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Abstract. We consider a contact model with two contact zones, for lin-
early elastic materials, under the small deformation hypothesis. We pay
attention to four possible variational formulations: one of them is a vari-
ational inequality of the second kind and the other three are mixed vari-
ational problems governed by variational inequalities on convex sets of
Lagrange multipliers. We study the existence and the uniqueness of the
solution for each of the four variational formulations. Some connections
between these four weak formulations are also discussed. Our approach
requires a background knowledge in the variational inequalities theory
as well as in the saddle point theory.
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1. Introduction

In the present paper, we draw attention to the possibility to deliver alternative
variational formulations for contact models with multi-contact zones. Thus,
depending on the motivation we have, one of several possible variational
formulations can be picked. To exemplify, we consider a contact model with
two contact zones, as follows.

Problem 1. Find u : Ω̄ → R
3 and σ : Ω̄ → S

3, such that

Div σ + f0 = 0 in Ω,

σ = Eε(u) in Ω,

u = 0 on Γ1,

σ ν = f2 on Γ2,

uν = 0, ‖στ‖S3 ≤ g, στ = −g uτ

‖uτ ‖
R3

if uτ �= 0 on Γ3,

στ = 0, σν ≤ 0, uν ≤ 0, σν uν = 0 on Γ4,
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where u = (ui) is the displacement field and σ = (σij) is the Cauchy stress
tensor. Here, Ω ⊂ R

3 is a bounded domain with smooth boundary Γ parti-
tioned in four measurable parts, Γ1, Γ2, Γ3, Γ4, such that all the parts have
positive measure; Ω̄ = Ω ∪ Γ. We denote by f0 : Ω → R

3 the density of
the volume forces, by f2 : Γ2 → R

3 the density of the surface traction, by
ε = ε(u) = (εij(u)) the infinitesimal strain tensor, εij(u) = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)

for all i, j ∈ {1, 2, 3} and by E the elastic tensor. As usual, ν is the out-
ward unit normal vector to the boundary Γ. Also, by ·, we denote the inner
product on R

3, and by :, we denote the inner product on S
3, where S

3 is the
space of second-order symmetric tensors of R3 and by ‖ · ‖R3 and ‖ · ‖S3 we
denote the Euclidean norm on R

3 and S
3, respectively. The operator Div is

the divergence of a tensor, Div σ = (
∑3

j=1
∂σij

∂xj
), i ∈ {1, 2, 3}.

Problem 1 models the deformation of a body in contact with two rigid
foundations. On Γ3, the contact is frictional bilateral with a positive friction
bound g, and on Γ4, we have a frictionless unilateral contact condition. It is
worth to underline that on Γ3, we do not know a priori in which points the
friction force vanishes, while Γ4 is a potential contact zone, because we do
not know a priori in which points we have contact. Recall that uν = u · ν,
uτ = u − uν ν, σν = (σν) · ν, στ = σν − σν ν, σν · u = σν uν + στ · uτ .
For a background on the mathematical theory of contact mechanics models,
see, e.g., [7,13,18].

If our interest consists only in computing the displacement field u, then
we can choose the primal variational formulation consisting in a variational
inequality of the second kind, or, for a more efficient approximation of the
weak solution, we can choose a mixed variational formulation consisting of a
variational equation and a variational inequality.

If, in addition to u, we are interested to compute the friction force
στ , then a mixed variational formulation governed by a Lagrange multiplier
related to στ can be helpful. Or, if we are interested to compute the reaction
of the foundation −σν , then a mixed variational formulation governed by a
Lagrange multiplier related to σν becomes convenient. In the last two cases,
the weak formulations consist of systems of two variational inequalities.

The solvability of the weak formulations we deliver is based on the
theory of variational inequalities and requires some elements of the saddle
point theory. For a background on the variational inequalities of the second
kind, the reader can consult, e.g., [18,19], and for useful elements in the theory
of the saddle point theory related to the solvability of mixed variational
problems, we refer to, e.g., [1,2,6,8]. Relevant to the matter are also the
papers [4,5,11,12].

