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On the Number of Limit Cycles Bifurcating
from a Quartic Reversible Center
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Abstract. This paper deals with the bifurcation of limit cycles from a
quartic reversible and non-Hamiltonian system. By using the averaging
theory and some mathematical technique on estimating the zeros of the
function, we show that under small polynomial perturbation of degree
3n+ 1, at most 3n — 3 limit cycles bifurcate from the period annulus of
the unperturbed system for n > 3, while at most 2n limit cycles appear
from the period annulus of the unperturbed system for n = 1,2,3. And
the upper bound for the latter case is sharp.
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1. Introduction

The second part of the famous Hilbert’s 16th problem asks for the max-
imum number of limit cycles of planar real polynomial differential equa-
tions of degree n [19]. To attack this problem, many interesting and pro-
found results have been established under various conditions. For example,
the bifurcation of limit cycles from the periodic orbits around a center has
been extensively studied in the literatures [9,14,20-22,24-26,31,33,37] and
the references therein. Simultaneously, quite a few innovative methods have
been proposed based on the Poincaré map [5, 10, 23], the Poincaré-Pontryagin-
Melnikov integrals or the Abelian integrals [2,3,11,36], the inverse integrating
factor [15-17,35], and the averaging function [4,6,12,18,22,25,26,32] which
is actually equivalent to the Abelian integrals in the plane.

As for the averaging theory, it gives a quantitative relation between
the solutions of a non-autonomous periodic differential system and its aver-
aged differential equation which is autonomous. For some differential equa-
tions, the problem about the number of limit cycles bifurcating from the

This research is supported by the Natural Science Foundation of Beijing and China
(4192033, 1202018, 12101032).

Y Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-022-02136-w&domain=pdf
http://orcid.org/0000-0002-9285-9861

220 Page 2 of 26 B. Huang et al. MJOM

unperturbed systems can be reduced to the exploration of hyperbolic equi-
librium points of the corresponding averaged equations by using the averaging
method. Hence, the averaging method has played a crucial role in the study
of limit cycles of the differential systems. Now some elegant results on the
number of limit cycles of the differential systems have been obtained, such as
[1,7,13,18,20,22,24,31-33,37] and so on.

Generally, it is challenging to estimate the number of limit cycles in per-
turbations of a polynomial differential system of high degree. In the present
paper, we choose a quartic differential system as follow

&= —y+ 2y + zy?, L1

j=az+a*y’ +y b
and study the bifurcation of limit cycles from it under any small polynomial
perturbation of degree 3n + 1 by the averaging method and some mathemat-
ical technique on estimating the zeros of the function.

Clearly, system (1.1) has

1 x
H(z,y) =

_ —c
3(952 + yz)% /22 + 2

as its first integral with the integrating factor W,
singularity (0,0) as its isochronous center. The period annulus, denoted by
{(z,y)|H(z,y) = ¢,c € (1,+00)}, starts at the center (0,0) and terminates
at the separatrix passing the infinite degenerate singularity on the equator.

We summarize our main results as follows.

and the unique finite

Theorem 1.1. Consider the following system
&= —y+a’y +ay’ +ef(zy), 12)
j=a+2"y +y' +eglz,y), '

with any sufficiently small parameter |e| # 0, and the real polynomials f(x,y)
and g(x,y) of degree 3n+ 1 in x and y, given by

f(xvy) = Z Z almxlymv g<$7y) = Z Z blmmlym'

k=114+m=1+3k k=114+m=1+3k
Then using the first order averaging method, we have

1. For n = 1,2,3, at most 2n limit cycles arise from the period annu-
lus around the center of the unperturbed system (1.2)|.—q, respectively.
Moreover, in every case, this upper bound is sharp.

2. For anyn > 3, at most 3n—3 limit cycles arise from the period annulus
around the center of the unperturbed system (1.2)|.=¢-

Remark 1.2. The result for n = 1 has been proved in [29]. We list it here for
the completeness.

Remark 1.3. We remark that the perturbations in (1.2) exclude all terms of
degrees 3n and 3n + 2, because the computations of the averaged function
will become too much complicated with them. Ideally, these terms should
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be included in the analysis, and more limit cycles may appear with general
perturbations of degree n.

The rest of this paper is organized as follows. In Sect. 2, we give an
introduction on the averaging theory and present some important results
about the integrals. Section 3 is devoted to the proof of Theorem 1.1 by
computing the first order averaged function and exploring the number of its
simple zeros for two cases. Some discussions are stated in Sect. 4.

2. Preliminary Results

In this section, we briefly introduce the averaging theory and prove some re-
sults about the integrals which will be used in the proof of the main theorem.
More details for the averaging method, including applications, can be found
in [27,34].

2.1. Averaging Theory

Consider the system
a'(t) = Fo(t,x), (2.1)

with Fy : R x  — R” a C? function, T-periodic in the first variable, and €2
is an open subset of R™. Assume that there exists an open and bounded V'
with its closure CI(V') C ©, and system (2.1) has C1(V') as its submanifold of
periodic solutions such that for each z € CI(V),x(t, z) is T-periodic, where
x(t,z) denotes the solution of system (2.1) with x(0, z) = z. The set CI(V)
is isochronous for system (2.1), i.e. it is a set formed only by periodic orbits
having the same period.

Then the linearization of system (2.1) along the periodic solution z(¢, z)
takes the form

y' = D, Fy(t,x(t,2))y, (2.2)
and denote by M, (t, z) a fundamental matrix of this linear system satisfying
that M, (0, z) is the identity matrix.

