
Mediterr. J. Math. (2022) 19:252
https://doi.org/10.1007/s00009-022-02174-4
1660-5446/22/060001-17
published onlineOctober 16, 2022
c© The Author(s), under exclusive licence to Springer
Nature Switzerland AG 2022

Pell–Lucas Numbers as Sum of Same Power
of Consecutive Pell Numbers

Salah Eddine Rihane, Euloge B. Tchammou and Alain Togbé

Abstract. Our main objective in this paper is to find all Pell–Lucas
numbers that are sum of same power of consecutive Pell numbers. So
we find all the solutions of the Diophantine equation

P x
n + P x

n+1 + · · ·+ P x
n+k−1 = Qm

in positive integers m,n, k, x, where Pi is the ith term of the Pell se-
quence and Qj is the jth term of the Pell–Lucas sequence.
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1. Introduction

Let (Pn)n≥0 be the Pell sequence given by

P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn, for n ≥ 0.

The initial terms of this sequence are

0, 1, 2, 5, 12, 29, 70, 169, . . . .

Its companion sequence is the Pell–Lucas sequence (Qn)n≥0 given by

Q0 = 2, Q1 = 2 and Qn+2 = 2Qn+1 + Qn, for n ≥ 0,

which initial terms are

2, 2, 6, 14, 34, 82, 198, 478, 1154, . . . .

The Binet’s formulas for Pell and Pell–Lucas numbers are as follows:

Pn =
αn − βn

2
√

2
and Qn = αn + βn, (1.1)

where α = 1+
√

2 and β = 1−√
2 are the roots of the characteristic quadratic

equation x2 − 2x − 1 = 0. This easily implies that the inequalities

αn−2 ≤ Pn ≤ αn−1, for n ≥ 1 (1.2)
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and

αn−1 < Qn < αn+1, for n ≥ 2. (1.3)

It is easy to prove that

Pn

Pn+1
≤ 3

7
, for n ≥ 2. (1.4)

The sequences (Pn)n≥0 and (Qn)n≥0 satisfy the following well-known prop-
erties (see [1, pp. 193–194]):

Qn = 2(Pn−1 + Pn), (1.5)

n∑

j=1

Pj =
Pn + Pn+1 − 1

2
, (1.6)

and
n∑

j=1

P 2
j =

P2n + P2n+1 + τ

8
, (1.7)

where τ = −1 if n is even and τ = 1 otherwise.
In 2011, it has been proved that a term of the Pell sequence is never

a perfect higher power of another term and that a sum of same powers of
two consecutive terms cannot be a term apart from the family of identities
P 2

n + P 2
n+1 = P2n+1 (see [5]). Earlier, in 2020, some of the authors of this

paper gave a nice extension of this result, proving then that the Diophantine
equation

P x
n + P x

n+1 + · · · + P x
n+k−1 = Pm.

has only trivial solutions (see [3]).
In this paper, we look for all Pell–Lucas numbers that are sum of same

power of consecutive Pell numbers. So we investigate the following Diophan-
tine equation

P x
n + P x

n+1 + · · · + P x
n+k−1 = Qm. (1.8)

It is obvious that (m,n, k, x) = (1, 2, 1, 1) is a solution of equation (1.8) since
P2 = Q1. Such a solution is called a trivial solution. We prove the following
theorem:

Theorem 1.1. The Diophantine Eq. (1.8) has only the trivial solution
(m,n, k, x) = (1, 2, 1, 1) in positive integers (m,n, k, x).

We use Baker’s method to prove our main result.
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2. The Tools

2.1. Linear Forms in Logarithms

The proof of our main theorem uses lower bounds for linear forms in loga-
rithms of algebraic numbers and a version of the Baker–Davenport reduction
method. So, let us recall some results. For any non-zero algebraic number α

of degree d over Q, whose minimal polynomial over Z is a0

∏d
i=1

(
X − α(i)

)

(with a0 > 0), we denote by

h(α) =
1
d

(
log a0 +

d∑

i=1

log max
(
1,

∣∣∣α(i)
∣∣∣
))

the usual absolute logarithmic height of α.
Let α1, α2 be two non-zero algebraic numbers, and multiplicatively in-

dependent. We consider the linear form

Λ := b2 log α2 − b1 log α1, (2.1)

where b1 and b2 are positive integers. Without loss of generality, we suppose
that |α1| and |α2| are ≥ 1. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R].

