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Stochastic Quasi-Interpolation with
Bernstein Polynomials

Xingping Sun and Xuan Zhou

Abstract. We introduce the notion “stochastic quasi-interpolation on
compact Hausdorff spaces”, and establish Gaussian-type Lp-concentration
inequalities (1 ≤ p ≤ ∞) for stochastic Bernstein polynomials in terms
of the modulus of continuity of a target function f ∈ C[0, 1]. For p
in the range 1 ≤ p < ∞, these inequalities hold true unconditionally
in the sense that no additional assumption on a given target function
is required. For the case p = ∞, our proof calls for a crucial applica-
tion of Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al. in Ann
Math Stat 27(3):642–669, 1956; Massart in Ann Probab 18(3):1269–
1283, 1990) , and requires a moderate decay condition on the mod-
ulus of continuity. Our result for the case p = ∞ confirms a similar
conjecture raised in Sun and Wu (Proc Am Math Soc 147(2):671–679,
2019). As a corollary, we show that for all 1 ≤ p ≤ ∞ the expected Lp-
approximation order of stochastic Bernstein polynomials is comparable
to that given by the classical Bernstein polynomials.
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1. Introduction

Let Ω be a compact Hausdorff space, and let Rp(Ω) denote the totality of
Radon probability measures on Ω. For an f ∈ C(Ω) and n ∈ N, we pre-
scribe a set of n functions ψn,1, . . . , ψn,n ∈ C(Ω), and define stochastic quasi-
interpolants QX

n (f) of f by

QX
n (f)(x) :=

n∑

j=1

f(Xn,j)ψn,j(x), x ∈ Ω.

Here {f(Xn,j)ψn,j}n
j=1 are C(Ω)-valued random variables obeying respec-

tively laws {νn,j}n
j=1 ⊂ Rp(Ω), the design of which caters to problems on
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hand and may require some ingenuity. Ideally, one selects functions ψn,1, . . . ,
ψn,n ∈ C(Ω) following the “partition of unity” principle. That is,

n∑

j=1

ψn,j(x) = 1, x ∈ Ω, n ∈ N.

In many theoretical and practical problems, however, an exact partition of
unity may be either hard to obtain or cumbersome to implement. One then
uses a set of functions that forms an approximate partition of unity in the
sense that the sequence of functions

∑n
j=1 ψn,j(x) approximates 1 within a

desirable error bound under an appropriately-selected topology on C(Ω). We
will call this general type of stochastic approximation scheme “stochastic
quasi-interpolation”.

Let μ be the uniform probability measure on Ω as defined by Niederreiter
[27]. For 1 ≤ p ≤ ∞, let Lp(Ω) denote the Banach spaces consisting of all
real-valued Borel measurable functions f on Ω for which ‖f‖p < ∞. Here
‖f‖p := ‖f‖Lp(Ω) is defined by:

‖f‖Lp(Ω) =

⎧
⎪⎨

⎪⎩

(∫

Ω

|f(x)|pdμ(x)

)1/p

, if 1 ≤ p < ∞,

inf{C : |f(x)| ≤ C almost surely with respect to μ}, if p = ∞.

Let P(A) and E(Z) denote, respectively, the probability of the event A and
the expectation of the random variable Z. A coveted type of estimates in
the study of stochastic quasi-interpolation is Gaussian-style Lp-concentration
inequalities for some target functions f of interest: For any given ε >, there
holds

P{‖QX
n (f) − f‖∞ > ε} ≤ c1 exp

(−c2n
α ε2

)
.

Here α ≥ 1, and c1, c2 are absolute constants, which can be made explicit
with efforts. As a corollary of the above inequality, we derive

E (‖Qn(f) − f‖∞) ≤ c3 n−α/2, (1.1)

where c3 is an absolute constant depending on c1 and c2. This amounts
to saying that the “average approximation order” of the stochastic quasi-
interpolation scheme is: n−α/2. Of course, one needs to carry out “Bochner
integrals” on the underlying Banach space valued random variables en route.
Under certain circumstances, it may be impossible to obtain the desired L∞-
concentration inequalities. One then settles on the next best thing: For some
p in [1,∞), and any given ε > 0, there holds

P{‖QX
n (f) − f‖p > ε} ≤ c1 exp

(−c2n
α ε2

)
.

Due to the compactness of Ω, if the above inequality holds true for a p1 ∈
[1,∞), then it does for all p2 in the range 1 ≤ p2 ≤ p1. Many theoretical and
practical problems may be modeled under this stochastic quasi-interpolation
framework. Literature abounds in implicit applications of stochastic quasi-
interpolation techniques. Notably, Wagner [37], and Bourgain and Linden-
strauss [7] applied a stochastic quasi-interpolation method to show the exis-
tence of certain node sets giving rise to a near optimal number of segments
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in Minkowski sums with equal length needed to approximate a euclidean ball
under the Hausdorff metric within a prescribed error bound; see also [5,6].
Gao et al [21] studied the case in which Xn,1, . . . , Xn,n are n-independent
copies of the random variables uniformly distributed in Ω.