Let € be sufficiently small and we consider a perturbation of system
(2.1) of the form
' (t) = Fo(t,z) + eFy(t,x) + 2 Fy(t, x,€), (2.3)

with F; : R x Q — R™ and Fy : R x Q x (—&g,50) — R™ are C? functions,
T-periodic in the first variable. Then, an answer to the problem of the bifur-
cation of T-periodic solutions from the x(¢, z) contained in CI(V) is given in
the following result.

Lemma 2.1. (Perturbations of an isochronous set) Assume that there exists
an open and bounded set V' with CIL(V') C Q such that for each z € CI(V'), the
solution x(t, z) is T-periodic, then we consider the function F : Cl(V) — R™

T
F(z) :/0 Mt 2)Fy(t, x(t, 2))dt. (2.4)
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If there ezists a € V with F(a) = 0 and det((dF/dz)(a)) # 0, then there
exists a T-periodic solution ¢(t,€) of system (2.3) such that ¢(0,e) — a as
e —0.

Lemma 2.1 goes back to [28,30], see Buica et al. [8] for a shorter proof.

2.2. Some Results About Integrals
For p € (1,400) and j € Z, we define

2m
Ii(p) = /O (;d& (2.5)

cosf + p)J

By a straightforward computation, we obtain the following result.

Lemma 2.2. For p € (1,400),m,j € N and m,j > 1, we have

m

/0% (cssogiep)jde =>. (7}:) (=p)*Ljk—m(p)-

k=0

Moreover, we have

Lemma 2.3. For p € (1,+00),j € Z\ {1}, the integrals I;,I;_1 and I;_o
defined above satisfy

P*Li(p) = Li(p) +

Proof. Note that

T cosf+p 2T d(sin 0)
li-1(p) = /0 (cos @ + p)J 40 = pl;(p) + /0 (cos @+ p)J

2w 2

sin“ 6
= ol — 9 [ —
P ](p) J/(; (C050+p)3+1

27 2
1 — cos® 0
— ol:(p) — 4 7
rI;(p) j/o (cos O + p)itt

= pLi(p) = jLi+1(p) + j0* Lj41(p) + i 1i-1(p) — 2jpI;(p).
Then
3P Li1(p) = jli1(p) + (25 — Dpl;(p) + (1 = )11 (p)-
Replacing j by 7 — 1, we can obtain Lemma 2.3. g

Lemma 2.4. For p € (1,400) and j € Z, we have

1
Ii(p) = —————=1i—j(p). 2.6
)= g i) (26)
Moreover,
L) =00 i <0 L= —2=0 50 e
(b — 1y

where Q; stands for a polynomial of degree j.
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Proof. Obviously, equality (2.6) is true for j = 0, 1. Now we prove the result
for case j > 2 by induction.
Suppose that (2.6) holds for j and j + 1, that is

(0° =172 L(p) = Lij(p), (p° — 1) F2L41(p) = Ij(p).  (28)
We need to show that
(0" = 173 1a(p) = T_(j41)(p)- (2.9)
Using Lemma 2.3, we have
27 +1
(0% = )I;4a(p) = =2

?Pljﬂ(m - -LI'(P)

j+17

Multiplying the above equality by (p2 — 1)iT2, we get
27+1

(p* = 1)+ I a(p) = p(p* = 1Y 2140 (p) —

+
Then it follows from (2.8) th
) =

j i1
Z P =R ),

(0 — 1)1 (p ]“u(p) (D). (2.10)

J
Jj+1
Using Lemma 2.3 again, we have

(7 = D) = =0T y(0) = = L) @)

Substituting (2.11) into (2.10), we obtain (2.9), then (2.6) holds for j €
Z+ u{0}.
When 5 > 1, we have
1
Lij(p) = (p* = 1)) "= L;(p).
Let m =1—j <0, then we have

— 2 %—m — 1
Im(p) = (p” = 1)2 7" Li_m(p) )l L1-m(p),
which implies that (2.6) holds for j € Z~. Hence (2.6) is true for all j € Z.
By the definition and (2.6), we obtain (2.7). This completes the proof
of Lemma 2.4. 0

From the above results, we get Corollary 2.5.

Corollary 2.5. 1. For k € N, we have

I_2k41)(p) = pQi(p), I-2k(p) = Qk(p?), T2ns1(p) =

2. For k € N\ {0}, we have
PQr—1(p*)
(2 — AT

where QQ; stands only for a polynomial of degree j. The difference in
several equalities is ignored.

Lo (p) =

A straightforward computation leads to Lemma 2.6 immediately.
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Lemma 2.6. The following explicit expressions hold.
2T 2mp
0(p) T, l(p) (p2 _ 1)% ) 2(10) (p2 _ 1)%

I-1(p) = 2mp, I-2(p) = 7(2p* + 1), I_3(p) = (20" + 3p).

3. Proof of Theorem 1.1

We split the proof into three steps: first derive the explicit expression of
the averaged function, then prove Theorem 1.1 for the odd and even cases,
respectively.

In the polar coordinates, system (1.2) becomes the form

7 =rtsin 4+ cF(r,0),

) (3.1)
0=1+¢eG(r0),
where
F(r,0) = Z Z pltm (alm costtt 0sin™ 0 + by, cos! @ sin™ ! 9) ,
k=11+m=1+3k
G(r,0) = Z pltm=1 (blm cos!t @sin™ 60 — ay,y, cost O sin™ ! 9) .
k=1l4+m=1+3k
Obviously, system (3.1) is equivalent to
d
d—; =risinf 4 eFy(r,0) + O(e?) (3.2)

where

n
Fi(r,0) = E E M3 (@, cos! @sin™+2 0 — by, cos' O sin™ ! 0)
k=1 I+m—1+3k

n
+ E E pltm (alm cos't @sin™ 6 + by, cost O sin™ 0).
k=11+m=1+3k

3.1. First Order Averaged Function

In this subsection, we first derive the formula for the first averaged function
F(z) of system (3.2), then obtain the associated function whose zeros coincide
with those of F(z).