Let B1, B2 be real numbers larger than 1 such that

log Bi ≥ max
{

h(αi),
| log αi|

D
,

1
D

}
, for i = 1, 2,

and put

b′ :=
|b1|

D log B2
+

|b2|
D log B1

.

We note that Λ �= 0 because α1 and α2 are multiplicatively indepen-
dent. The following result is due to Laurent, Mignotte and Nesterenko [2,
Corollary 2, p. 288].

Theorem 2.1. (Laurent, Mignotte, Nesterenko) With the above notations, as-
suming that α1, α2 are real and positive,

log |Λ| > −24.34D4

(
max

{
log b′ + 0.14,

21
D

,
1
2

})2

log B1 log B2. (2.2)

2.2. Continued Fraction

In this subsection, we will present a property of continued fractions used in
this paper to reduce the upper bounds on x or m of the Diophantine Eq.
(1.8). We begin by recalling the following classical result in the theory of
Diophantine approximation, which is the well-known Legendre criterion (see
Theorem 8.2.4 in [4]).

Lemma 2.2. (i) Let τ be real number and u, v integers such that
∣∣∣τ − u

v

∣∣∣ <
1

2v2
. (2.3)
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Then, u/v = pk/qk is a convergent of τ . Furthermore,
∣∣∣τ − u

v

∣∣∣ ≥ 1
(ak+1 + 2)v2

. (2.4)

(ii) If u, v are integers with v ≥ 1 and

|vτ − u| < |qkτ − pk|,
then v ≥ qk+1.

Finally, we recall the following lemma (see Theorem 8.2.4 and top of
p. 263 in [4]):

Lemma 2.3. Let pi/qi be the convergents of the continued fraction [a0, a1, . . .]
of the irrational number γ. Let M be a positive integer and put aM :=
max{ai| 0 ≤ i ≤ N + 1} where N ∈ N is such that qN ≤ M < qN+1. If
u, v ∈ Z with u > 0, then

|uγ − v| >
1

(aM + 2)u
, for all u < M.

3. Setup

In this section, we will study the cases of k ∈ {1, 2} and x ∈ {1, 2} and we
will give an inequality for m in terms of n, k, and x.

3.1. The Small Values of k

It is convenient to rule out the small values of k. We will later rule out the
case of small values of x in Sect. 7.

Note that it is well-known and it is easy to prove that Pl is even if
and only if l is even (see Lemma 2 in [6]). So, for every positive integer
n, Pn + Pn−1 is odd. From this, we deduce from (1.5) that for any positive
integer m, v2(Qm) = 1 (where v2(Qm) denotes the 2-adic value of Qm), which
implies that the equation Qm = ax has no solutions in positive integers with
x ≥ 2. In particular the Diophantine equation Qm = P x

n (which corresponds
to our main equation for k = 1) is not possible if x ≥ 2. So, the case k = 1
leads to solve the Diophantine equation Qm = Pn. Observe that

Pn =
Qn + Qn−1

4
, for n ≥ 1

and that

Qn−2 <
Qn + Qn−1

4
< Qn−1, for n ≥ 3,

which implies that the Diophantine equation Qm = Pn has no solution with
n ≥ 3. So, we check that the only solution in positive integers of the equation
Qm = Pn is (m,n) = (1, 2), so we obtained that the only solution of Eq. (1.8)
with k = 1 is (m,n, k, x) = (1, 2, 1, 1), as given in Theorem 1.1.

For k = 2, our main equation is P x
n +P x

n+1 = Qm, which has no solution
in positive integers since for each positive integers n and x, P x

n +P x
n+1 is odd

while Qm is even for each positive integer m. So, we assume from now on
that k ≥ 3.
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3.2. An Inequality for m in Terms of n, k, x

Recall that we are working on Eq. (1.8) and we are now assuming that k ≥ 3
and x ≥ 1. It is also easy to check by induction that

P1 + · · · + Pn < Pn+1, for n ≥ 1. (3.1)

This and (1.2) give the inequalities

P x
n + P x

n+1 + · · · + P x
n+k−1 > P x

n+k−1 ≥ α(n+k−3)x,

and

P x
n + P x

n+1 + · · · + P x
n+k−1 ≤ (P0 + P1 + P2 + · · · + Pn+k−1)x

< P x
n+k ≤ α(n+k−1)x.

Thus, we obtain

α(n+k−3)x < P x
n + P x

n+1 + · · · + P x
n+k−1 < α(n+k−1)x.