To mitigate uncertainties brought on by unreliable sampling sites, Wu
et al. [38] proposed and studied a class of stochastic Bernstein polynomials

(BX
n f)(x) :=

n∑

k=0

f(Xn,k) pn,k(x), n ∈ N, (1.2)

in which Xn,0,Xn,1, · · · ,Xn,n are the order statistics (see [9,14]) of (n + 1)
independent copies of the random variable uniformly distributed in (0, 1),
and

pn,k(x) =
(

n

k

)
xk(1 − x)n−k, 0 ≤ k ≤ n, 0 ≤ x ≤ 1.

These are stochastic cousins of the classical Bernstein polynomial Bnf defined
by

(Bnf)(x) :=
n∑

k=0

f

(
k

n

)
pn,k(x), n ∈ N. (1.3)

Stochastic Bernstein polynomials have a simple structure and therefore are
nimble in a wide range of applications. Furthermore, the inherent randomness
makes them suitable for Monte Carlo simulations [34]. Authors of [1,20,33,39]
have established algebraic and exponential convergence rates for probabilistic
convergence of these stochastic Bernstein polynomials.

Authors of [34] introduced the notion “Lp-probabilistic convergence”
(1 ≤ p ≤ ∞) of stochastic Bernstein polynomials (Definition 2.1) and estab-
lished various Lp-probabilistic convergence rates, a highlight of which is as
follows. For any given ε > 0, p in the range 1 ≤ p ≤ 2, and any f ∈ C[0, 1],
the following inequality:

P

{∥∥BX
n f − f

∥∥
p

> ε
}

≤ 2 exp

⎡

⎣− ε2

4 ω2
(
f, 1√

n

)

⎤

⎦ , (1.4)

holds true under the assumption that

ω

(
f,

1√
n

)
<

ε

6.2
, (1.5)

in which ω (f, ·) denotes the modulus of continuity of f defined by

ω(f, h) := sup
0≤x,y≤1
|x−y|≤h

|f(x) − f(y)| , 0 ≤ h ≤ 1.

These are Gaussian-type concentration inequalities dressed in modulus of
continuity, which in the current article will be called Lp-concentration in-
equalities (or simply concentration inequalities) for stochastic Bernstein poly-
nomials. However, both the restriction on p (1 ≤ p ≤ 2) and the assumption
(1.5) are impractical. Concerning the latter, we have received a construc-
tive feedback from practitioners in the field, a gist of which goes as follows.
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In modeling many real-world problems, one often finds a priori information
on the smoothness of an unknown target function elusive. Thus, assump-
tion (1.5) is sometimes impossible to verify beforehand, which has hindered
application and foreshadowed the effectiveness of estimate (1.4).

The proof given in [34] depends on assumption (1.5) because it requires
harnessing the approximation power of the classical Bernstein polynomial
Bnf . In so doing, authors of [34] have inadvertently followed a familiar
methodology in a learning theory paradigm advocated by Cucker and Smale
[12], and Cucker and Zhou [13], which decomposes an overall error in two
parts: the approximation error and the sampling error. Another caveat of the
approach is that it implicitly implies that under no circumstance, will any
other type of Bernstein polynomials (spawned from their stochastic cousins)
outperform the classical ones. But this is not true. Guided by theoretical
analysis, we carried out many rounds of numerical simulations, which show
that Bernstein polynomials built upon some carefully-designed triangular ar-
rays of knots converge to a Heaviside-type function exponentially fast in the
space L1[0, 1]. We will study this interesting problem in the near future.

Approximation theorists are interested in knowing the average approx-
imation order of the stochastic Bernstein polynomials (1.2). For this goal,
assumption (1.5) is nearly harmless. The main result of Sect. 4 (Theorem
4.2) asserts that inequality (1.4) holds true for all 1 ≤ p ≤ ∞ under a similar
assumption to (1.5). This implies the following inequality (see Corollary 4.3):

E

(∥∥BX
n f − f

∥∥
p

)
≤ C ω

(
1√
n

)
, 1 ≤ p ≤ ∞.

where C is an absolute constant, which will be specified in Corollary 4.3, and
ω(h) is an abbreviation for ω(f, h). (We will use the abbreviation throughout
the article.) The above inequality implies that the expected (average) Lp-
approximation order (1 ≤ p ≤ ∞) of stochastic Bernstein polynomials is
the same as that achieved by the classical Bernstein polynomial Bnf .1 This
implication does not depend on assumption (1.5).

In summary, there are good arguments to be made on both sides (with
or without assumption (1.5)) in so far as Lp-concentration inequalities are de-
veloped. Henceforth, we will use the phrase “unconditional Lp-concentration
inequalities” to refer to estimates obtained without using assumption (1.5).
To facilitate broader applications of stochastic Bernstein polynomials, we will
push forward as much as we can to prove unconditional Lp-concentration in-
equalities, using assumption (1.5) only as the last resort. The departure of
the assumption (1.5) has increased the level of difficulty. For p in the range
1 ≤ p ≤ 2, Gaussian bounds of mean square beta distributions [3, pp. 125]
play a key role in our proof. But the same method does not carry over to
the cases 2 < p < ∞ for which our proof is much involved, calling for a host
of techniques including a crucial application of Dvoretzky–Kiefer–Wolfowitz

1 Let us take a brief moment off the main topic here to reflect on making a list of standard
criteria in evaluating the robustness of a stochastic approximation operator. We suggest it
be on the list that the expected approximation power of the stochastic operator matches
that of a standard deterministic operator.
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inequality [17,26]. Finally, we prove an L∞-concentration inequality using a
slightly weaker version of assumption (1.5).