It is not difficult to know that the closed orbits of system (3.2)|.—o takes
the form

7'0(0,2’) = 1 1 Z € (Oﬂ 3\/ 1/6)
(3C050—3+ Z%)B

with period 27 and the initial condition ry(0,%) = z. The linearization of
system (3.2)|.—o along ro(6, z) takes the form

B 4sin 6
"~ 3(cosh — 1) + Z%y
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Take the fundamental matrix of the above system
1

M.(0,2) = ,
z* (3cosf — 3+ 2%)4/3

and its inverse

1\ 43
10,2) = 24 (3cos0—3+23> ,

then from Lemma 2.1, the averaged function of system (3.2) can be expressed
as

27
-7:(2) = o M_l(e Z) ( )|r ro(6, z)de
2w n
= / 2*(3cos 0+ 3p 4/3{ Z Z pltm+s (aim cos' 9sin™ 29
0 k=11+m=1+3k

— by cost T 9 sin™ T 0)

n
+ Z Z pltm (aim cos! T 0sin™ 6 + by, cos’ Osin™ ! 9) }
k=1l+m=1+3k

‘ dé (3.3)
= (3cu>ei3p)l/3

2 A cost 0sin™12 0 — by, cost T Osin™ 1

Z 3k(cosf + p)k o
l+m 143k p
A+l p:oom lpaiam—+1

" Z / Ay COS ?4)9;_1111 9‘—&0— bim (;Co_s1 0 sin Hd&}

l+m 143k (cosé + p)

n

Rspy3(cos6,sin ) %™ Rapyo(cosf,sinf)
dé de
{ Z/ 3k (cos @ + p)k +}; o 3kL(cosf + p)k-1 ’

where p = —1+1/(323) € (1, +00), Ri(z,y) stands for a homogeneous poly-
nomial of degree [ in z and y.

Noting that

/27r cosP @ sin?t! 9d B /27r cosP 0 sin?t! 9d9 _0
0 0

(cos@ + p)*k (cos@ + p)k—1

27 D : . 2q 27 V4 _ 2 q
/ cosP  sin edQ:/ cosP O(1 — cos? 0) a0,
o (st pF 0 Jy T (cosB AP

/27r cosP 0 sin?? 0 40 = /27r cosP (1 — cos? a)qu
) st b 10T fy (ot )T

for any nonnegative integer numbers p and ¢, we get

53k+3 0089 / T3k+2 COS 9)
d9 ——=—_df
{Z/ (cos@ + p)*k Z (cos @ + p)k—1 ’
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where Sj(z,y) and Tj(x,y) denote the polynomials of degree [ in = and y,
respectively. Then define the function

Z/ S3k+3 COSH d9 Z/2ﬂ T3k+2 COS 9) d9’
(cos B + p)k (cos @ + p)k—1
we obtain Remark 3.1.

Remark 3.1. The non-zero zeros of F(z) coincide with those of the function
G(p). In the following, we study the zeros of the function G(p) for p € (1, 4+00)
instead of F(z) for z € (0, ¥/1/6).

From the definitions, we know that the degree of S3i3 is odd when k is
even, and even when k is odd, while it is opposite for T35, 2. This fact yields

zn: 53k+3(COS 9)
k
£ (cos 0 + p)
~ Sg,0+ S6,2 0820 + Sg 4 cos” 0 + Sg 6 cos® O
N cost + p
591C050+593COS 6 + Sg 5 cos® 9+Sg7cos 0 + Sg g cos? 6

(cos B + p)?

S3nt3(cosB)

NI (cosf+ p)

(3.4)

n

Z T3k+2 COSQ

— (cosf + p)k—1

Ty +Tgz2cos 26+ T84 cos? 0 + Ts.6 cos® 6 + Ts3 cos® 0
N cosf +p

T5n42(cos0)

(cosf + p)n—1’

where S; ; and Tj ; are dependent on the perturbation coefficients a;,, and
bym. After some simplification, we have

Z 53k+3 cos 9) Santa(c0sb) 4 | Z /27r T3p42 cos@) _do
(cos 0 + p)k (cos B + p)k
—/o

+(B2,0 + Ba,2p%) - (cos 0 + p)

+- 4 (Bany2,0 + Bgn+2,2p2 + 4 Bang22nt2p”" ) - (cosd + p)
2n+3)

Bo,o - (cos 0+ p)>" T + Bi1p- (cosO + p)>" T2

2n+1

+(Ban+3,1p + Banys, 3p3 + -+ B2p43,2n+3p

an+4 0+ Banta2p® 4+ + Bontaoniap®™

cosl9+p

B2n+5 1p+ Banis3p® + -+ Bantsonisp "

(cos O + p)2
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B3n+3pm(i)

(cos@ + p)»

= Bo,o - I_(2n43)(p) + B1,1p - I_(2n+2)(p) + (B2,0 + Baop?) - I_(2n41)(p)
+---+ (B2ny2,0 + an+2,2p2 + o+ an+2,2n+2p2n+2) -I_1(p)
+(Ban+3,1p + B2n+3,3p3 4+ 4 an+3,2n+3p2n+3) -Io(p)
+(Ban+4,0 + B2n+4,2p2 + -+ B2n+4,2n+4p2n+4)11(p)
+(Banisap + Banissp® + -+ Bonisonisp ") a(p)
+ 4 Banysp™ " 1 (p), (3.5)

where I,,(p) is defined as before, the coefficient B; ; depends on the coeffi-
cients of S; ; and T; ;, that is, they are the functions of any real perturbation
coefficients a;,,, and b;,,. Moreover, we obtain

3n+3
2
Binysp™™ = Y Banysaip™ (3.6)
i=0
for the odd number n, and
g2
Binysp™™ = > Banysaipp™
i=0

for the even number n.