This and (1.3) give

(n + k − 3)x ≤ m ≤ (n + k − 1)x.

We record this as a lemma.

Lemma 3.1. If (m,n, k, x) is any nontrivial solution of (1.8) in positive in-
tegers, then we have the inequalities

(n + k − 3)x ≤ m ≤ (n + k − 1)x.

3.3. The Case of Small Values of x

As for k, we find it convenient to rule out the case of small values of x, namely
the cases when x ∈ {1, 2}.

For x = 1, our Eq. (1.8) is

Pn + Pn+1 + · · · + Pn+k−1 = Qm,

which leads to

Qm =
n+k−1∑

j=1

Pj −
n−1∑

j=1

Pj =
Pn+k−1 + Pn+k − 1

2
− Pn−1 + Pn − 1

2

=
Qn+k − Qn

4
,

where we used (1.5). Since x = 1, from Lemma 3.1, we have that n+ k − 3 ≤
m ≤ n + k − 1, i.e. m ∈ {n + k − 3, n + k − 2, n + k − 1}.

Assume that m = n + k − 3. Then, we get that Qn+k−3 = Qn+k−Qn

4 ,
i.e.

4Qn+k−3 = Qn+k − Qn = 2Qn+k−1 + Qn+k−2 − Qn

= 5Qn+k−2 + 2Qn+k−3 − Qn,

which is false as 4Qn+k−3 < 5Qn+k−2 + 2Qn+k−3 − Qn.
Assume that m = n + k − 2. Then, we get

4Qn+k−2 = 5Qn+k−2 + 2Qn+k−3 − Qn,

which is false as 4Qn+k−2 < 5Qn+k−2 + 2Qn+k−3 − Qn.



252 Page 6 of 17 S. E. Rihane et al. MJOM

For m = n + k − 1, we get

4Qn+k−1 = 2Qn+k−1 + Qn+k−2 − Qn,

i.e. 2Qn+k−1 = Qn+k−2 − Qn, which is false since 2Qn+k−1 > Qn+k−2 − Qn.
For x = 2, our Eq. (1.8) is

P 2
n + P 2

n+1 + · · · + P 2
n+k−1 = Qm.

But using (1.7), we have

Qm =
n+k−1∑

j=1

P 2
j −

n−1∑

j=1

P 2
j =

P2n+2k−2 + P2n+2k−1 + τ

8
− P2n−2 + P2n−1 + ε

8

=
Q2n+2k−1 − Q2n−1

16
+

τ − ε

8
,

where τ = −1 if n+k−1 is even and τ = 1 otherwise, and on the other hand
ε = −1 if n − 1 is even and ε = 1 otherwise. So, we get

16Qm = Q2n+2k−1 − Q2n−1 + 2(τ − ε)
= 2Q2n+2k−2 + Q2n+2k−3 − Q2n−1 + 2(τ − ε)
= 5Q2n+2k−3 + 2Q2n+2k−4 − Q2n−1 + 2(τ − ε)
= 12Q2n+2k−4 + 5Q2n+2k−5 − Q2n−1 + 2(τ − ε). (3.2)

Since x = 2, from Lemma 3.1, we have 2n + 2k − 6 ≤ m ≤ 2n + 2k − 2,
i.e. m ∈ {2n + 2k − 6, 2n + 2k − 5, 2n + 2k − 4, 2n + 2k − 3, 2n + 2k − 2}. We
will check for each possibility of m, whether (3.2) is satisfied or not.

If m ∈ {2n + 2k − 4, 2n + 2k − 3, 2n + 2k − 2}, then we have

16Qm ≥ 16Q2n+2k−4 > 12Q2n+2k−4 + 5Q2n+2k−5 − Q2n−1 + 2(τ − ε),

so that 16Qm �= 12Q2n+2k−4 + 5Q2n+2k−5 − Q2n−1 + 2(τ − ε).
For m ∈ {2n + 2k − 6, 2n + 2k − 5}, we obtain

16Qm ≤ 16Q2n+2k−5

< 12Q2n+2k−4 + 5Q2n+2k−5 − Q2n−1 + 2(τ − ε).

Hence, Eq. (1.8) has no solutions with x = 2. So, we assume from now on
that x ≥ 3 and k ≥ 3.