Dvoretzky et al. [17] proved the following remarkable result. Let X1,X2,
. . . , Xn be real-valued independent and identically distributed random vari-
ables with c.d.f (cumulative distribution function) F . Let Fn denote the em-
pirical distribution function associated with F defined by

Fn(x) =
1
n

n∑

i=1

1{Xi≤x}, x ∈ R.

Then for any given ε > 0, there holds:

P

(
sup
x∈R

|Fn(x) − F (x)| > ε
)

≤ 2 e−2nε2
. (1.6)

We remark that Dvoretzky, Kiefer, and Wolfowitz only established the above
inequality with an unspecified multiplicative constant C. The inequality with
the sharp constant C = 2 was proved by Massart [26], which confirms a
conjecture due to Birnbaum and McCarty [2], and has since been known as
Dvoretzky–Kiefer–Wolfowitz inequality.

The current investigation has drawn inspirations from previous research
done in the theory of random approximation of functions; see [10,18,19,23,24,
29,30,36], of which we mention particularly the idea of employing Bernstein
polynomials for density and distribution estimation on the interval [0, 1]:

F̃m(x) =
n∑

k=0

F̂m

(
k

n

)
pn,k(x),

where m,n ∈ N, and F̂m is the empirical distribution of order m. There are
close relationships as well as fundamental differences between the two classes
of stochastic Bernstein polynomials. Addressing these interesting topics, how-
ever, will take us far afield.

The arrangement of the current article is as follows. In Sect. 2 , we prove
unconditional Lp-concentration inequalities for stochastic Bernstein polyno-
mials (1.2) for p in the range 1 ≤ p ≤ 2. Among other results, we obtain the
unconditional version of inequality (1.4) using theory of mean square beta
distribution. In Sect. 3, we prove unconditional Lp-concentration inequalities
for p in the range 2 < p < ∞. In Sect. 4, we prove an L∞-concentration
inequality with an assumption similar to (1.5). As a corollary, we show that
for all p in the range 1 ≤ p ≤ ∞, the average Lp approximation order of sto-
chastic Bernstein polynomials is the same as that achieved by the classical
Bernstein polynomial Bnf under a mild restriction.

2. Mean Square Beta Distribution and Unconditional
Lp-Concentration Inequalities

Let X be the random variable uniformly distributed in (0, 1). Let Xn,0,Xn,1,
. . . , Xn,n be the order statistics of (n + 1) independent copies of X. Then
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Xn,k is distributed according to the beta distribution Beta(k + 1, n − k + 1)
with parameters (k + 1) and (n − k + 1) that has density function

(n + 1) pn,k(x), 0 ≤ x ≤ 1, 0 ≤ k ≤ n.

Beta distributions belong to the wider class of sub-Gaussian distributions that
enjoy a Gaussian-type probability concentration inequalities; see [4,8,28]. For
a fixed 0 ≤ x ≤ 1, we have

pn,k(x) ≥ 0, and
n∑

k=0

pn,k(x) = 1.

Thus, the random variable BX
n f can be studied effectively as a convex linear

combination of the (n + 1) random variables f(Xn,k).
For 1 ≤ p ≤ ∞ and f ∈ C[0, 1], we define

‖f‖p :=

⎧
⎪⎪⎨

⎪⎪⎩

(∫ 1

0

|f(x)|pdx

)1/p

, if 1 ≤ p < ∞,

max
x∈[0,1]

|f(x)|, if p = ∞.

Definition 2.1. Let 1 ≤ p ≤ ∞, and f ∈ C[0, 1] be given. If ∀ε > 0,

lim
n→∞P{‖BX

n f − f‖p > ε} = 0,

then we say that BX
n f converges to f in probability under the Lp-norm. We

also refer to such probabilistic convergence as “Lp-probabilistic convergence”
of BX

n f to f .

The bulk of our effort in the current article is devoted to finding expo-
nential decay rates 2 (in terms of the modulus of continuity of an f ∈ C[0, 1])
for Lp-probabilistic convergence. We use throughout the article two basic
properties of the modulus of continuity. The first one is called “positivity”,
which asserts that if f ∈ C[0, 1] is not a constant, then ω(h) > 0 for 0 < h ≤ 1.
The second one is referred to as “subadditivity”, as shown in the following
inequality:

ω(λδ) ≤ (1 + λ) ω(δ), 0 ≤ δ ≤ 1, 0 < λ < ∞. (2.1)

Neither of the two properties is hard to prove. Authors of [34] showed the
following result.

Theorem 2.2. If X ∼ Beta(α, β), then

P{|X − E(X)| > r} ≤ 2 exp[−2(α + β + 1)r2], r > 0. (2.2)

Let Bn denote the function defined by

Bn(x, y) = (n + 1)
n∑

k=0

pn,k(x)pn,k(y), (x, y) ∈ [0, 1]2.