Lemma 3.2. For the coefficients Bspy3.2; and Bsyy3 241 defined above, the
following statements are true.

1. When n is odd, we have

3n+
2

3
g Bspi3,2i = 05
i=0

2. When n is even, we have
snt2
2
Z B3y, y3.2i41 = 0.
i=0
Proof. For the odd number n, it follows from (3.3) and (3.4) that

San43(cosl)  Ssny3.0 4 Ssnts,2008% 0+ - + S3,43 3043 o730

(cosf +p)n (cos O + p)»
ap.aq cOs?P Osin®1t2 ¢
3n(cosf + p)»

2p+2q=1+4+3n

bapi1 2941 COS2PT2 sin?t2 ¢
_ Z p+1,2g9+ s (37)

37 (cosf + p)»

2p+2g=3n—1
Comparing (3.6) with (3.7), we have

21
B3y,13,2i = S3n43,2i ( 0) = S3n+3,2i-
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Substituting the above equality and cosé = 1 into (3.7), we can obtain the
first result.

Similarly, the second result follows from

Ssn+3(cos0)  Ssnis1cos0+ Sanizscos® 0+ -+ Sanyzsniscos” 0
(cos® +p)n (cosO + p)»
_ Z a2p 11,24 052 05in?9F2 _pyy 5011 cos?P L Psin?912 9
i 2resn 37(cos + p)™
This completes the proof of Lemma 3.2. g

3.2. Proof of Theorem 1.1 for the Odd Case

This subsection aims at proving Theorem 1.1 for the odd number n by
studying the zeros of the function G(p). In addition, an example is given
to illustrate that the upper bound of the number of limit cycles for n = 3
can be reached.

When n is odd, we have

G(p) = Boo - I (an13)(p) + Braip - I-(an12)(p) + (B2,0 + B2,2p") - I (2011 (p)
4+ + (Bant2.0 + Bany22p> + - + Banyaont2p" ) - 1_1(p)
+(Bani3ap + Banissp® + -+ Banisonizp " 2) - Io(p)
+(Ban+4,0 + 32n+4,2p2 4+ an+4,2n+4p2n+4)h (p)
+(Ban+s,1p + an+5,3p3 4+ an+5,2n+5p2n+5)12(p)

a3
3
4+ Z B3n+3,2ipzijn (p)

i=0
n+1 n—t+1 )
= Z I_(2141y(p) Z Ban—2t42,2ip""
t=0 i=0
n+1 n—t+1 )
+ Z I_2y(p) Z Ban—2t432i410° 7"
t=0 i=0
e nt+2 .
+ Z I2t+1(p) Z BZn+2t+472ip21
=0 i=0

n—

2 ! n+t+1
+ Z I>¢(p) Z Ban+2t43,2i41p° (3.8)

t=1 =0

To simplify (3.8), we list Lemmas 3.3-3.4 which can be derived from Corollary
2.5.
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Lemma 3.3. For any integer k > 0, we get

n—k+1
I_op11y(p) Z Bop_ok42,2ip”
i=0
k n
= MQ(n)+3 1P+M2(n+3 3p° + - +M2(n+3 o3P,
n—k+1
I (2k) Z Bap—2ky3, 2z+1p
i=0
(k) 2n+3

k
o310t N2(n+d g’ + Nzgn)+3 2n+3P

, k k . -
where all coefficients MQ(n)-s-3 2ig1 and N2(n)+3 2i41 are the linear combination
Of B2n_2k+272i and BQn_2k+372fL‘+l gz’ven above.

Lemma 3.4. The following statements are true.

1. For any integer k > 1, we have

n-+k+1 o n+2k
2i4+1 __ (k) 2i4+1
Lo (p) Z Bont2k+3,2i41P = m Z By akg1,2i41P .
i=0 (p - ) i=0

2. For any integer k > 0, we have

n+k+2 n+2k+2
2 _ (k)
Lar+1(p) Z Bontokta2ip™ = 7('02 p Z By akranil”
i=0

, k k . ,
where the coefficients Bén)+4k+1 2ip1 and BénL4k+4 o; are the linear combina-
tions of Boptok+32i+1 and Bontak+ya,2i, respectively.

Moreover, we have

Lemma 3.5. 1. For the odd number n, define

2n+1
hi(W?) = 3 BT (14 w?)? (1 —w?)in 2,
=0

then we have hy (w?) = w? R}, (w?), where R}, (x) denotes a symmetrical
polynomials of degree 4n in x.
2. For the even number n, define

Z:BM+1 aipr(1+ w?)2it2(1 — w2)4n72i7

then we have ho(w?) = w? Ry (w?), where Ry: (x) denotes a symmetrical
polynomials of degree 4n in x.