4. Bounds on x,m in Terms of n + k

Recall that k ≥ 3 and x ≥ 3, so n + k ≥ 4 and m ≥ 6. Now, using (1.1), we
express equation (1.8) in the following form:

αm − P x
n+k−1 = P x

n + P x
n+1 + · · · + P x

n+k−2 + βm,

which leads to
∣∣αm − P x

n+k−1

∣∣ ≤ P x
n + P x

n+1 + · · · + P x
n+k−2 + |β|m .

Using inequality (3.1), one gets

P x
n + P x

n+1 + · · · + P x
n+k−3 ≤ (Pn + Pn+1 + · · · + Pn+k−3)x < P x

n+k−2,
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so that P x
n + P x

n+1 + · · · + P x
n+k−2 < 2P x

n+k−2. Then, we have
∣∣αm − P x

n+k−1

∣∣ < 2P x
n+k−2 + |β|m < 3P x

n+k−2,

since P x
n+k−2 > 1, while |β|m < 1. If we divide both sides of the above

inequality by P x
n+k−1 and use the inequality (1.4), we obtain

∣∣αmP−x
n+k−1 − 1

∣∣ < 3
(

Pn+k−2

Pn+k−1

)x

<
3

2.3x
<

3
2.33

<
1
2
.

Let us now define the following linear form in two logarithms:

Λ1 := m log α − x log Pn+k−1. (4.1)

Using the fact that |Λ1| < 2
∣∣eΛ1 − 1

∣∣ whenever
∣∣eΛ1 − 1

∣∣ <
1
2
, we get

|Λ1| <
6

2.3x
. (4.2)

With the goal to get a lower bound for Λ1, we apply Theorem 2.1 by fixing

α1 := α, α2 := Pn+k−1, b1 := m and b2 := x.

With this data we have α1, α2 ∈ Q(
√

2). Thus, we take D := 2. Since

h(α1) =
log α

2
and h(α2) = log Pn+k−1 ≤ (n + k − 2) log α,

we take log B1 := 1/2, log B2 := (n + k − 2) log α. Thus,

b′ =
m

2(n + k − 2) log α
+ x ≤ (n + k − 1)x

2(n + k − 2) log α
+ x < 2x,

where we used the fact that m ≤ (n + k − 1)x (see Lemma 3.1), as well as
the fact that (n + k − 1)/ (2(n + k − 2) log α) < 1, for n + k ≥ 4.

Before we can apply Theorem 2.1, we have to show that α1 and α2 are
multiplicatively independent. Indeed, since α ∈ OQ(

√
2) whereas Pn+k−1 does

not, then α1 and α2 are multiplicatively independent. Thus, Theorem 2.1
implies

log |Λ| > −24.34 × 24(1/2)((n + k − 2) log α)max{log(2x) + 0.14, 10.5}2

> −172(n + k − 2)max{log(2.4x), 10.5}2.

Combining the above inequality with (4.2), we get

x log(2.3) − log 6 < 172(n + k − 2)(max{log(2.4x), 10.5})2.

If the maximum in the right above is 10.5, then log(2.4x) ≤ 10.5, which leads
to

x < 15,132. (4.3)

Otherwise, we get

x log(2.3) − log 6 < 172(n + k − 2)(log(2.4x))2.

So

x < 670(n + k − 2)(log x)2,
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where we used the fact that log(2.4x) < 1.8 log x, for x ≥ 3. Using the fact
that for A ≥ 100

y

log2 y
< A yields y < 4A log2 A,

with A := 670(n + k − 2) and y := x, we get

x < 4 × 670(n + k − 2) (log(670(n + k − 2)))2

< 2680(n + k − 2) (6.51 + log(n + k − 2))2

< 2.9 × 105(n + k) log2(n + k), (4.4)

where we used the fact that 6.51 + log(n + k − 2) < 10.4 log(n + k − 2),
for n + k ≥ 4. Comparing (4.3) and (4.4), we conclude that inequality (4.4)
always holds. Moreover, inequality (4.4) and Lemma 3.1 give

m ≤ (n + k − 1)x < 2.9 × 105(n + k)2 log2(n + k).

We record this as a lemma.

Lemma 4.1. If (m,n, k, x) is any nontrivial solution in positive integers of
Eq. (1.8) with x ≥ 3, k ≥ 3 and n + k ≥ 4, then we have the following
inequalities:

x < 2.9 × 105(n + k) log2(n + k)

and

m < 2.9 × 105(n + k)2 log2(n + k).