The present paper is structured as follows. In Sect. 2, we review four
abstract results related to a variational inequality of the second kind and three
saddle point problems. In Sect. 3, we introduce the functional setting and the
working hypotheses. In Sect. 4, we deliver four weak formulations. Section 5 is
devoted to the weak solvability of these four variational formulations paying
attention to the connection between them.
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2. Preliminaries

Everywhere in this section (X, (·, ·)X , ‖ ·‖X) and (Y, (·, ·)Y , ‖ ·‖Y ) are Hilbert
spaces. We make the following assumptions:

A 1. a : X × X → R is a symmetric, bilinear form, such that
(i) there exists Ma > 0 : |a(u, v)| ≤ Ma ‖u‖X ‖v‖X for all u, v ∈ X;

(ii) there exists ma > 0 : a(v, v) ≥ ma ‖v‖2
X for all v ∈ X.

A 2. b : X × Y → R is a bilinear form, such that
(a) there exists Mb > 0 : |b(v, μ)| ≤ Mb ‖v‖X ‖μ‖Y for all v ∈ X, μ ∈ Y ;

(b) there exists α > 0 : infμ∈Y,μ�=0Y
supv∈X,v �=0X

b(v, μ)
‖v‖X ‖μ‖Y

≥ α.

A 3. φ : X → R+ is a convex functional. Moreover, φ is a Lipschitz continu-
ous functional, i.e., there exists Lφ > 0:

|φ(v) − φ(w)| ≤ Lφ ‖v − w‖X for all v, w ∈ X.

A 4. Λ is a closed, convex subset of Y that contains 0Y .

A 5. K is a closed, convex subset of X that contains 0X .

First, we focus on the following variational inequality of the second kind.

Problem 2. Given f ∈ X, find u ∈ K, such that

a(u, v − u) + φ(v) − φ(u) ≥ (f, v − u)X for all v ∈ K ⊆ X.

Theorem 1. The assumptions A 1, A 3 and A 5 hold true. Then, Problem 2
has a unique solution, u ∈ K.

For a proof of Theorem 1, the reader can consult, e.g., Theorem 3.1 in
[19].

Notice that the unique solution of Problem 2 is the unique minimum of
the functional

J : K → R, J(v) =
1
2
a(v, v) + φ(v) − (f, v)X .

To proceed, we review three useful saddle point problems, Problems
3,4, 5, below.

Problem 3. Given f ∈ X, find u ∈ X and λ ∈ Λ ⊆ Y , such that

a(u, v) + b(v, λ) = (f, v)X for all v ∈ X

b(u, μ − λ) ≤ 0 for all μ ∈ Λ.

Theorem 2. The assumptions A 1, A 2 and A 4 hold true. Then, Problem 3
has a unique solution, (u, λ) ∈ X × Λ.

For a proof, we send the reader to, e.g., Corollary 2 in [4].
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Notice that a pair (u, λ) ∈ X × Λ is a solution of Problem 3 if and only
if it is a saddle point of the following functional:

L1 : X × Λ → R, L1(v, μ) =
1
2
a(v, v) − (f, v)X + b(v, μ);

this motivates us to consider Problem 3 a saddle point problem.

Problem 4. Given f ∈ X, find u ∈ K ⊆ X and λ ∈ Λ ⊆ Y , such that

a(u, v − u) + b(v − u, λ) ≥ (f, v − u)X for all v ∈ K

b(u, μ − λ) ≤ 0 for all μ ∈ Λ.

Theorem 3. The assumptions A 1, A 2 (a), A 4 and A 5 hold true. If, in
addition, Λ ⊆ Y is a bounded subset, then Problem 4 has a solution (u, λ) ∈
K × Λ, unique in its first component.

For details, see, e.g., Remark 3 in [4].
Notice that a pair (u, λ) ∈ K × Λ is a solution of Problem 4 if and only

if it is a saddle point of the following functional:

L2 : K × Λ → R, L2(v, μ) =
1
2
a(v, v) − (f, v)X + b(v, μ).

Thus, Problem 4 can be considered a saddle point problem.

Problem 5. Given f ∈ X, find u ∈ X and λ ∈ Λ ⊆ Y , such that

a(u, v − u) + b(v − u, λ) + φ(v) − φ(u) ≥ (f, v − u)X for all v ∈ X

b(u, μ − λ) ≤ 0 for all μ ∈ Λ.

Theorem 4. The Assumptions A 1–A 4 hold true. Then, Problem 5 has a
solution (u, λ) ∈ X × Λ, unique in its first component.

For a proof, we send the reader to, e.g., Theorem 3 in [4]. Similar tech-
niques can be found in, e.g., [5,11].