Let (X,Y ) be the random vector with the joint density function Bn. The
resulted distribution on [0, 1]2 is often called “mean square beta distribution”;

2The type of exponential decay rates we derive here is often referred to as Gaussian tail
bounds.
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see [3]. With the newly-updated Gaussian tail bound as shown in Theorem
2.2, we reiterate a result of Bobkov and Ledoux [3, Proposition B.12].

Proposition 2.3. If (X,Y ) is the random vector with the joint density function
Bn, then for all r ≥ 0,

P{|X − Y | > r} ≤ 2 exp[−(n + 3)r2].

We will utilize the random vector (X,Y ) as a “majorant” for our sto-
chastic Bernstein polynomials. The best effect of this approach can be seen
via its implementation on the uniform distribution in (0, 1). We denote U the
c.d.f. of the uniform distribution in (0, 1).

Lemma 2.4. Let (X,Y ) be the random vector that has joint density function
Bn(x, y). Then for any 1 ≤ p < ∞, we have

E
(‖BX

n U − U‖p
p

) ≤ E (|X − Y |p) .

Proof. We first use the triangle inequality to write

|(BX
n U)(x) − U(x)| ≤

n∑

j=0

|Xn,k − x|pn,k(x), x ∈ [0, 1].

By Jensen’s inequality, we have

E
(‖BX

n U − U‖p
p

) ≤E

[∫ 1

0

(
n∑

k=0

|Xn,k − x|pn,k(x)

)p

dx

]

≤E

[∫ 1

0

n∑

k=0

|Xn,k − x|ppn,k(x)dx

]

=
∫ 1

0

∫ 1

0

|x − y|pBn(x, y)dydx

=E (|X − Y |p) .

This completes the proof. �

The result of the above lemma amounts to saying that for any 1 ≤
p < ∞, the p-moment of the random variable ‖BX

n U − U‖p is majorized by
that of the random variable (X − Y ). The following result shows that the
majorization extends to exponential moments.

Lemma 2.5. For any 1 ≤ p < ∞ and r ≥ 0, the following inequality holds
true:

E
[
exp

(
r‖BX

n U − U‖p
p

)] ≤ E [exp (r|X − Y |p)] .
Proof. Similar to the proof of Lemma 2.4, we first write the following in-
equality:

‖BX
n U − U‖p

p ≤
n∑

k=0

∫ 1

0

|Xn,k − x|ppn,k(x)dx.
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Applying Jensen’s inequality twice (first the integral form then the discrete
form), we have

exp
(
r‖BX

n U − U‖p
p

) ≤
∫ 1

0

exp

(
r

n∑

k=0

pn,k(x)|Xn,k − x|p
)

dx

≤
∫ 1

0

(
n∑

k=0

exp (r|Xn,k − x|p) pn,k(x)

)
dx.

It follows that

E
[
exp

(
r‖BX

n U − U‖p
p

)] ≤
∫ 1

0

∫ 1

0

exp (r|x − y|p) Bn(x, y)dydx,

which is the desired result. �

The majorization of ‖BX
n U − U‖p by |X − Y | as shown in Lemmas

2.4 and 2.5 can be passed on to the random variable ‖BX
n f − f‖p for any

f ∈ C[0, 1] via manipulation of its modulus of continuity. Our main goal in
the current section is to find upper bounds for the quantities

P{||BX
n f − f ||p > ε}, 1 ≤ p ≤ ∞.

where ε > 0 and n ∈ N are fixed. If f is a constant, then BX
n f ≡ f . In such

a case, the upper bounds hold true automatically. We hereby declare once
and for all that in the sequel our target functions are not constant, which
justifies writing ω( 1√

n
) in denominators. For aesthetic reasons, we will use

the equivalent form ω(n−1/2) for ω( 1√
n
) in mathematical contexts in which

the presence of the latter expression would make unusually-large displayed
equations.

Proposition 2.6. For any 1 ≤ p < ∞, and any given f ∈ C[0, 1], the following
inequalities hold true:

E
(‖BX

n f − f‖p
p

) ≤ 2p−1 ωp
(
n−1/2

) [
1 + np/2

E (|X − Y |p)
]
; (2.3)

E

[
exp

(
{2 ω(n−1/2)}−p‖BX

n f − f‖p
p

)]
≤ √

e · E
[
exp

(
1
2
np/2|X − Y |p

)]
.

(2.4)

Proof. The proofs of (2.3) and (2.4) use basically the same techniques as
those in the proofs of Lemmas 2.4 and 2.5. We will prove (2.4) as it is more
involved than the other. For a fixed x ∈ [0, 1], by the subadditivity of modulus
of continuity of f and Jensen’s inequality, we write

|BX
n f(x) − f(x)|p

≤ ωp
(
n−1/2

) n∑

k=0

(
1 +

√
n|Xn,k − x|)p

pn,k(x)

≤ 2p−1 ωp
(
n−1/2

)(
1 + np/2

n∑

k=0

|Xn,k − x|ppn,k(x)

)
.



MJOM Stochastic Quasi-Interpolation Page 9 of 20 240

It follows that

exp
(
{2 ω(n−1/2)}−p‖BX

n f − f‖p
p

)

≤
∫ 1

0

[
exp

(
1
2

+
1
2
np/2

n∑

k=0

|Xn,k − x|ppn,k(x)

)]
dx

≤ √
e

∫ 1

0

[
n∑

k=0

exp
(

1
2
np/2|Xn,k − x|p

)
pn,k(x)

]
dx,

which implies that

E

[
exp

(
{2 ω(n−1/2)}−p‖BX

n f − f‖p
p

)]

≤ √
e

∫ 1

0

∫ 1

0

exp
(

1
2
np/2|x − y|p

)
Bn(x, y)dydx

=
√

e · E
[
exp

(
1
2
np/2|X − Y |p

)]
.