5. The Case of Small n + k

In this section, we will treat the case when 4 ≤ n + k ≤ 50. In this case, by
Lemma 4.1, we have

x < 2.9 × 105 × 50 × log2 50 < 2.22 × 108

and

m < 2.9 × 105 × 502 × log2 50 < 1.11 × 1010.

On the other hand, by Lemma 3.1, we have m ≤ (n + k − 1)x < 50x. Then,
from (4.1) and (4.2), it follows that

∣∣∣∣m
(

log α

log Pn+k−1

)
− x

∣∣∣∣ <
6

(log Pn+k−1)(2.31/50)m

<
6

(log P3)(2.31/50)m

<
3.8

(2.31/50)m
. (5.1)

So, we are in situation to apply Lemma 2.3. We choose

u := m, v := x γ :=
log α

log Pn+k−1
, (4 ≤ n + k ≤ 50) and

M := 1.11 × 1010.
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Using Maple package, we obtain that aM ≤ 177, for 4 ≤ n + k ≤ 50. Then,
Lemma 2.3 implies that

∣∣∣∣m
(

log α

log Pn+k−1

)
− x

∣∣∣∣ >
1

179m
. (5.2)

If we compare (5.1) and (5.2) and use the fact that m < 1.11 × 1010, we
conclude that

m <
log(3.8 × 179 × 1.1 × 1010)

log(2.31/50)
< 1780.

Next, since (n + k − 3)x ≤ m, we have

x ≤ m/(n + k − 3) ≤ 1780/(n + k − 3).

A computer program with Maple revealed that there are no solutions to Eq.
(1.8) in the range n + k ∈ {4, 5, . . . , 50}, m ∈ [6, 1780] and x ∈ [3, 1780/(n +
k − 3)].

6. The Bound on x

From now on, we suppose that n+k ≥ 51. We will prove the following lemma.

Lemma 6.1. If (k, n,m, x) is any nontrivial solution in positive integers of
Eq. (1.8) with k ≥ 3, x ≥ 3, then x ≤ 5.

Proof. We suppose that x ≥ 6 in order to get a contradiction. By Lemma 4.1,
we have

x

α2(n+k−1)
<

2.9 × 105(n + k) log2(n + k)
α2(n+k−1)

<
1

αn+k
,

where we used the fact that the inequality 2.9 × 105(n + k) log2(n + k) <
αn+k−2 holds for n + k ≥ 23, which is the case for us. We now write

P x
n+k−1 =

α(n+k−1)x

8x/2

(
1 − (−1)n+k−1

α2(n+k−1)

)x

.

If n + k − 1 is odd, then

1 <

(
1 − (−1)n+k−1

α2(n+k−1)

)x

=
(

1 +
1

α2(n+k−1)

)x

= exp
(

x log
(

1 +
1

α2(n+k−1)

))

< exp
( x

α2(n+k−1)

)
< exp

(
1

αn+k

)

< 1 +
2

αn+k
,

because
1

αn+k
≤ α−51 is very small. If n + k − 1 is even, then

1 >

(
1 − (−1)n+k−1

α2(n+k−1)

)
> exp

( −x

α2(n+k−1)

)
> exp

( −1
αn+k

)
> 1 − 2

αn+k
,
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again because
1

αn+k
≤ α−51 is very small. Hence, we obtain

P x
n+k−1 =

α(n+k−1)x

8x/2

(
1 − (−1)n+k−1

α2(n+k−1)

)x

=
α(n+k−1)x

8x/2
(1 + ζ), |ζ| <

1
αn+k

.

In particular, |ζ| < 1/2, so that

α(n+k−1)x/8x/2 ∈ ((2/3)P x
n+k−1, 2P x

n+k−1).

Thus, we obtain

αm − α(n+k−1)x

8x/2
(1 + ζ) = βm +

⎛

⎝
n+k−2∑

j=n

P x
j

⎞

⎠ .

Dividing both sides by α(n+k−1)x/8x/2, we get
∣∣∣αm−(n+k−1)x8x/2 − 1

∣∣∣

≤ |ζ| +
1

αm

(
8x/2

α(n+k−1)x

)
+

(
8x/2

α(n+k−1)x

)⎛

⎝
n+k−2∑

j=n

P x
j

⎞

⎠ .