Notice that a pair (u, λ) ∈ X × Λ is a solution of Problem 5 if and only
if it is a saddle point of the following functional:

L3 : X × Λ → R, L3(v, μ) =
1
2
a(v, v) + φ(v) − (f, v)X + b(v, μ).

Hence, Problem 5 is a saddle point problem, too.

3. Functional Setting and Working Hypotheses

To start, we remind some useful Hilbert Lebesgue spaces.
• L2(Ω)3 = {v = (vi) | vi ∈ L2(Ω), 1 ≤ i ≤ 3} endowed with the inner

product (u,v)L2(Ω)3 =
∑3

i=1

∫
Ω

ui vi dx =
∫
Ω

u ·v dx and the associated

norm ‖v‖L2(Ω)3 =
(∑3

i=1

∫
Ω

vi vi dx
)1/2

.

• L2(Ω)3×3 = {τ = (τ ij) | τ ij ∈ L2(Ω), 1 ≤ i, j ≤ 3} endowed with
(σ, τ )L2(Ω)3×3 =

∑3
i,j=1

∫
Ω

σij τij dx =
∫
Ω

σ : τ dx and the correspon-

ding norm ‖τ‖L2(Ω)3×3 =
(∑3

i,j=1

∫
Ω

τij τij dx
)1/2

.
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• L2
s(Ω)3×3 = {τ = (τ ij) | τ ij = τ j i ∈ L2(Ω), 1 ≤ i, j ≤ 3}, endowed

with (σ, τ )L2
s(Ω)3×3 = (σ, τ )L2(Ω)3×3 , and the norm ‖σ‖L2

s(Ω)3×3 =
‖σ‖L2(Ω)3×3 .

Subsequently, we introduce some useful Hilbert Sobolev spaces.
• H1(Ω)3 = {v = (vi) | vi ∈ H1(Ω), 1 ≤ i ≤ 3} endowed with the

canonical inner product

(u,v)H1(Ω)3 =
3∑

i=1

(ui, vi)L2(Ω) +
3∑

i=1

(∇ui,∇vi)L2(Ω)3 ,

and the associated norm

‖v‖H1(Ω)3 =

√√√√ 3∑
i=1

‖vi‖2
L2(Ω) +

3∑
i=1

‖∇vi‖2
L2(Ω)3 .

Furthermore, H1(Ω)3 can be endowed with the following particular
inner product:

((u,v))H1(Ω)3 = (u,v)L2(Ω)3 + (ε(u), ε(v))L2(Ω)3×3 for all u,v ∈ H1(Ω)3

and the associated norm

|||v|||H1(Ω)3 = (‖v‖2
L2(Ω)3 + ‖ε(v)‖2

L2(Ω)3×3)1/2 for all v ∈ H1(Ω)3,

where ε : H1(Ω)3 → L2
s(Ω)3×3, ε(u) = 1

2 (∇u + ∇uT ) is a linear and
continuous tensor; see, e.g., [18].
Recall that there exists a constant c > 0, such that, for all v ∈ H1(Ω)3,
we have

3∑
i=1

∫

Ω
vi vi dx +

3∑
i=1

∫

Ω
∇vi · ∇vi dx ≤c

(
3∑

i=1

∫

Ω
vi vi dx +

∫

Ω
ε(v) : ε(v) dx

)
; (1)

see for instance [9]. Thus, we deduce that ‖ · ‖H1(Ω)3 is equivalent with
||| · |||H1(Ω)3 . Therefore, the space (H1(Ω)3, ((·, ·))H1(Ω)3 , ||| · |||H1(Ω)3) is
a Hilbert space.

•
H1/2(Γ)3 = γ(H1(Ω)3)

= {w = (w1, w2, w3)T | wi ∈ H1/2(Γ), 1 ≤ i ≤ 3}.

This space is endowed with the following inner product:

(χ,w)H1/2(Γ)3 =
3∑

i=1

(χi, wi)H1/2(Γ)

=
3∑

i=1

(χi, wi)L2(Γ) +
3∑

i=1

∫

Γ

∫

Γ

(χi(x) − χi(y))(wi(x) − wi(y))
‖x − y‖3

ds(x)ds(y)

and the corresponding norm

‖w‖H1/2(Γ)3 =
(

‖w‖2
L2 (Γ)3 +

∫

Γ

∫

Γ

(w(x) − w(y))2

‖x − y‖3
ds(x)ds(y)

)1/2

.
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For more details about the Hilbert spaces H1/2(Γ) and H1/2(Γ)3, the
reader can consult, e.g., [7,14]. Relevant to the matter are also, e.g.,
[10,15].