This completes the proof. �

In the rest of this section, we will first develop upper bounds for E (|X
−Y |p) (1 ≤ p < ∞) (Lemma 2.7 below), and E

[
exp

(
1
2np/2|X − Y |p)] (1 ≤

p ≤ 2) (Lemma 2.9 below). We will then use Chebyshev inequality to obtain
unconditional Lp-concentration inequalities for stochastic Bernstein polyno-
mials (Theorems 2.8, 2.11 below). En route we will be using variants of the
following identity

E(V ) =
∫ ∞

0

P(V > r)dr, (2.5)

where V is a nonnegative random variable.

Lemma 2.7. Let 1 ≤ p < ∞. Then

E (|X − Y |p) ≤ p Γ
(

p
2

)

(n + 3)p/2
.

Proof. We make use of identity (2.5) and Theorem 2.2 to write

E (|X − Y |p)

= p

∫ ∞

0

P{|X − Y | > r}rp−1dr

≤ 2p

∫ ∞

0

e−(n+3)r2
rp−1dr

=
p Γ

(
p
2

)

(n + 3)p/2
,

which is the desired result. �

Theorem 2.8. For any ε > 0, 1 ≤ p < ∞, and f ∈ C[0, 1], the following
inequalities hold true:

1. P{‖BX
n f − f‖p > ε} ≤ 2p−1

[
1 + p Γ

(
p
2

)]
ωp

(
n−1/2

)

εp
.
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1. E
(‖BX

n f − f‖p

) ≤ 21− 1
p

[
1 + p Γ

(p

2

)] 1
p

ω
(
n−1/2

)
.

Part 1 of Theorem 2.8 gives an Lp-probabilistic convergence rate (1 ≤
p < ∞) for stochastic Bernstein polynomials; Part 2 shows that the average
Lp-approximation order (1 ≤ p < ∞) of stochastic Bernstein polynomials is
the same as that given by the classical Bernstein polynomials. The result in
Part 2 fails to work for the case p = ∞. The causation is that the constant,
by Sterling’s formula, is of the order

√
p as p → ∞. In Sect. 4, we will obtain

an average Lp-approximation order with an absolute constant for stochastic
Bernstein polynomials (Corollary 4.3).

Proof. To prove Part 1, we use Chebyshev inequality, inequality (2.3), and
Lemma 2.7 to derive

P{‖BX
n f − f‖p > ε} ≤ E

(‖BX
n f − f‖p

p

)

εp
≤ 2p−1

[
1 + pΓ

(
p
2

)]
ωp

(
n−1/2

)

εp
.

To prove Part 2, we use Jensen’s inequality, inequality (2.3), and Lemma 2.7
to derive

E

(
‖BX

n f − f‖p

)
≤

[
E

(
‖BX

n f − f‖p
p

)]1/p
≤ 2

1− 1
p

[
1 + pΓ

(p

2

)]1/p
ω
(
n−1/2

)
.

This completes the proof. �

Lemma 2.9. Suppose that Z is a random variable satisfying the following in-
equality:

P{|Z| > r} ≤ 2 exp
(−2nr2

)
, r > 0.

Then we have

E
[
exp

(
n|Z|2)] ≤ 2.

Proof. We use Proposition (2.5) to derive

E
[
exp

(
n|Z|2)]

=
∫ ∞

0

P{exp
(
n|Z|2) > r}dr

=
∫ ∞

0

P{|Z| > τ}d exp
(
nτ2

)

≤ 2
∫ ∞

0

exp(−2nτ2)d exp
(
nτ2

)

≤ 2
∫ ∞

1

du

u2
= 2.

This completes the proof. �

Proposition 2.3 and Lemma 2.9 yield the following result.

Corollary 2.10. The following inequality holds true:

E

[
exp

(
1
2
n|X − Y |2

)]
≤ 2.
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We now state and prove the main result of the section.

Theorem 2.11. For any given ε > 0 and p in the range 1 ≤ p ≤ 2, and
f ∈ C[0, 1], the following inequality holds true.

P

{∥∥BX
n f − f

∥∥
p

> ε
}

≤ 2
√

e exp

[
− ε2

4 ω2
(
n−1/2)

)
]

.

Proof. For any given ε > 0 and p in the range 1 ≤ p ≤ 2, and f ∈ C[0, 1], we
have

P

{∥∥BX
n f − f

∥∥
p

> ε
}

≤ P
{∥∥BX

n f − f
∥∥

2
> ε

}
. (2.6)

Thus, it suffices to prove the theorem for the case p = 2. By (2.4) and
Corollary 2.10, we have

E

[
exp

{[
2 ω

(
n−1/2

)]−2

‖BX
n f − f‖2

2

}]
≤ √

e E

[
exp

(
1

2
n|X − Y |2

)]
≤ 2

√
e.

