(
n

1

)

+ . . . + λm

(
n

2

)m(
n

m

)

=Nm[ψn](1) where ψn(z) = zn.

Applying Lemma 3.4 with φ(x) = xp, where p > 0, the desired result follows
immediately for every p > 0. �

The next lemma shows that the condition on the zeros of P (z) in
Lemma 3.5 is not required.

Lemma 3.6. If P ∈ Pn, then for every p > 0, R > 1 and α ∈ R, 0 ≤ α < 2π,

2π∫

0

∣
∣
∣
{

Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)
}

eiγ +
{

Nm[P ∗ ◦ σ]∗(eiθ) − αNm[P ∗]∗(eiθ)
}∣
∣
∣
p

dθ

≤ | (Rn − α)Λeiγ + (1 − α)λ0|p
2π∫

0

|P (eiθ)|pdθ. (3.10)

Proof. If P ∈ Pn, has all its zeros in |z| ≥ 1, then the result follows by
Lemma 3.5. Hence, we assume that P (z) has at least one zero in |z| < 1, so
we can write

P (z) = P1(z)P2(z) = a
k∏

j=1

(z − zj)
n∏

j=k+1

(z − zj), 0 ≤ k ≤ n − 1, a �= 0,

where z1, z2, ..., zk lie in |z| ≥ 1 and zk+1, zk+2, ...zn lie in |z| < 1. First we
suppose that all the zeros of P1(z) lie in |z| > 1. Since all the zeros of P2(z)
lie in |z| < 1, the polynomial P ∗

2 (z) = zn−kP2

(
1/z
)

has all zeros in |z| > 1
and |P ∗

2 (z)| = |P2(z)| for |z| = 1. Now consider the polynomial

F (z) = P1(z)P ∗
2 (z) = a

k∏

j=1

(z − zj)
n∏

j=k+1

(1 − zzj),

then all the zeros of F (z) lie in |z| > 1 and for |z| = 1,

|F (z)| = |P1(z)||P ∗
2 (z)| = |P1(z)||P2(z)| = |P (z)|. (3.11)

By the help of Rouché’s theorem, it follows that for every β ∈ R with |β| > 1,
all the zeros of G(z) = P (z)+βF (z) lie in |z| > 1, so that T (z) = G(rz) ∈ Pn,
with r > 1 has all zeros in |z| ≥ 1. Proceeding similarly as in (3.8) and (3.9)
with regard to polynomial T (z), we get for R > 1 and |z| < 1,

|Nm[T ◦ σ](z) − αNm[T ](z)| < |Nm[T ∗ ◦ σ]∗(z) − αNm[T ∗]∗(z)|

=
∣
∣
∣
∣

{

λ0 + λ1

(n

2

)(n

1

)

+ . . .

+λm

(n

2

)m
(

n

m

)}

(RnT (z/R) − αT (z))

−
{

λ1
n

2
+ λ2

(n

2

)2
(

n

1

)

+ . . .
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+λm

(n

2

)m
(

n

m − 1

)}
(
Rn−1zT ′(z/R) − αzT ′(z)

)

+ . . . + (−1)m λm

m!

(n

2

)m
(

n

0

)(
Rn−mzmT (m)(z/R) − αzmT (m)(z)

) ∣∣
∣
∣,

that is,

|Nm[T ◦ σ](z) − αNm[T ](z)| <

∣
∣
∣
∣
∣

{

λ0 + λ1

(n

2

)(n

1

)

+ . . .

+λm

(n

2

)m
(

n

m

)}

(RnG(rz/R) − αG(rz))

−
{

λ1

(n

2

)
+ λ2

(n

2

)2
(

n

1

)

+ . . .

+λm

(n

2

)m
(

n

m − 1

)}(
Rn−1(rz)G′

(rz

R

)
− α(rz)G′ (rz)

)

+ . . . + (−1)m λm

m!

(
n

2

)m(
n

0

)(
Rn−m(rz)m

G(m)
(rz

R

)

−α(rz)m
G(m) (rz)

)
∣
∣
∣
∣
∣

for |z| < 1. Now if z = eiθ/r, 0 ≤ θ < 2π, then for |z| = (1/r) < 1 as r > 1,
we get
|Nm[T ◦ σ](eiθ/r) − αNm[T ](eiθ/r)| <

∣
∣
∣
∣
∣

{
λ0 + λ1

(n

2

)(n

1

)
+ . . .