Recall that γ : H1(Ω)3 → L2(Γ)3 is a linear, continuous and com-
pact operator and γ : H1(Ω)3 → H1/2(Γ)3 is a linear, continuous and
surjective operator. Furthermore, there exists a linear, continuous operator
l : H1/2(Γ)3 → H1(Ω)3, such that γ(l(ξ)) = ξ for all ξ ∈ H1/2(Γ)3. The
operator l is called the right inverse of the trace operator γ.

To proceed, we introduce useful closed subspaces of the space H1(Ω)3.
• X0 = {v ∈ H1(Ω)3 | γ v = 0 a.e. on Γ1}, meas(Γ1) > 0; see, e.g., [18].

Recall that there exists cK = cK(Ω,Γ1) > 0, such that

‖ε(v)‖L2(Ω)3×3 ≥ cK |||v|||H1(Ω)3 for all v ∈ X0. (2)

This is the Korn’s inequality and for a proof of it the reader can consult,
e.g., [16]. Let us introduce the following inner product:

(u,v)X0 =
∫

Ω

ε(u) : ε(v) dx = (ε(u), ε(v))L2(Ω)3×3

with the corresponding norm

‖v‖X0 =
(∫

Ω

ε(v) : ε(v) dx

)1/2

= ‖ε(v)‖L2(Ω)3×3 .

Using Korn’s inequality, we get the equivalence between |||·|||H1(Ω)3 and
‖ · ‖X0 . Therefore, (X0, (·, ·)X0 , ‖ · ‖X0) is a Hilbert space. Furthermore,
there exists a positive constant c0, such that

‖γv‖L2(Γ3)3 ≤ c0‖v‖X0 for all v ∈ X0. (3)

• Let us introduce a subspace of the space X0 as follows:

X = {v ∈ X0 | vν = 0 a.e. on Γ3}, (4)

where vν = γ v · ν. As it is known, the space (X, (·, ·)X0 , ‖ · ‖X0) is a
Hilbert space; see, e.g., [18].

• S = γ(X) = {w = γv a.e. on Γ, v ∈ X}. We sent the reader to,
e.g., Proposition 2.1 in [12] for a proof of the fact that γ(X0) and
γ(X) are closed subspaces of the Hilbert space H1/2(Γ)3. Therefore,
(S, (·, ·)H1/2(Γ)3 , ‖ · ‖H1/2(Γ)3) is a Hilbert space.

• Y = S ′, Y being the dual of S.
• We also need a convex subset of X as follows:

K = {v ∈ X | vν ≤ 0 a.e. on Γ4}. (5)

The set K is a nonempty, unbounded, closed, convex subset of X con-
taining 0X .

In the study of Problem 1, we admit the following hypotheses:

H 1. E = (Eijkl) : S3 → S
3 is a fourth-order tensor, such that

(a) Eσ : τ = σ : Eτ for all σ, τ ∈ S
3;

(b) there exists mE > 0 such that Eτ : τ ≥ mE‖τ‖2
S3 for all τ ∈ S

3.

H 2. f0 ∈ L2(Ω)3, f2 ∈ L2(Γ2)3, g > 0.
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4. Weak Formulations

Let u and σ be smooth enough functions which verify Problem 1. For all
v ∈ X, we have ∫

Ω

Div σ · v dx +
∫

Ω

f0 · v dx = 0.

Using a Green formula for tensors, see, e.g., page 89 in [18] and taking into
account the boundary conditions, we get∫

Γ

σν · γv dΓ −
∫

Ω

σ : ε(v) dx +
∫

Ω

f0 · v dx = 0 for all v ∈ X.

Notice that σν · γv = σν vν + στ · vτ = στ · vτ on Γ3. Furthermore,
since vτ = γv − vνν = γv on Γ3, we obtain that σν · γv = στ · γv on Γ3.
Consequently∫

Γ3

σν · γv dΓ =
∫

Γ3

στ · γv dΓ for all v ∈ X.

On the other hand, σν · γv = σν vν on Γ4. Therefore∫

Γ4

σν · γv dΓ =
∫

Γ4

σνν · γv dΓ for all v ∈ X.