Applying Chebyshev inequality to the right hand side of (2.6), we obtain

P
{‖BX

n f − f‖2 > ε
}

≤
E

[
exp

{[
2 ω

(
n−1/2

)]−2 ‖BX
n f − f‖2

2

}]

exp
{

ε2
[
2 ω

(
n−1/2

)]−2
}

≤ 2
√

e exp

[
− ε2

4 ω2
(
n−1/2

)
]

,

which is the desired result. �

Unlike (1.4), we do not need assumption (1.5) in the proof of Theorem
2.11. The price we paid for this is the multiplicative constant

√
e.

3. Gaussian-Type Lp-Concentration Inequalities
(1 ≤ p < ∞)

In an essential way, the proof of Theorem 2.11 depends on the boundedness
of the sequence

E

(
exp(np/2|X − Y |p)

)
, n ∈ N, 1 ≤ p ≤ 2.

This is no longer true for p > 2. To prove unconditional Lp-concentration
inequalities for 2 < p < ∞, we start with the random process Vn(x) defined
by

Vn(x) :=
n∑

k=0

|Xn,k − x|pn,k(x), x ∈ [0, 1].

Lemma 3.1. The following inequality holds true almost surely:

‖BX
n f − f‖2

p ≤ 2 ω2
(
n−1/2

) (
1 + n‖Vn‖2

p

)
, 1 ≤ p < ∞, f ∈ C[0, 1].
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Proof. By subadditivity of the modulus of continuity, we have

|(BX
n f)(x) − f(x)|

≤
n∑

k=0

ω(|Xn,k − x|) pn,k(x)

≤ ω
(
n−1/2

) (
1 +

√
n Vn(x)

)
.

We then apply Minkowski’s and Jensen’s inequalities to get the desired the
result. �

We use a triangle inequality to write

Vn(x) ≤
n∑

k=0

∣∣∣∣Xn,k − k

n

∣∣∣∣ pn,k(x) +
n∑

k=0

∣∣∣∣x − k

n

∣∣∣∣ pn,k(x). (3.1)

Let Yn(x) denote the random process as is expressed by the first sum on
the right hand side of (3.1), and Wn the random variable max0≤k≤n |Xn,k −
k
n |. For a fixed x ∈ [0, 1], let T (x) be the random variable taking values 0
and 1, with respective probabilities x and 1 − x. Let {Tk(x)}n

k=0 be (n + 1)
independent copies of T (x). Let Zn = Zn(x) be the random variable defined
by

Zn(x) =
1
n

n∑

k=0

Tk(x). (3.2)

Then Zn(x) takes values k
n with respective probabilities pn,k(x), k = 0, 1, . . . ,

n. These lead to the following result.

Lemma 3.2. The following inequality holds true almost surely:

‖Vn‖2
p ≤ 2

(
W 2

n + ‖E (|Zn − E(Zn)|) ‖2
p

)
, 1 ≤ p < ∞.

Proof. For all x ∈ [0, 1], we have

0 ≤ Yn(x) ≤ Wn

n∑

k=0

pn,k(x) = Wn,

which implies that ‖Yn‖∞ ≤ Wn almost surely. By Minkowski’s and Jensen’s
inequalities, we have

‖Vn‖2
p ≤2

∥∥∥∥∥

n∑

k=0

∣∣∣∣Xn,k − k

n

∣∣∣∣ pn,k

∥∥∥∥∥

2

p

+ 2‖E (|Zn − E(Zn)|) ‖2
p.

≤2
(
W 2

n + ‖E (|Zn − E(Zn)|) ‖2
p

)
,

which is the desired result.

We will deal with the two terms on the right hand side of the above
inequality separately, and start with the first. The key strategy is to tie the
random variable Wn to the empirical process of the uniform distribution in
(0, 1).
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Lemma 3.3. Let Un+1 be the empirical distribution function of order (n + 1)
associated with the uniform distribution in (0, 1) defined by

Un+1(x) :=
1

n + 1

n∑

k=0

1{Xn,k<x}. (3.3)

Then the following inequality holds true almost surely,

Wn ≤ sup
x∈[0,1]

|Un+1(x) − x| . (3.4)

Proof. Let X∗
n,0 < X∗

n,1 < · · · < X∗
n,n be a set of observed values of the

random variables Xn,0,Xn,1, . . . , Xn,n. Let U∗
n+1 be the corresponding (ob-

served) empirical distribution function for the uniform distribution U on
[0, 1]. Let I0 := [0,X∗

n,0), Ik := [X∗
n,k−1,X

∗
n,k), 1 ≤ k < n, and In :=

[X∗
n,n, 1]. Then we have

sup
x∈I0

(
x − U∗

n+1(x)
)

= X∗
n,0,

sup
x∈Ik

(
x − U∗

n+1(x)
)

= X∗
n,k − k

n + 1
, 1 ≤ k ≤ n,

sup
x∈In

(
x − U∗

n+1(x)
)

= 0.

The equations above show that

sup
x∈[0,1]

(
x − U∗

n+1(x)
)

= max
0≤k≤n

(
X∗

n,k − k

n + 1

)
.