Proof. Here we only prove the first result, the second one is similar.
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In fact, using Corollary 2.5, we have

3n+3 C? 3n+3
2
9) E Bsnyz0ip® = —2— E Bspi3.0ip™
i=0 (,0 _1 2
3n+3
2
j 21
= Qn 19j ]] B3n+3,2i,0
(- rE {Z " ;

On the other hand, when k = ”% in the second equality of Lemma 3.4, we
also get

3n+3

Z 33n+3 2zp ( _ n—f Z Bi:LJr; 2P 2i.

Hence we have

n—1 3n+3

2 2n+1 (2= . 0

D angt 00" ZB3n+sw 2 Budazt™ (39)
7=0

Let p = 10 in (3.9) and define

wz
N e } |
hl(wz) = Z B4n—2i-2,21(1 +w2)2z(1 _w2)4n—21+2
=0
e | |
- [Z q"T*l,Qj(l + w2)2ﬂ(1 _ u12)nzj1‘| )
j=0
3nt3
2 . |
Z Bsis2i(1 +w?)¥(1 — w2)3nzz+3] '
i=0

From Lemma 3.2, it is not difficult to know that hi(x) is a symmetrical
polynomial of degree 4n + 1 with zero constant term. Then we obtain

hi(w?) = w? - R, (w?),
where R*(x) is a symmetrical polynomial of degree 4n in z. This is just the
first result of Lemma 3.5. 0
Using Lemmas 3.3-3.5, (3.8) can be simplified as

n+1 n—t+1

) :ZI_(2t+1)(p) Z B2n72t+2,2ip2i
t=0 =0
n+1 n—t+1

+ZI_2t(P) Z Bop—2t43,2i10°
=0

=0
n+t+2

n—1
2

+ Iia(p) Y Bantorranip™
t=0

=0
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ntt+1
241
+ Z I (p) Z Bontoti32iq1p”’
t=1 i=0
nrd 1 n+2t+2
_ . B(t) 24
- 2 _ 1)20+% 2n-+4t+4,2iF
t=0 (p - ) 2 i=0
not n2t

- r . () 241
+ ; (2 - 1)1 ; By vati12iv1P

+(D2nt3,10 + Danys3p® + -+ Danigontsp™ ), (3.10)
where

n+1

_ (k) (k)
Dopy32it1 = Z <M2n+3,21+1 + N2n+3,2z'+1>
k=0

for i = 1,2,...,n. Making the transformation p = (1 + w?)/(1 — w?) for
w € (0,1) in (3.10), we have

Gw) = Glp)],_ st

P=7

1+ w? 1+ w?)?
Dany3a (1 — w2> +D2n+3,3<1 — w2>

1+ w2 ) 2n+3

+- D2n+3,2n+3<

1 — w?
noi n+2t+2 i
oy [aoen Ry
(2w)4t+1 2n+4t+4,2i 1 — w2
t=0 i=0
n—1 .
~ | (A+w?) - (1 -w?)t? n+2tB(t) 1+ w2\
+ Z (2w)31 : Z 2nt4t+12i41\ T 2
t=1 i=0
1 =, 2n—4t—2
= (2w)2n—1 . (1 — w?)2n+3 (2“’) ’
t=0
s 244t —2m-+4 2
t n —2m m
Z B£73+4t+4,2m(1 - WZ) ‘ (1 + WQ) ‘|
m=0

n—1

+hy(w?) + 22: (2w)2n74t .

t=1
2t (t) 2\ 2n+4t—2m 2\ 2m+2
Z B rar1,2m+1 (1-w?) (14 w?)
m=0

n+1

+(2w)2n71 ) [ Z D2n+3,2m+1 (1 _ u.)2)27172m+2 . (1 + w2)2m+1] }

m=0
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n—3
1 — 2n—4t—4
T (2w)2n 3 (1 — w?)2nt3 { Z (2w) :

t=0
ni2E2 (t) 2\ 2n+4t—2m—+4 2\ 2m
Z By parraom(1—w?) (1+w?)
m=0
—|—1R* (w?) + ni: (2w)2n74t72 )
4 4n pot
2t (t) 2\ 2n+4t—2m 2\ 2m+2
Z Banarr12me1 (1= w?) 1+ w?)
m=0
2 3 sy 2 2 2 2 1
+(2w) e [Z D2n+3,2m+1 (1 - w2) ot ’ (1 +w2) " ] }
m=0
1 2 2n—3 2
T (w)8 (1 - w?)2nts [WM(W )+ (2) Wans(w )}’
where
nes
W4n(w2) _ Z (2 )2’rb—4t—4
t=0
2t 2 4t—2 4 2
. [ Z B£2+4t+472m(1 - w?) e (1+w?) ’”]
m=0
no1
+ iRZn(wQ) +3 (2w)™
t=1
sy 2n+4t—2 2m—+2
n+4t—2m m
: Z B§2+4t+1,27n+1 (1 - WQ) : (1 + W2) ] )
m=0
2 = 2\ 2n—2m+2 2\ 2m+1
W2n+3(u) ) = Z D2n+372m+1(1 —w ) . (1 +w ) .

m=0
A straightforward calculation yields that the coefficients in the function
Win(w?) + (2w) s Wapy3(w?) are symmetrical with respect to w, then
when wg # 0 is one root of G(w) = 0, so is 1/w.
Moreover, we have Lemma 3.6.