+λm

(n

2

)m (n

m

)}(

RnG

(
eiθ

R

)

− αG
(
eiθ
))

−
{

λ1

(n

2

)
+ λ2

(n

2

)2 (n

1

)
+ . . . + λm

(n

2

)m ( n

m − 1

)}(

Rn−1eiθG′
(

eiθ

R

)

−αeiθG′
(
eiθ
))

+ . . . + (−1)m
λm

m!

(n

2

)m (n − m

0

)(

Rn−memiθG(m)

(
eiθ

R

)

− αemiθG(m)
(
eiθ
))
∣
∣
∣
∣
∣
,

= |Nm[G∗ ◦ σ]∗(eiθ) − αNm[G∗]∗(eiθ)|.
Equivalently,

|Nm[G ◦ σ](z) − αNm[G](z)| < |Nm[G∗ ◦ σ]∗(z)

−αNm[G∗]∗(eiθ)| for |z| = 1,

where σ(z) = Rz.
Since G ∈ Pn has all zeros in |z| > 1, it follows that G∗ ∈ Pn has all

zeros in |z| < 1 and hence G∗ ◦ σ − αG∗ ∈ Pn has all zeros in |z| < 1. By
Lemma 3.1, it follows that all the zeros of Nm[G∗ ◦ σ]∗ − αNm[G∗]∗ ∈ Pn lie
in |z| > 1. That is, Nm[G∗ ◦ σ]∗ − αNm[G∗]∗ �= 0 for |z| ≤ 1.

An application of Rouché’s theorem shows that for each α ∈ R, the
polynomial

	(z) = {Nm[G ◦ σ](z) − αNm[G](z)} eiγ + Nm[G∗ ◦ σ]∗(z)
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−αNm[G∗]∗(z) �= 0 for |z| ≤ 1. (3.12)

Since G(z) = P (z)+βF (z) and operator Nm is linear; therefore, from (3.12),
it follows that all the zeros of

	(z) = {Nm[P ◦ σ](z) − αNm[P ](z)} eiγ + {Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z)}
+ β {Nm[F ◦ σ](z) − αNm[F ](z)} eiγ + {Nm[F ∗ ◦ σ]∗(z) − αNm[F ∗]∗(z)}

lie in |z| > 1. This gives

| {Nm[P ◦ σ](z) − αNm[P ](z)} eiγ + Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z)|
≤ | {Nm[F ◦ σ](z) − αNm[F ](z)} eiγ + Nm[F ∗ ◦ σ]∗(z) − αNm[F ∗]∗(z)|,

for all |z| ≤ 1, which in particular gives for each p > 0 and γ ∈ R,
2π∫

0

| {Nm[P ◦ σ](z) − αNm[P ](z)} eiγ + Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z)|pdθ

≤
2π∫

0

| {Nm[F ◦ σ](z) − αNm[F ](z)} eiγ + Nm[F ∗ ◦ σ]∗(z) − αNm[F ∗]∗(z)|pdθ.

By applying Lemma 3.5 to F (z) and using (3.11), we obtain for each p > 0,
2π∫

0

| {Nm[P ◦ σ](z) − αNm[P ](z)} eiγ + Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z)|pdθ

≤ ∣∣(Rn − α) Λeiγ + (1 − α) λ0

∣
∣p

2π∫

0

|F (eiθ)|pdθ

=
∣
∣(Rn − α) Λeiγ + (1 − α) λ0

∣
∣p

2π∫

0

|P (eiθ)|pdθ. (3.13)

Now, if P1(z) has a zero on |z| = 1, then applying (3.13) to the polynomial
E(z) = P1(tz)P2(z) where t < 1, we get for each p > 0, R > 1 and γ ∈ R,

2π∫

0

| {Nm[E ◦ σ](z) − αNm[E](z)} eiγ + Nm[E∗ ◦ σ]∗(z) − αNm[E∗]∗(z)|pdθ

≤ ∣
∣(Rn − α) Λeiγ + (1 − α) λ0

∣
∣p

2π∫

0

|E(eiθ)|pdθ. (3.14)