Since X∗
n,k − k

n < X∗
n,k − k

n+1 , we have = max0≤k≤n

(
X∗

n,k − k
n

)
≤ supx∈[0,1](

x − U∗
n+1(x)

)
. This inequality holds true for every set of such observed values

of the order statistics. Hence we conclude that

max
0≤k≤n

(
Xn,k − k

n

)
≤ sup

x∈[0,1]

(x − Un+1(x)) almost surely. (3.5)

Similarly we show that

max
0≤k≤n

(
k

n
− Xn,k

)
≤ sup

x∈[0,1]

(Un+1(x) − x) almost surely. (3.6)

Combining (3.5) and (3.6), we get the desired result. �

Lemma 3.4. Let ε > 0 and n ∈ N be given. Then we have the following
inequality:

P{Wn > ε} ≤ 2 e−2(n+1)ε2
.

Proof. By Lemma 3.3 and Dvoretzky–Kiefer–Wolfowitz inequality (see (1.6)),
we have

P{Wn > ε} ≤ P{ sup
x∈[0,1]

|Un+1(x) − x| > ε} ≤ 2 e−2(n+1)ε2
,

which is the desired result. �



240 Page 14 of 20 X. Sun and X. Zhou MJOM

We now turn our attention to estimating the term ‖E (|Zn − E(Zn)|) ‖2
p

in Lemma 3.2, en route we need a well-known concentration inequality known
as Bernstein inequality; see [12].

Theorem 3.5. Let c > 0. Let X1, . . . , Xn be independent variables. If P(|Xj | ≤
c) = 1, then for any ε > 0,

P(|Sn − μ| > ε) ≤ 2 exp
{ −nε2

2σ2 + 2cε/3

}
,

in which Sn := 1
n

∑n
j=1 Xj, E(Sn) = μ, and σ2 := 1

n

∑n
j=1 Var(Xj).

In the next lemma, we apply Bernstein inequality to control a certain
segment of sums of pn,k.

Lemma 3.6. For a fixed x ∈ [0, 1], the following inequality holds true:
∑

|x− k
n |≥ε

pn,k(x) ≤ 2 exp
[ −nε2

2x(1 − x) + 3ε/2

]
.

Proof. Consider the random variable Zn as defined in (3.2). We have E(Zn) =
x, and Var(Zn) = x(1 − x). We apply Bernstein inequality to the random
variable Zn to get the desired inequality. �

Denote

Δn,x := max

(√
x(1 − x)

n
,

1
n

)
.

Theorem 3.7. Let 0 < p < ∞ be given. The central p-moment of the random
variable Zn satisfies the following inequality:

E (|Zn − E(Zn)|p) ≤ Cp Δp
n,x,

where

Cp := 2
∞∑

j=0

(j + 1)p exp[−j2/(2 + 3j/2)]. (3.7)

Proof. If x = 0 or x = 1, then the desired inequality holds true trivially. In
the rest of the proof, we assume that x(1 − x) > 0. Denote

Ej,x :=
{

k : jΔn,x ≤
∣∣∣∣
k

n
− x

∣∣∣∣ ≤ (j + 1)Δn,x

}
, j = 0, 1, . . . , Jn,x,

where Jn,x := Δ−1
n,x�, and use Lemma 3.6 to write

E|Zn − E(Zn)|p =
n∑

k=0

∣∣∣∣
k

n
− x

∣∣∣∣
p

pn,k(x)

≤
Jn,x∑

j=0

∑

k∈Ej,x

∣∣∣∣
k

n
− x

∣∣∣∣
p

pn,k(x)

≤ 2Δp
n,x

Jn,x∑

j=0

(j + 1)p exp

[
−n (jΔn,x)2

2x(1 − x) + 3jΔn,x/2

]
.
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In what follows, we derive an upper bound ( independent of x and n) for the
sum above by considering two separate cases. Case (i): x(1 − x) ≤ 1

n . We
have Δn,x ≤ 1/n. It follows that

exp

[
−n (jΔn,x)2

2x(1 − x) + 3jΔn,x/2

]
≤ exp[−j2/(2 + 3j/2)].

Case (ii): x(1 − x) > 1
n . We have

Δn,x =

√
x(1 − x)

n
≤ x(1 − x),

which yields

exp

[
−n (jΔn,x)2

2x(1 − x) + 3jΔn,x/2

]
≤ exp

[
−n (jx(1 − x)/n)2

2x(1 − x) + 3jx(1 − x)/2

]

≤ exp
[−j2/(2 + 3j/2)

]
.

The proof is complete. �

Lemma 3.8. The following inequality holds true:

‖E (|Zn − E(Zn)|) ‖2
p ≤ C2/p

p /(4n),

where Cp is as defined in (3.7).

Proof. By Jensen’s inequality and Theorem 3.7, we have

‖E (|Zn − E(Zn)|) ‖2
p

≤
[∫ 1

0

(
n∑

k=0

∣∣∣∣x − k

n

∣∣∣∣ pn,k(x)

)p

dx

]2/p

≤
[∫ 1

0

(
n∑

k=0

∣∣∣∣x − k

n

∣∣∣∣
p

pn,k(x)

)
dx

]2/p

≤
(

Cp

∫ 1

0

Δp/2
n,x dx

)2/p

≤ C2/p
p /(4n),

which is the desired result. �

Here is the main result of the section.