Then, for all v ∈ X, we obtain∫

Ω

Eε(u) : ε(v)dx −
∫

Γ3

στ · γv dΓ −
∫

Γ4

σνν · γv dΓ

=
∫

Ω

f0 · v dx +
∫

Γ2

f2 · γv dΓ. (6)

By (6), for all v ∈ X, we can write
∫

Ω
Eε(u) : (ε(v) − ε(u))dx −

∫

Γ3

στ · (γv − γu)dΓ

−
∫

Ω
f 0 · (v − u)dx −

∫

Γ4

σνν · (γv − γu)dΓ =

∫

Γ2

f 2 · (γv − γu)dΓ. (7)

Let us define a bilinear form as follows:

a : X × X → R, a(u, v) =
∫

Ω

E ε(u) : ε(v) dx for all u,v ∈ X. (8)

The form a is well defined. Indeed∫

Ω

E ε(u)(x) : ε(v)(x) dx = (NE(ε(u)), ε(v))L2(Ω)3×3 ,

where NE : L2(Ω)3×3 → L2(Ω)3×3, NE(ε(u))(x) = E(ε(u)(x)) for a.e.
x ∈ Ω is the Nemytskii operator; see, e.g., page 370 in [17].

In addition, by the Riesz’s representation theorem, we define f ∈ X as
follows:

(f ,v)X =
∫

Ω

f0 · v dx +
∫

Γ2

f2 · γv dΓ for all v ∈ X. (9)
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4.1. The First Weak Formulation

Due to the boundary conditions on Γ4, by taking v ∈ K, we can write

−
∫

Γ4

σνν · (γv − γu) dΓ = −
∫

Γ4

σνν · γv dΓ ≤ 0.

Based on relations (7), (8) and (9), for all v ∈ K, we get

a(u,v − u) −
∫

Γ3

στ · (γv − γu) dΓ ≥ (f ,v − u)X . (10)

Let us define a functional as follows:

φ : X → R+, φ(v) =
∫

Γ3

g ‖vτ‖R3 dΓ. (11)

We observe that for all v ∈ K

−
∫

Γ3

στ · γvdΓ ≤
∫

Γ3

‖στ ‖S3‖γv‖R3dΓ ≤
∫

Γ3

g‖vτ ‖R3dΓ = φ(v),

−
∫

Γ3

στ · γudΓ =
∫

Γ3

g‖uτ ‖R3dΓ = φ(u).

As a result

φ(v) − φ(u) ≥ −
∫

Γ3

στ · (γv − γu)dΓ.

Therefore, we arrive at the following weak formulation.

Problem 6. Given f ∈ X, find u ∈ K ⊂ X, such that

a(u,v − u) + φ(v) − φ(u) ≥ (f ,v − u)X for all v ∈ K ⊂ X.

4.2. The Second Weak Formulation

Let us introduce the Lagrange multiplier λ2 ∈ X ′ as follows:

(λ2,v)X′,X = −
∫

Γ3

στ · γv dΓ −
∫

Γ4

σνvν dΓ for all v ∈ X,

where (·, ·)X′,X denotes the duality pairing between X ′ and X; herein and
everywhere below, X ′ stands for the dual of X.

Let us introduce the following set of the Lagrange multipliers:

Λ2 = {μ ∈ X ′ | (μ,v)X′,X ≤
∫

Γ3

g‖vτ‖R3 dΓ for all v ∈ K}.

Keeping in mind the boundary conditions on Γ3 and Γ4, we immediately
deduce that λ2 ∈ Λ2. Afterwards, we define a bilinear form

b̃ : X × X ′ → R, b̃(v,μ) = (μ,v)X′,X for all v ∈ X, μ ∈ X ′. (12)

According to (6), we can write

a(u,v) + b̃(v,λ2) = (f ,v)X for all v ∈ X,

where the forms a and b̃ were defined in (8) and (12), respectively, and f was
introduced in (9). On the other hand

b̃(u,μ) ≤
∫

Γ3

g‖uτ ‖R3 dΓ for all μ ∈ Λ2,
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and

b̃(u,λ2) = (λ2,u)X′,X

= −
∫

Γ3

στ · γu dΓ −
∫

Γ4

σνuν dΓ

=
∫

Γ3

g‖uτ ‖R3dΓ.