The fact that α(n+k−1)x/8x/2 ∈ ((2/3)P x
n+k−1, 2P x

n+k−1) gives

1
αm

(
8x/2

α(n+k−1)x

)
<

3
2 · αmP x

n+k−1

<
1

αn+k
.

Since P�/P�+1 ≤ 3/7, for � ≥ 2, it results that
(

8x/2

α(n+k−1)x

) ⎛

⎝
n+k−2∑

j=n

P x
j

⎞

⎠

<
3
2

((
Pn+k−2

Pn+k−1

)x

+
(

Pn+k−3

Pn+k−1

)x

+ · · · +
(

Pn

Pn+k−1

)x)

=
3
2

(
Pn+k−2

Pn+k−1

)x (
1 +

(
Pn+k−3

Pn+k−2

)x

+ · · · +
(

Pn

Pn+k−2

)x)

<
1

2.3x

(
2 +

(
3
7

)2

+
(

3
7

)4

+ · · ·
)

<
2.23
2.3x

.

Thus, we deduce that
∣∣∣αm−(n+k−1)x8x/2 − 1

∣∣∣ <
2

αn+k
+

2.23
2.3x

<
5

2.3min{x,n+k} .

As x ≥ 6, the above upper bound is smaller than 1/2, so

|(m − (n + k − 1)x) log α − x log(2
√

2)| <
10

2.3min{x,n+k} . (6.1)

The expression on the right is smaller than 1/2, so |m − (n + k − 1)x| < 2x.
Next, we apply Theorem 2.1 by taking

(α1, b1) := (α,m − (n + k − 1)x), and (α2, b2) := (2
√

2, x).
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Again K = Q(
√

2) has D = 2. We take log B1 := 1/2, log B2 := (log 8)/2.
Thus,

b′ :=
|m − (n + k − 1)x|

log 8
+ x <

2x

log 8
+ x < 2x.

So, Theorem 2.1 tells us that the left-hand side of (6.1) is bounded by

− 203(max{log(2.4x), 10.5})2.

This and (6.1) imply that

min{x, n + k} log(2.3) − log 10 < 203(max{log(2.4x), 10.5})2.

If the maximum in the right above is 10.5, then log(2.4x) ≤ 10.5 and so

x < 15,132. (6.2)

Otherwise, we get

min{x, n + k} log(2.3) − log 10 < 203(log(2.4x))2,

which leads to

min{x, n + k} < 550 log2 x,

where we used the fact that log(2.4x) < 1.5 log x, for x ≥ 6. If

min{x, n + k} = x,

we get x < 550 log2 x. This implies

x < 70,000. (6.3)

Finally, it remains to consider the possibility

min{x, n + k} = n + k.

In this case, we get n + k < 550 log2 x. So, by Lemma 4.1, we get

n + k < 550
(
log(2.9 × 105(n + k) log2(n + k))

)2

< 550 (12.58 + 2 log(n + k)))2

< 14,872 log2(n + k),

where we used the fact that 2 log log(n+k) < log(n+k) and 12.58+2 log(n+
k) < 5.2 log(n + k), for n + k ≥ 51. Thus,

n + k < 3.4 × 106.

So, again by Lemma 4.1, we get

x < 2.9 × 105 × 3.4 × 106 log2(3.4 × 106) < 2.3 × 1014. (6.4)

In conclusion, from (6.2), (6.3) and (6.4), we have inequality (6.4). We now
go back to inequality (6.1) and divide it across by x log α to obtain

∣∣∣∣∣
log(2

√
2)

log α
− (n + k − 1)x − m

x

∣∣∣∣∣ <
10

x(log α)2.3min{x,n+k} . (6.5)
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Since x ≥ 6, we have 2.3x > (20/ log α)x. Furthermore, since n + k ≥ 51, we
have

2.3n+k

(20/ log α)
≥ 2.351

(20/ log α)
> 1.2 × 1017 > x.

To summarize, the assumption x ≥ 6 implies

2.3min{x,n+k}

(10/ log α)
> 2x,

and, therefore, inequality (6.5) gives that
∣∣∣∣∣
log(2

√
2)

log α
− (n + k − 1)x − m

x

∣∣∣∣∣ <
1

2x2
.