Lemma 3.6. For the odd number n > 3, the function G’(w) can be expressed
as
~ 1—-w
Gw) = .
(UJ) (2&])2”73 A (1 +w)2n+3 g(w)a

(3.11)

where g(w) is a symmetrical polynomial of degree 6n — 4, and the ordered list
of coefficients of g(w) changes its sign at most 6n — 6 times. Consequently,
the function G(w) has at most 3n — 3 simple zeros in w € (0,1).
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Proof. Note the fact

n n

27
Ssk43(cos )

(cos — 1+ zi5)*

lim
z—0 0

\g

_|_

Tapra( cos&
cosf — 1+

k=1 k=1 ( 323

which implies G(1) = 0. Hence we have

¢ 1
G(W) - (2w)2n—3 . (1 _ w2)2"+3
1-w
- (2w)2n—3 . (1 +w)2n+3 ~g(w),

{W4n(w2) + (2“))2”73 : W2n+3(w2):|

where g(w) is such a polynomial of degree 6n — 4 that satisfies the property
2n—3 n
Win(w?) + (2w) Wanis(w?) = (1 —w)? ™. g(w). (3.12)

Without loss of generality, suppose g(w) = Z?no * ;. Since the coefficients
of w and wW¥"~! in (3.12) are identically equal to zero, we get

— (27’L + 4)0,0 = O, Agn—5 — (271 + 4)a6n—4 = 0, (313)

that is a; = (2n 4+ 4)ag, asn—s = (2n + 4)agn—4.

Thus the ordered list of coefficients of g(w) changes its sign at most
6n — 6 times. Recall that g(w) are symmetrical with respect to w, then its
roots appear in such the pairs as wg # 0 and 1/wg. Hence g(w) has at most
3n — 3 zeros in w € (0,1). The proof of Lemma 3.6 is completed. O

Based on Lemma 3.6, we have the following result.

Corollary 3.7. System (3.2) for the odd number n has at most 3n—3 periodic
solutions arising from the periodic annulus around the center (0,0) of system
(3.2)|e=0, and for the case n = 3, this upper bound can be reached.

Proof. The first result follows directly from Lemma 3.6. Now we prove the
second one.
Consider the following perturbed system

3
b=y +ady+ayd e Z Z Cimay™,
k=114+m=1+3k

3
j=a+atP+yt ey > dimaly”
k=11l4+m=1+43k

From (3.3), (3.11) and (3.14), we get the averaged function

(3.14)

) L (1w 1—w
F(z) =2 Gw) = 643 W (1+w)

1—w)7/3
T 63 -5;3 . (1)_|_ w)23/3 g(w) (3.15)

5 9(w)
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where
g(w) = _I;TT8 : (%WM + [iw' + fow'? + faw' + faw'® + f50? + fow®
ST 4 fo o Jo o fuot + fi® o o+ L)
with

f1 =80dy1 + 400 c190,
f2 =96 d73 + 1240 C100 + 96 cg2 + 56 d91 —192 d61 — 384 C70,
fs =41ds7 + 175ds55 — 55 d73 — 120 daos + 7 ca6 + 65 cq + 295 cgo + 47 d1g

—24 C16 — 120 Cro — 408 d7 — 432 Cq4 — 25 c10 + 144 d13 — 24 C34 — 312 d43
— 144 Coo — 432 C40 + 432 d31 — 600 d61 + 1825 C100
+ 335 dgl — 3000 C70 + C2g,

f4 = 266 Cea + 70 C46 — 170 d55 — 1584 d61 — 9648 c7o + 410 d37 + 314 d73

+ 10 cas — 250 19 + 1810 ¢100 + 470 d1g — 4320 ¢4 — 240 c16 — 1440 co9
— 240 C34 — 2016 C40 — 1200 C59 — 26 Cg2 — 4080 d7 — 816 d43 + 2016 d31
— 1200 do5 + 1440 dy3 — 130 dy1,

f5 = —400 d73 + 320 d91 — 2880 d61 — 800 c100 + 1424 d19 — 4608 C22

Jo

+ 400 ds5 — 400 d37 — 17088 d7 + 4608 d13 — 4608 c49 + 400 cg2
— 1728 c34 — 2880 c50 — 880 ¢c19 — 18432 ¢4 — 1344 c16 + 112 cog
+ 400 C46 — 400 Ce4 — 20160 Cro — 2880 d25 + 4608 d31 — 1728 d43,

= —5520 c16 + 534 Ceqa — 870 Cq6 — 870 Cg2 — 7776 Coo — 30288 c70 + 790 C28

— 41760 Cq — 4560 d25 — 2290 C100 — 3216 C34 — 36240 d7 — 4560 C52
— 7200 Cq40 — 1270 d19 + 7776 d13 — 630 d55 + 390 d37 + 7200 d31
— 2640 d43 4+ 390d73 — 734 dg1 — 3984 dg1 — 550 ¢,

f7 = —8928 Coo — 8784 C16 — 5520 d25 — 882 d37 — 54432 Cq4 — 690 d73

— 4450 c100 + 8352 d3; — 3408 c34 — 45648 d7 — 1826 cog + 8928 d13
+ 3410 ¢19 + 450 ds5 — 4560 dg1 — 1342 dyg9 — 34320 c79 — 2832 dy3
4+ 210cg2 + 130 dg1 + 786 c46 — 930 cga — 5520 c50 — 8352 4.

Evidently, the function g(w) is the symmetrical polynomial of degree 14,

and the ordered list of coefficients of g(w) changes its sign at most 12 times, so
g(w) has at most 6 simple zeros in w € (0, 1), which means that the averaged
function F(z) in (3.15) also has at most six zeros locating at (0, {/1/6). In
the following, we construct a family of systems whose first averaged functions
have exactly six simple zeros in this interval.