As a consequence

b̃(u,μ − λ2) ≤ 0 for all μ ∈ Λ2. (13)

Therefore, we can state the following variational formulation.

Problem 7. Given f ∈ X, find u ∈ X and λ2 ∈ Λ2 ⊂ X ′, such that

a(u,v) + b̃(v,λ2) = (f ,v)X for all v ∈ X

b̃(u,μ − λ2) ≤ 0 for all μ ∈ Λ2.

4.3. The Third Weak Formulation

Let us define the Lagrange multiplier λ3 ∈ Y

〈λ3,w〉 = −
∫

Γ3

στ · w dΓ for all w ∈ S;

herein and everywhere below, 〈·, ·〉 denotes the duality product between Y
and S.

We also define a set of Lagrange multipliers as follows:

Λ3 = {μ ∈ Y | 〈μ,w〉 ≤
∫

Γ3

g ‖w‖R3 dΓ for all w ∈ S}. (14)

Due to the boundary conditions on Γ3, we deduce that λ3 ∈ Λ3.
We define now a bilinear form as follows:

b : X × Y → R, b(v,μ) = 〈μ,γv〉 for all v ∈ X,μ ∈ Y. (15)

According to (10), we can write

a(u,v − u) + b(v − u,λ3) ≥ (f ,v − u)X for all v ∈ K, (16)

where a and b are the forms introduced in (8) and (15), f ∈ X is the element
defined in (9), and K is the set defined in (5).

Furthermore

b(u,μ) ≤
∫

Γ3

g‖uτ ‖R3 dΓ for all μ ∈ Λ3.

On the other hand

b(u,λ3) = 〈λ3,γu〉 = −
∫

Γ3

στ · γu dΓ =
∫

Γ3

g‖uτ ‖R3 dΓ.

As a consequence

b(u,μ − λ3) ≤ 0 for all μ ∈ Λ3. (17)

By (16) and (17), we arrive at the following weak formulation.
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Problem 8. Given f ∈ X, find u ∈ K ⊂ X and λ3 ∈ Λ3 ⊂ Y , such that

a(u,v − u) + b(v − u,λ3) ≥ (f ,v − u)X for all v ∈ K

b(u,μ − λ3) ≤ 0 for all μ ∈ Λ3.

4.4. The Fourth Weak Formulation

Let us consider a Lagrange multiplier λ4 ∈ Y , such that

〈λ4,w〉 = −
∫

Γ4

σν w · ν dΓ for all w ∈ S

and the set of the Lagrange multipliers as follows:

Λ4 = {μ ∈ Y | 〈μ, w〉 ≤ 0 for all w ∈ S such that w · ν ≤ 0 a.e. on Γ4}.

Since σν ≤ 0 a.e. on Γ4, it results that λ4 ∈ Λ4.
Keeping in mind (7), (8), (9) (11) and (15), we get

a(u,v − u) + b(v − u,λ4) + φ(v) − φ(u) ≥ (f ,v − u)X for all v ∈ X.

(18)

Furthermore

b(u,μ) ≤ 0 for all μ ∈ Λ4

and

b(u,λ4) = 〈λ4,γu〉 = −
∫

Γ4

σνγu · ν dΓ = 0.

As a result

b(u,μ − λ4) ≤ 0 for all μ ∈ Λ4. (19)

By (18) and (19), we arrive at the following variational problem.

Problem 9. Given f ∈ X, find u ∈ X and λ4 ∈ Λ4 ⊂ Y , such that

a(u,v − u) + b(v − u,λ4) + φ(v) − φ(u) ≥ (f ,v − u)X for all v ∈ X

b(u,μ − λ4) ≤ 0 for all μ ∈ Λ4,

where a, φ, f , and b are those introduced in (8), (11), (9), and (15).

5. Main Results

In this section, we focus on the weak solvability of Problem 1 using succes-
sively the four variational formulations delivered in Sect. 4. Our first result is
the following existence and uniqueness result regarding Problem 6.

Theorem 5. We admit hypotheses H 1 and H 2. Then, Problem 6 has a unique
solution, u1 ∈ K.

Proof. We note that X defined in (4) is a Hilbert space. Obviously, K defined
in (5) is a closed, convex subset of X, such that it contains 0X . Therefore,
the assumption A 5 holds true.