Thus, Lemma 2.2 implies that that ((n + k − 1)x − m)/x = pt/qt for some
convergent pt/qt of τ := log(2

√
2)/ log α. The continued fraction of τ starts

as

[1, 5, 1, 1, 3, 3, 1, 1, 7, 3, 1, 1, . . .]

with the 32st convergent p32/q32 satisfying q32 > 4.16 × 1014 > x. Thus, by
Lemma 2.2, we have

|(m − (n + k − 1)x) log α − x log(2
√

2)| ≥ (log α)|m − (n + k − 1)x − xτ |
> (log α)|p31 − q31τ | > 1.83 × 10−15,

and now inequality (6.1) shows that

2.3min{x,n+k} <
10 × 1015

1.83
< 5.5 × 1014.

This gives min{x, n + k} ≤ 40, so x ≤ 40, since n + k ≥ 51. The sequence of
convergents of τ is

1,
6
5
,

7
6
,

13
11

,
46
39

,
151
128

, · · · .

The only convergents of the form pt/qt with qt a divisor of x and x ∈ [6, 40]
are the first 5 numbers above. Thus, t ∈ {0, 1, 2, 3, 4}. For each one of them,
we get that qt | x so x ≥ qt. Thus, x ≥ max{6, qt}. Now, inequality (6.5)
implies that

∣∣∣∣∣
log(2

√
2)

log α
− pt

qt

∣∣∣∣∣ <
10

(log α)max{6, qt}2.3max{6,qt} .

We checked that this last inequality fails for t ∈ {0, 1, 2, 3, 4}. Thus, the
assumption x ≥ 6 is false, therefore, x ≤ 5 which is what we wanted. �
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7. Final Computation

From now, we assume that 3 ≤ x ≤ 5 and n + k ≥ 51. We take l to be some
number in {n, n + 1, . . . , n + k − 1} such that l ≥ 25. For example, we can
take l = n + �k/2� and then certainly l ≥ (n + k)/2 ≥ 25 since n + k ≥ 51.
Furthermore, if k ≤ 26, then we can take l = n = (n+k)−k ≥ 51− 26 = 25.
We make these choices more precise later. Let j ∈ {l + 1, . . . , n + k − 1}. We
have

x

α2j
≤ 5

α2l+2
<

α2

α2l+2
=

1
α2l

.

We now write

P x
j =

αjx

8x/2

(
1 − (−1)j

α2j

)x

.

If j is odd, then

1 <

(
1 − (−1)j

α2j

)x

=
(

1 +
1

α2j

)x

= exp
(

x log
(

1 +
1

α2j

))

< exp
( x

α2j

)
< exp

(
1

α2l

)

< 1 +
2

α2l
,

because
1

α2l
≤ α−50. If j is even, then 1 >

(
1 − (−1)j

α2j

)x

> 1 − 2
α2l . So, we

have
∣∣∣∣P

x
j − αjx

8x/2

∣∣∣∣ =
αjx

8x/2

∣∣∣∣

(
1 − (−1)j

α2j

)x

− 1
∣∣∣∣ <

αjx

8x/2

(
2

α2l

)
.

We now return to our Eq. (1.8) and rewrite it as

αm + βm = P x
n + P x

n+1 + · · · + P x
l +

n+k−1∑

j=l+1

αjx

8x/2
+

n+k−1∑

j=l+1

(
P x

j − αjx

8x/2

)
.

Thus, we obtain
∣∣∣∣∣α

m − α(l+1)x

8x/2

n+k−l−2∑

i=0

αix

∣∣∣∣∣

=

∣∣∣∣∣∣
−βm +

n+k−1∑

j=l+1

(
P x

j − αjx

8x/2

)
+ P x

n + P x
n+1 + · · · + P x

l

∣∣∣∣∣∣

≤ 1
αm

+
n+k−1∑

j=l+1

∣∣∣∣P
x
j − αjx

8x/2

∣∣∣∣ + P x
n + P x

n+1 + · · · + P x
l
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<
1

αm
+

n+k−1∑

j=l+1

∣∣∣∣P
x
j − αjx

8x/2

∣∣∣∣+P x
l

(
1+

(
Pl−1

Pl

)x

+
(

Pl−2

Pl

)x

+· · ·
)

<
1

αm
+

n+k−1∑

j=l+1

αjx

8x/2

(
2

α2l

)
+ P x

l

(
2 +

1
3

+
1
32

+ · · ·
)

=
1

αm
+

α(l+1)x

8x/2

(
2

α2l

) n+k−l−2∑

i=0

αix + 2.5α(l−1)x. (7.1)