Letting t → 1 in (3.14) and using continuity, the desired result follows imme-
diately and this proves Lemma 3.6 completely. �

Lemma 3.7. If P ∈ Pn, then for every p > 0, R > 1 and γ ∈ R, 0 ≤ γ < 2π,

2π∫

0

2π∫

0

|{Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)
}

+ eiγ
{
Nm[P ∗ ◦ σ](eiθ)

−αNm[P ∗](eiθ)
} |pdθdγ



25 Page 14 of 19 A. Mir et al. MJOM

≤
2π∫

0

|RnΛeiγ + λ0|pdγ

2π∫

0

|P (eiθ)|pdθ.

Proof. Since Nm[P ∗ ◦ σ]∗(z) − αNm[P ∗]∗(z) is conjugate of Nm[P ∗ ◦ σ](z) −
αNm[P ∗](z), then

|Nm[P ∗ ◦ σ]∗(eiθ) − αNm[P ∗]∗(eiθ)| = |{Nm[P ∗ ◦ σ](eiθ)

−αNm[P ∗](eiθ)
} |, 0 ≤ θ < 2π,

and therefore, for each p > 0, R > 1 and 0 ≤ θ < 2π fixed, we have
2π∫

0

|
{

Nm[P ◦ σ](e
iθ
) − αNm[P ](e

iθ
)
}

+e
iγ
{
Nm[P

∗ ◦ σ](e
iθ
) − αNm[P

∗
](e

iθ
)
}

|pdγ

=

2π∫

0

∣
∣|
{
Nm[P ◦ σ](e

iθ
) − αNm[P ](e

iθ
)
}

|eiγ
+ |
{

Nm[P
∗ ◦ σ](e

iθ
) − αNm[P

∗
](e

iθ
)
}

|∣∣pdγ

=

2π∫

0

∣
∣|
{
Nm[P ◦ σ](e

iθ
) − αNm[P ](e

iθ
)
}

|

+e
iγ
{

|Nm[P
∗ ◦ σ]

∗
(e

iθ
) − αNm[P

∗
]
∗
(e

iθ
)|
} ∣
∣pdγ. (3.15)

Integrating both sides of (3.15) with respect to θ from 0 to 2π and using
(3.10), we get

2π∫

0

2π∫

0

|{Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)
}

eiγ

+
{
Nm[P ∗ ◦ σ](eiθ) − αNm[P ∗](eiθ)

} |pdγdθ

=

2π∫

0

2π∫

0

∣
∣|{Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)

} |

+ eiγ |Nm[P ∗ ◦ σ]∗(eiθ) − αNm[P ∗]∗(eiθ)|∣∣pdγdθ

=

2π∫

0

{ 2π∫

0

∣
∣
{
Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)

}
eiγ

+ Nm[P ∗ ◦ σ]∗(eiθ) − αNm[P ∗]∗(eiθ)
∣
∣pdθ

}

dγ

≤
2π∫

0

| (Rn − α) Λeiγ + (1 − α) λ0|pdγ

2π∫

0

|P (eiθ)|pdθ

=

2π∫

0

| (Rn − α) Λeiγ + (1 − α) λ0|pdγ

2π∫

0

|P (eiθ)|pdθ.

That completes the proof of Lemma 3.7. �
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4. Proofs of Theorems

Proof of Theorem 2.1. By hypothesis P ∈ Pn, we can write

P (z) = P1(z)P2(z) = a
k∏

j=1

(z − zj)
n∏

j=k+1

(z − zj), k ≥ 1, a �= 0,

where the zeros z1, z2, . . . , zk of P1(z) lie in |z| ≤ 1 and the zeros zk+1, zk+2,
. . . , zn of P2(z) lie in |z| > 1. First, we suppose that all the zeros of P1(z)
lie in |z| < 1. Since all the zeros of P2(z) lie in |z| > 1, the polynomial
P �
2 (z) = zn−kP2(1/z) has all its zeroes in |z| < 1 and |P �

2 (z)| = |P2(z)| for
|z| = 1. Now consider the polynomial

M(z) = P1(z)P �
2 (z) = a

k∏

j=1

(z − zj)
n∏

j=k+1

(1 − zzj),

then all the zeros of M(z) lie in |z| < 1, and for |z| = 1,

|M(z)| = |P1(z)| |P �
2 (z)| = |P1(z)| |P2(z)| = |P (z)| . (4.1)

Observe that P (z)/M(z) → 1/
∏n

j=k+1(−zj) when z → ∞, so it is regular
even at ∞ and thus from (4.1) and by the maximum modulus principle, it
follows that

|P (z)| ≤ |M(z)| for |z| ≥ 1.