T

For example, consider a family of systems

= —y+ x3y + :Eys +e 040954 + 031m3y + 022x2y2 + clgxy3

— = C100 — £ €82

L 2 1 1982312879
) ) 70778880

)967 + c612%Y + c522°y? + cazrty®
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14377520035 4 ,
382205952
4 7 311748125 , o

7.3 5 5 _ 9
FC73x'Y” + Cs5x7Y" + c37Y 51933664 T7Y" + croxy” |,

g = x4+ 22y + yt + e | daox® + cror®y + dogr?y?

5 €100 F 5682 T H1o836610
+eaoxy® + doay* + drox” + dsaa®y?

127718550845 , & . - )
127718550845 ; - ]
380005052 L YT T sy — caxty” + dagry

+(14 7 5736812501> 6

1
+d1007? + (—5 c100 + 8) 2%y + dgo18y?

3627079267
<21233664 —Gcao0 + 082) x"y® + deax®y*
+dar'y® + doszy® + do10y10] .

where the coefficients c¢;; and d;; are any real constants.
In the polar coordinates, system (3.16) takes the form

Pyt + a5y’ + cory” + c10070 + co12%y + cgaa®y?

220

(3.16)

i =r"sinf + E{ {040 cos® 0 + (ca1 + dao) cos” 0sin 0 + (c22 + cao) cos® Osin® 0

+(c13 + d22) cos? 0sin® 0 + ca9 cos O sin? 9} r’

L2, s 1082312879Y o
51007 5 7077880

+(ce1 + d70) cos’ Osin @ + cso cos® Osin® 0 + (caz + dsz2) cos® Osin® 0

142096070880
382205952

+(cor + dig) cos O sin” 9} o+ {(Cloo + d100) cos'' 0 + co1 cos'® Osin O

+ (682 — 5c100 + é) cos® Osin? 6 + (c73 + ds2) cos® 0sin® 0

3627079267
(‘7 21233664
311748125
121233664

+(C19 + dgs) COS2 0 Sin9 0 + do1o Sin11 9:| 7"10},

+(c37 + dag) cos™ Osin” 0 — cos® 0sin® 0

0=1+ a{ {d4o cos® ) + (d22 — ¢31) cos® sin? 0 + (doa — c13) cosOsin* 0 |r®

16 8 26265767 7 8
—&{( 5 c100 + 5082—1— 26542080) cos' 0sin6 + d7g cos” 0

cos* fsin* 0 + (c25 + d3a) cos® fsin® 9 — C592 cos? fsin® 0

— 6¢c100 + 032) cos’ Osin 6 + (55 + dea) cos® 9sin® 0
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+(ds2 — c61) cos® #sin? 0
127718550845
382205952

(g, 4 MBTTE20035Y g s
52T 7382205952

— 052> cos® Osin® 0 + (d3a — ca3) cos* fsin* 0

+(d16 — 025) COS2 0 Sin6 60 — cor SiIl8 9:| 7“6

+ {dwo cos't o + < — 6¢c100 + %) cos'? 9 sin g + (dg2 — co1) cos’ fsin? 0

2 2
( _ 3627079267 _ 60100) cos® 0sin® 0 + (des — c73) cos® Osin” 0

21233664
+(das — ¢55) cos® 0sin® 6 + (dzs — c37) cos® Osin® 6
311748125 o, . o 10,0
S1233662 < Osin’ 6 + (do1o — c19) cosfsin > O|r” . (3.17)

Using the first order averaging theory, we obtain the averaged function of
system (3.17)

1— w2)4/3
Fo) = U220 G
_ (1—w)/x 14 15 647090 1o 71885
= T8 6488 (L w)s @ T10w TV Tl
14576899 1o 345801785 o 2603509747 5 1602359665 -
- w o+ W — W+
648 5184 20736 10368
| 2603509747 | 345801785 5 14576899 .
20736 5184 648
71885 5 64700
- 10w+ 1
+ 6 ¢ a1 v + 10w + )
(1—-w)x
=— : > \/370
1728 - 64303 - (1 + w)23/3 ot G+

-
I

3
2
<w—> (w—=6)(w—4)(w—3)(w—2),

which has just six simple zeros wy = 3/4,ws =2/3,w3 =1/2,wy =1/3, w5 =
1/4 and wg = 1/6 in (0,1). Then we can get six corresponding closed orbits,
that is
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0 713 1 P 51/3 1
Tl( ’961/3) B (3cosf + 22)1/37 r2< 7541/3) B (3cosf + 32)1/3”

SV DI S P i DI S
\7"2) 7 Beoso+5)173 73 ~ (3cosd + 12)1/37

51/3 1 351/3 1
r5( 0, ) = 7 Tel 0, = 111 :
321/3 (3cosf + F)1/3 6 (3cosf + 5)1/3

Using Lemma 2.1, system (3.17) has exactly six periodic solutions bifurcating
from the above six closed orbits, respectively. This completes the proof of
Corollary 3.7. O

By virtue of Corollary 3.7 and the averaging theory, we obtain

Lemma 3.8. For the odd number n > 3 and any sufficiently small |g| # 0,
system (1.2) has at most 3n — 3 limit cycles bifurcating from the periodic
annulus around the center (0,0) of the unperturbed system (1.2)|c=o, and
this upper bound for the case n = 3 is sharp.

3.3. Proof of Theorem 1.1 for the Even Case

We first simplify the function G(p) defined by (3.5), then give the estimate
on the number of limit cycles bifurcating from the period annulus around the
center of the unperturbed system (1.2)|.—o for the even number n.