The form a in (8) is a symmetric and bilinear form. Moreover, (i) in the
assumption A 1 holds true. Indeed
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|a(u,v)| =
∣∣∣∣
∫

Ω

Eε(u)(x) : ε(v)(x) dx

∣∣∣∣

≤
∫

Ω

‖Eε(u)(x)‖S3‖ε(v)(x)‖S3 dx

≤ max
i,j,k,l

|Eijkl|
∫

Ω

‖ε(u)(x)‖S3‖ε(v)(x)‖S3 dx

≤ max
i,j,k,l

|Eijkl|
(∫

Ω

‖ε(u)(x)‖2
S3

)1/2 (∫

Ω

‖ε(v)(x)‖2
S3 dx

)1/2

= max
i,j,k,l

|Eijkl| ‖u‖X0 ‖v‖X0 .

Thus, we can choose Ma = maxi,j,k,l |Eijkl|.
To prove (ii) in the assumption A 1, we evaluate

a(v,v) =
∫

Ω

Eε(v)(x) : ε(v)(x) dx ≥
∫

Ω

mE‖ε(v)(x)‖2
S3 dx

= mE‖ε(v)‖2
L2(Ω)3×3 = mE‖v‖2

X0
.

We can take ma = mE . Therefore, the assumption A 1 holds true.
Furthermore, the assumption A 3 is fulfilled. It is obviously that the

functional φ in (11) is convex. Let us show that φ is a Lipschitz continuous
functional. We write

|φ(v) − φ(u)| =
∣∣∣∣
∫

Γ3

(g‖vτ (x)‖R3 − g‖uτ (x)‖R3) dΓ
∣∣∣∣

≤ g

∫

Γ3

‖vτ (x) − uτ (x)‖R3 dΓ

≤ g
√

meas(Γ3)‖γv − γu‖L2(Γ3)3

≤ c0 g
√

meas(Γ3)‖v − u‖X0 ,

where c0 > 0 is the constant in (3). Therefore, we can take Lφ =
c0 g

√
meas(Γ3).
Therefore, we can apply Theorem 1. �

To proceed, we focus on the solvability of Problem 7.

Theorem 6. We admit the hypotheses H 1 and H 2. Then, Problem 7 has a
unique solution, (u2,λ2) ∈ X × Λ2.

Proof. The assumptions A 1, A 2 and A4 are fulfilled. Hence, we can apply
Theorem 2. �

Subsequently, we deliver a characterization of the solution (u2,λ2) in
terms of the unique solution of Problem 6, u1.

Let u1 ∈ K be the unique solution of Problem 6. Next, we define λ1 ∈
X ′ as follows:

(λ1,v)X′,X = (f ,v)X − a(u1,v) for all v ∈ X. (20)
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Proposition 1. If u1 ∈ K is the unique solution of Problem 6 and λ1 is the
element of X ′ defined in (20), then (u1,λ1) is the unique solution of Problem
7.

Proof. Setting v = 0 and v = 2u1, respectively, in Problem 6, we deduce
that

a(u1,u1) + φ(u1) = (f ,u1)X . (21)

And from this, keeping in mind Problem 6

a(u1,v) + φ(v) ≥ (f ,v)X for all v ∈ K.

As a result

φ(v) ≥ (f ,v)X − a(u1,v) for all v ∈ K.

Hence, keeping in mind (20), we immediately observe that λ1 ∈ Λ2.
On the other hand, by (20), it is straightforward to see that

a(u1,v) + b(v,λ1) = (f ,v)X for all v ∈ X. (22)

Moreover, for all μ ∈ Λ2, keeping in mind the definition of Λ2, we have

b(u1,μ) ≤ φ(u1). (23)

Due to (21), we can write

φ(u1) = (f ,u1)X − a(u1,u1).

Using now (20), we get

b(u1,λ1) = φ(u1). (24)

By (23) and (24), we get

b(u1,μ − λ1) ≤ 0 for all μ ∈ Λ2. (25)

As a consequence, due to (22) and (25), the pair (u1,λ1) ∈ K×Λ2 where
u1 is the unique solution of Problem 6 and λ1 is defined in (20) is a solution
of Problem 7. However, Problem 7 has a unique solution (u2,λ2) ∈ X × Λ2.
We conclude that u2 = u1 and λ2 = λ1. �

Remark 1. According to Proposition 1, the first component of the unique
pair solution of Problem 7 is the unique solution of Problem 6. Also, it is
worth to underline that u2 ∈ K.