Since M(z) �= 0 for |z| ≥ 1, a direct application of Rouché’s theorem shows
that the polynomial H(z) = P (z) + λM(z) has all its zeros in |z| < 1 for
every λ with |λ| > 1. Applying Lemma 3.2 to the polynomial H(z) and noting
that the zeros of H(Rz) lie in |z| < 1/R < 1, we deduce (as in the proof of
Lemma 3.3) that for every real or complex α with |α| ≤ 1, all the zeros of
polynomial

G(z) = H(Rz) − αH(z)

= {P (Rz) − αP (z)} − λ {M(Rz) − αM(z)}
lie in |z| < 1. Applying Lemma 3.1 to G(z) and noting that Nm is a linear
operator, it follows that all the zeros of

Nm[G](z)={Nm[P ◦ σ](z) − αNm[P ](z)}−λ {Nm[M ◦ σ](z)− αNm[M ](z)} ,

lie in |z| < 1 for every λ with |λ| > 1. This implies

|Nm[P ◦ σ](z) − αNm[P ](z)| ≤ |Nm[M ◦ σ](z) − αNm[M ](z)| for |z| ≥ 1,

which, in particular, gives for each p > 0, R > 1 and 0 ≤ θ < 2π,
∫ 2π

0

∣
∣Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)

∣
∣p dθ

≤
∫ 2π

0

∣
∣Nm[M ◦ σ](eiθ) − αNm[M ](eiθ)

∣
∣p dθ. (4.2)

Again (as in case of H(z)), M(Rz) − αM(z) has all its zeros in |z| < 1, thus
by Lemma 3.1, Nm[M ◦ σ](z) − αNm[M ](z) also has all its zeros in |z| < 1.
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Therefore, if E(z) = enzn + · · · + e1z + e0 has all its zeros in |z| < 1, then
the operator Λδ defined by

ΛδE(z) = Nm[E ◦ σ](z) − αNm[E](z)

= (Rn − α) Λenzn + . . . + (R − α)
(
λ0 + λ1

n

2

)
e1z + (1 − α) (λ0)e0,

(4.3)

is admissible. Since M(z) = bnzn + · · · + b0, has all its zeros in |z| < 1, in
view of (4.3) it follows by (3.5) of Lemma 3.4 that for each p > 0,

∫ 2π

0

∣
∣Nm[M ◦ σ](eiθ) − αNm[M ](eiθ)

∣
∣p dθ

≤ |Rn − α|p|Nm[zn](1)|p
∫ 2π

0

∣
∣M(eiθ)

∣
∣p dθ. (4.4)

Combining the inequalities (4.2), (4.4) and noting that |M(eiθ)| = |P (eiθ)|,
we obtain for each p > 0 and R > 1,

∫ 2π

0

∣
∣Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)

∣
∣p dθ

≤ |Rn − α|p|Nm[zn](1)|p
∫ 2π

0

∣
∣P (eiθ)

∣
∣p dθ, (4.5)

In case P1(z) has a zero on |z| = 1, then inequality (4.5) follows by continuity.
This proves Theorem 2.1 for p > 0. To obtain this result for p = 0, we simply
make p → 0+. �

Proof of Theorem 2.2. By hypothesis P (z) does not vanish in |z| < 1, σ(z) =
Rz and R > 1, therefore, for 0 ≤ θ < 2π, (3.1) holds. Also, for each p > 0 and
γ real, (3.9) holds. Now it can be easily verified that for every real number γ
and s ≥ 1,

∣
∣s + eiγ

∣
∣ ≥ ∣∣1 + eiγ

∣
∣ .