In the above chain of inequalities, we used the facts that Pi/Pi+1 ≤ 3/7 <
1/2.3 for i ≥ 2, the fact that 2.3x > 3 since x ≥ 2 and P x

l < α(l−1)x.
Multiplying both sides of the above inequality (7.1) by α−(n+k−1)x8x/2, we
obtain

∣∣∣∣∣α
m−(n+k−1)x8x/2 −

n+k−l−2∑

i=0

α−ix

∣∣∣∣∣

≤ 8x/2

αm+(n+k−1)x
+

2
α2l

n+k−l−2∑

i=0

α−ix +
2.5 × 8x/2

α(n+k−l)x

<
1

α(n+k−1)x
+

2
α2l

n+k−l−2∑

i=0

α−ix +
2.5

α(n+k−l−1.2)x

<
3.5

α(n+k−l−1.2)x
+

2
α2l

∑

i≥0

1
3i

<
3.5

α(n+k−l−1.2)x
+

3
α2l

<
6.5

αmin{(n+k−l−1.2)x,2l} .

In the above, we used the fact that m > (n+k −3)x ≥ 48x (see Lemma 3.1),
so αm > α48x > 8x/2, the fact that αx ≥ α3 > 3, the fact that

∑

i≥0

3−i =
3
2
,

as well as the fact that
√

8 < α1.2. On the other hand, one has

n+k−l−2∑

i=0

α−ix =
∑

i≥0

1
αix

−
∑

i≥n+k−l−1

1
αix

=
1

1 − 1/αx
− 1

α(n+k−l−1)x

(
1 +

1
αx

+
1

α2x
+ · · ·

)

=
αx

αx − 1
+ η,

where

|η| <
1

α(n+k−l−1)x

(
1 +

1
3

+
1
32

+ · · ·
)

<
1.5

α(n+k−l−1)x
.
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Hence, we obtain
∣∣∣∣α

m−(n+k−1)x8x/2 − αx

αx − 1

∣∣∣∣

<
6.5

αmin{(n+k−l−1.2)x,2l} + |η|

<
6.5

αmin{(n+k−l−1.2)x,2l} +
1.5

α(n+k−l−1)x

<
8

αmin{(n+k−l−1.2)x,2l} . (7.2)

We want to show that (n+k−l−1.2)x ≤ 5. Suppose that (n+k−l−1.2)x > 6.
Since 2l ≥ 50, inequality (7.2) certainly implies that

∣∣∣αm−(n+k−1)x8x/2 − 1
∣∣∣ <

8
α6

+
αx

αx − 1
− 1 =

8
α6

+
1

αx − 1
<

1
4
, (7.3)

since x ≥ 3. So, we obtain

|(m − (n + k − 1)x) log α − (x − 1) log(2
√

2)| <
1
2
.

Hence, we have that |m − (n + k − 1)x| < 2x. We now take l := n + �k/2�.
Note that 2l ≥ 50 since l ≥ 25. We then get

∣∣∣∣α
m−(n+k−1)x8x/2 − αx

αx − 1

∣∣∣∣ <
8

αmin{(k−�k/2�−1.2)x,50} .

We checked that for x ∈ [3, 5], there is no integer t := m − (n + k − 1)x,
t ∈ (−2x, 2x) such that

∣∣∣∣α
t8x/2 − αx

αx − 1

∣∣∣∣ <
8
α5

.

The way we checked that was to check numerically that for every x in our
range and for all t ∈ [−2x + 1, 2x − 1], the minimum of

∣∣∣αt8x/2 − αx

αx−1

∣∣∣ is

> 0.098 > 8
α5 , which certainly shows that such t cannot exist. This shows

that (k − �k/2� − 1.2)x ≤ 5. Since x ≥ 3, this shows that k − �k/2� − 1.2 ≤
1.7, so k − �k/2� ≤ 2.9, showing that k ≤ 5. We now take l = n. Then,
l = (n + k) − k ≥ 51 − 5 > 25, so this choice of l is also valid. In this case,
we see that n + k − l − 1.2 = k − 1.2 > 0, so inequality (7.2) becomes

∣∣∣∣α
m−(n+k−1)x8x/2 − αx

αx − 1

∣∣∣∣ <
8

αmin{(k−1.2)x,50} .

The preceding argument shows that (k − 1.2)x ≤ 5 and since x ≥ 3, we get
k ≤ 2, which is a contradiction. Thus, there are no solutions with n+k ≥ 51,
and this completes the proof of Theorem 1.1.
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