Remark 2. Proposition 1 allows us to give a new characterization of the
unique solution of Problem 6. Indeed, the unique solution u1 of Problem 6 is
the first component of the unique saddle point (u2,λ2) of the functional

L : X × Λ2 → R, L(v,μ) =
1
2
a(v,v) − (f ,v)X + b(v,μ).

Afterwards, we pay attention to Problem 8.

Theorem 7. We admit the hypotheses H 1 and H 2. Then, Problem 8 has a
solution (u3,λ3) ∈ K × Λ3, unique in its first component.
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Proof. The form b defined in (15) is bilinear. To verify (a) in the assumption
A 2, we can write

|b(v,μ)| = |〈μ,γv〉| ≤ ‖μ‖Y ‖γv‖H1/2(Γ)3 ≤ cγ‖μ‖Y ‖v‖H1(Ω)3

≤ cγ c ‖μ‖Y |||v|||H1(Ω)3 ≤ c−1
K cγ c ‖μ‖Y ‖v‖X0 ,

where cK > 0 is the constant in the Korn’s inequality (2), c > 0 is the
constant in (1) and cγ > 0 in the constant in the trace theorem. We can
choose Mb = c−1

K cγ c.
The assumptions A 1, A 2 (a), A 4 and A 5 hold true. We claim that

Λ3 in (14) is a bounded set. Indeed, let μ ∈ Λ3. Then

〈μ,γv〉
‖v‖X0

≤
∫
Γ3

g‖vτ ‖R3 dΓ

‖v‖X0

≤ g
√

meas(Γ3) ‖γv‖L2(Γ3)3

‖v‖X0

≤ c0 g
√

meas(Γ3),

where c0 > 0 is the constant in (3). Consequently

‖μ‖Y ≤ c0 g
√

meas(Γ3) for all μ ∈ Λ3.

As Λ3 is a bounded subset of the Hilbert space Y , we can apply Theo-
rem 3 to obtain the existence of a solution (u3,λ3) ∈ K ×Λ3 which is unique
in its first component. �

Remark 3. We observe that u3 ∈ K. However, the equality u3 = u1 is left
open.

Finally, we address Problem 9.

Theorem 8. We admit the hypotheses H 1 and H 2. Then, Problem 9 has a
solution (u4,λ4) ∈ X × Λ4, unique in its first component.

Proof. Clearly, the set of the Lagrange multipliers Λ4 is a closed, convex
subset of Y which contains 0Y .

In addition, Λ4 is an unbounded subset of Y , since there exists a
sequence (μn)n ⊂ Λ4, such that ‖μn‖Y → ∞ as n → ∞. Indeed, we can
construct a sequence (μn)n, such that for each positive integer n, μn = nμ0,
where μ0 ∈ Λ4 is defined as follows:

〈μ0,w〉 =
∫

Γ4

w(x) · ν(x) dΓ for all w ∈ S.

If w ∈ S, such that w · ν ≤ 0 a.e. on Γ4, then
∫

Γ4

w(x) · ν(x) dΓ ≤ 0.

Thus, μ0 ∈ Λ4. As a result, μn = nμ0 ∈ Λ4 for all n ∈ N.
Furthermore, for all positive integers n

‖μn‖Y = n‖μ0‖Y .

Passing to the limit as n → ∞ in this last relation, we are lead to ‖μn‖Y → ∞.
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Let us prove the inf-sup property of the form b, i.e., (b) in the assumption
A 2. Using similar arguments with those used in [3,12], we can write

‖μ‖Y = sup
w∈S, w �=0S

〈μ,w〉
‖w‖H1/2(Γ)3

≤ sup
z∈X, γz �=0S

b(z,μ)
‖γz‖H1/2(Γ)3

≤ sup
z∈X, γz �=0S

b(l(γz),μ)
‖γz‖H1/2(Γ)3

≤ cl sup
z∈X, l(γz) �=0X

b(l(γz),μ)
|||l(γz)|||H1(Ω)3

≤ c̃l sup
v∈X, v �=0X

b(v,μ)
‖v‖X0

.

Thus, we can take α = c̃−1
l to conclude that the assumption A 2 (b) is

fulfilled.
Since the assumptions A 1- A 4 hold true, we are going to apply Theo-

rem 4 to get the conclusion. �

Remark 4. The equality u4 = u1 is an open question.
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