This implies for each p > 0,
∫ 2π

0

∣
∣s + eiγ

∣
∣p dγ ≥

∫ 2π

0

∣
∣1 + eiγ

∣
∣p dγ. (4.6)

If Nm[P ◦ σ](eiθ) − αNm[P ](eiθ) �= 0, we take

s =
Nm[P � ◦ σ](eiθ) − αNm[P �](eiθ)
Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)

,

then by (3.1), s ≥ 1 and we get with the help of (4.6), that
∫ 2π

0

∣
∣
∣
{

Nm[P ◦ σ](e
iθ
) − αNm[P ](e

iθ
)
}
+ e

iγ
{

Nm[P
� ◦ σ](e

iθ
) − αNm[P

�
](e

iθ
)
}∣
∣
∣
p

dγ

=
∣
∣
∣Nm[P ◦ σ](e

iθ
) − αNm[P ](e

iθ
)
∣
∣
∣
p
∫ 2π

0

∣
∣
∣
∣
∣
1 + e

iγ Nm[P � ◦ σ](eiθ) − αNm[P �](eiθ)

Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)

∣
∣
∣
∣
∣

p

dγ

=
∣
∣
∣Nm[P ◦ σ](e

iθ
) − αNm[P ](e

iθ
)
∣
∣
∣
p
∫ 2π

0

∣
∣
∣
∣
∣
1 + e

iγ

∣
∣
∣
∣
∣

Nm[P � ◦ σ](eiθ)−αNm[P �](eiθ)

Nm[P ◦ σ](eiθ)−αNm[P ](eiθ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

p

dγ

≥
∣
∣
∣Nm[P ◦ σ](e

iθ
) − αNm[P ](e

iθ
)
∣
∣
∣
p
∫ 2π

0

∣
∣
∣1 + e

iγ
∣
∣
∣
p

dγ.
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For Nm[P ◦ σ](eiθ) − αNm[P ](eiθ) = 0, this inequality is trivially true. Using
this in (3.9), we conclude that for each p > 0,
∫ 2π

0

∣
∣
∣Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)

∣
∣
∣
p

dθ

∫ 2π

0

∣
∣1 + eiγ

∣
∣pdγ

≤
2π∫

0

| (Rn − α) Λeiγ + (1 − α) λ0|pdγ

2π∫

0

|P (eiθ)|pdθ,

from which Theorem 2.2 follows for p > 0. To establish this result for p = 0,
we simply let p → 0+. This completes the proof of Theorem 2.2. �

Proof of Theorem 2.3. Since P (z) is a self-inversive polynomial, then we have
for some ν, with |ν| = 1 P (z) = νP �(z) for all z ∈ C, where P �(z) is the
conjugate polynomial P (z). This gives, for 0 ≤ θ < 2π,

|Nm[P ◦ σ](eiθ) − αNm[P ](eiθ)| = |Nm[P � ◦ σ](eiθ) − αNm[P �](eiθ)|.
Using this in place of (3.1) and proceeding similarly as in the proof of The-
orem 2.2, we get the desired result for each p > 0. The extension to p = 0 is
obtained by letting p → 0+. �
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par des Polynômes de degré donné. Mém. Acad. R. Belgique 4, 1–103 (1912)

[5] Boas, R.P., Jr., Rahman, Q.I.: Lp inequalities for polynomials and entire func-
tions. Arch. Ration. Mech. Anal. 11, 34–39 (1962)



25 Page 18 of 19 A. Mir et al. MJOM

[6] de-Bruijn, N.G.: Inequalities concerning polynomials in the complex domain.
Nederal. Akad. Wetensch. Proc. 50, 1265–1272 (1947)

[7] de-Bruijin, N.G., Springer, T.A.: On the zeros of composition-polynomials.
Indag. Math. 9, 406–414 (1947)

[8] Dewan, K.K., Govil, N.K.: An inequality for self-inversive polynomials. J.
Math. Anal. Appl. 45, 490 (1983)

[9] Gardner, R.B., Govil, N.K., Milovanović, G.V.: Extremal Problems and
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[14] Milovanović, G.V., Mitrinović, D.S., Rassias, Th.M.: Topics in Polynomials:
Extremal Problems, Inequalities, Zeros. World Scientific, Singapore (1994)
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