Theorem 3.9. Let ε > 0 and n ∈ N be given. Then the following inequality
holds true:

P

{∥∥BX
n f − f

∥∥
p

> ε
}

≤ 2Dp exp

[
− ε2

4 ω2
(
n−1/2

)
]

, f ∈ C[0, 1], 1 ≤ p < ∞,

in which Dp := exp
[(

1 + C2/p
p

2

)
/2
]

.
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Proof. By Lemmas 3.1, 3.2, and 3.8, the following inequalities hold true al-
most surely:

∥∥BX
n f − f

∥∥2

p
≤2 ω2

(
n−1/2

) [
1 + 2n

(
W 2

2 + ‖E (|Zn − E(Zn)|) ‖2
p

)]

≤2 ω2
(
n−1/2

)(
1 + 2n W 2

2 +
C

2/p
p

2

)
.

It follows from Lemmas 3.4 and 2.9 that

E

(
exp

[(
4 ω2

(
n−1/2

))−1

‖BX
n f − f‖2

p

])

≤ E

(
exp

[
1
2

(
1 + 2n W 2

2 +
C

2/p
p

2

)])

= exp
[(

1 + (C2/p
p )/2

)
/2
]
E
[
exp(2n W 2

2 )
]

= 2Dp.

Applying Chebyshev inequality, we get

P

{∥∥BX
n f − f

∥∥
p

> ε
}

≤ E

(
exp

[(
4 ω2

(
n−1/2

))−1

‖BX
n f − f‖2

p

])

·
(

exp
[(

4 ω2
(
n−1/2

))−1

ε2

])−1

≤ 2Dp exp

[
− ε2

4 ω2
(
n−1/2

)
]

,

which is the desired result. �

Two remarks about Theorem 3.9 are in order.
1. For p = 2, the multiplicative constant in the result of Theorem 3.9 is

exp
[(

1 + C2
2

)
/2
]
, which is noticeably larger than

√
e as given in Theo-

rem 2.11.
2. The multiplicative constant Dp is of the order exp(

√
p) as p → ∞,

which is the typical growth rate of the pth order of exponential moments
of a sub-Gaussian random variable. This has ruled out the feasibility
of obtaining an L∞-concentration inequality for stochastic Bernstein
polynomials by taking the limit p → ∞.

4. Exponential L∞-Probabilistic Convergence Rates

The approach undertaken in this section needs to harness the deterministic
approximation power of classical Bernstein polynomials, which features many
publications; see [11,15,16,22,25,35], and the references therein. Sikkema [31]
proved the following remarkable result:

sup
n

sup
f

sup
0≤x≤1

|Bnf(x) − f(x)|
ω(f, n−1/2)

=
4306 + 837

√
6

5832
= 1.0898871330 · · · .
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We denote this constant by cs. Sikkema [32] also showed that the value on
the right hand side of the above equation is only reached for n = 6. But we
will not use the latter result in the current article.

Lemma 4.1. Let ε > 0 and f ∈ C[0, 1] be given. Suppose that ω( 1√
n
) <

ε
2(cs+1) . Then the following inequality holds true:

P{‖BX
n f − f‖p > ε} ≤ P

{
‖Yn‖p >

ε

2
√

n ω
(
n−1/2

)
}

, 1 ≤ p ≤ ∞. (4.1)

Authors of [34, Lemma 2.10] proved a slightly different version of the
above lemma. We will omit the proof, and refer interested readers to the
proof of Lemma 2.10 in [34]

Theorem 4.2. Let ε > 0 and f ∈ C[0, 1] be given. Suppose that

ω

(
1√
n

)
<

ε

2(cs + 1)
.

Then the following inequality holds true:

P{‖BX
n f − f‖p > ε} ≤ 2 exp

[
− ε2

2 ω2(n−1/2)

]
, 1 ≤ p ≤ ∞.

Proof. Let 1 ≤ p ≤ ∞ be given. We use Lemmas 4.1 and 3.4 in a successive
fashion to derive the following inequalities:

P{‖BX
n f − f‖p > ε}

≤ P{‖BX
n f − f‖∞ > ε}

≤ P

{
‖Yn‖∞ >

ε

2
√

n ω
(
n−1/2

)
}

≤ P

{
Wn >

ε

2
√

n ω
(
n−1/2

)
}

≤ 2 exp
[
− ε2

2ω2(n−1/2)

]
.

This completes the proof. �

The result of Theorem 4.2 confirms a similar conjecture raised in [33].

Corollary 4.3. Let f ∈ C[0, 1] be given. Then the following inequality holds
true:

E
(‖BX

n f − f‖p

) ≤
[
2(cs + 1) +

√
π

2

]
ω(

1√
n

), 1 ≤ p ≤ ∞.

Proof. Denote an := 2(cs + 1)ω(n−1/2). By (2.5) and Theorem 4.2, we have

E
(‖BX

n f − f‖p

)
=
{∫ an

0

+
∫ ∞

an

}
P{‖BX

n f − f‖p > r}dr

≤2(cs + 1) ω

(
1√
n

)
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+ 2
∫ ∞

0

exp

[
− r2

2 ω2
(
n−1/2

)
]

dr

=
[
2(cs + 1) +

√
π

2

]
ω

(
1√
n

)
.

This completes the proof. �
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