Similar to (3.10), we have

G(p) =DBo,oI_(2n43)(p) + B11p I_(2n42)(p) + (Ba2,0 + B2,2p°) - I_(2n41)(p)
4+ (Bant2,0 + Bany2.20” + -+ Banyoant2p" ) - I_1(p)
+(Bant3,1p + Bany3,3p° + -+ Bangsanisp” ) - Io(p)
+(Ban+4,0 + an+4,2p2 4+ B2n+4,2n+4p2n+4)[1 (p)
+(Ban+s,1p + B2n+5,3p3 4+ B2n+5,2n+5p2n+5)12 (p)

3n4t2
2
4+ 4 Z BSn+3,2i+1p21+1In(p)
i=0
n+1 n—t+1
0
= Z I_(2¢41)(p) Z Bon—oty2,2ip~"
t=0 i=0
n+1 n—t+1 ]
+> I-@(p) D Bon-aepszisip”
t=0 i=0
n ntt42 ‘
+212t+1(p) Z 32n-|-215+4,21'922
t=0 i=0
5 ntt+1 _
+ Z Iz (p) Z B2n+2t+3,2¢+1p27‘+1
=1 i=0
n2 ) 2642

_ ) B 2
T Z 2n+4t+4,2iP
= (P* — 1)2t+2 i=0
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w[s

n—+2t

P Z B 2641
1 2 +4t+1 2i+1P
1 (p2 1)2t =0 " '

t=
+(D2n+3,1p + Danys, 3p° + -+ Dopy32antap

+

I

2n+3)

where Daypy39i41,% = 1,2,--- ,n are defined as before. Making the same

transformation p = (1 + w?)/(1 — w?) for w € (0,1), the above formula
becomes

G(w) = C(p)] s

p_ LU

1+ w 1+ w
— | Dy, % ) 1Dy, il
[ 2+3,1(1w )+ 2+33(1 w2>

1 + wg 2n+3
+ -4+ Dopy3onygs (12)
— W

. i (1 — w?)tt+! . n+2t+2 Bét)+4t+4 i ( 1+ w? )ﬂ
at+1 n 20\ _ 2
— (2w) —~ 1—w
z o n+2t
+i (1+w )-(1 —w2)4t 2 ) B(t) (1—|—w2)2i+1
(2w)4t—1 2ntdt+1,29+10 1 w?
t=1 i=0

n—2
T2

— 1 2n 4t 2.
(Qw)?n 1 (1_w2 2n+3 = 0

fasian 2044t —2m-+4 2
n —am m
Z Béff+4t+4,2m (1 - WQ) : (1 - wQ) ]
m=0
= onoar | e n44t—2
n— t n —2m
+ Z (QW) ’ Z B§72+4t+1,2m+1(1 - WQ)
t=1 m=0
(1 4+ 4 ho(w?)
n+1
+(20) " [ > Danrsamin (1= (14 w2>2m+1] }
m=0
n—2
_ 1 { f (2w)2n—4t—4
(2(4})2”73 . (1 _ w2)2n+3 —
fpiag 2n44t—2m—+4 2
Z 2n+4t+4 om (1 —w?) S(1+w?) ]

n—2

2
+ (2w)2n74t72 .
t=1

n+2t
(t) 2\ 2n+4t—2m
Z B tati12mi1 (1 —w?)

m=0
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() 4 IR

n+1
+(2w) mes [ Z Daptsom+1(1 — w2)2n_2m+2 1+ w2)2m+1] }

m=0
1
(2&))2”73 . (]_ _ w2)2n+3

U4n(w2) + (20‘))2n_3 ’ U2n+3(‘*}2)‘| ’ (3'18)

where
Usn(w?)
25 nt2t42
= Z (2“})%7“74 ’ { Z B£2+4t+4,2m(1 - W2)2n+4t72m+4 : (1 + w2)2m}
t=0 m=0
22 o ato n42t s
n—dt— n+4t—2m
+ Z (2w) . Z B§2+4t+1,2m+1(1 —w?) +
= m=0 (3.19)

(146%™ | + LRI,

Uzn+3(w?)
n+1
= Z D2n+3,2m+1(1 — w2)2n72m+2 . (1 + w2)2m+1.

m=0

Hence, for the even number n, we have the following results.

Lemma 3.9. 1. For n =2, the function G(w) can be expressed as

- 1—-w
Gw)=—F——"7

(w) = — AT0) g(w),
where g(w) is a symmetrical polynomial of degree 8, having at most 4
simple zeros in w € (0,1). Consequently, the function G(w) has at most
4 simple zeros in w € (0,1). Moreover, this upper bound is sharp.

2. For the even number n > 4, the function G(w) can be expressed as

1—w

Gw) = (20)27=3 - (1 + w)2n+3 -g(w),

where g(w) is a symmetrical polynomial of degree 6n — 4, and the or-
dered list of coefficients of g(w) changes its sign at most 6n — 6 times.

Consequently, the function G(w) has at most 3n — 3 simple zeros in
we (0,1).

Proof. The proof of the second result is similar to Lemma 3.6. Now we begin
to prove the first one.
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Consider the following quartic system

2
d=—y+aly+tay’+ed Y amaly™,
k=114+m=1+3k

2
y:x+x2y2+y4+az Z dpmaty™.
k=11+m=1+3k

The formula (3.18) associated to the above system takes the form

Glw) = sy T
where
gw) = 712 (fow® + frw” + fow® + fsw® + faw* + faw® + fow® + frw + fo)
with

fo =16 c7o + 8dg1,

f1=18coq + c16 + 6 oo + c34 + 18 ¢cyg + 550 + 93 c79 + 17 do7 — 6 dy3
+ 5dos — 18d31 + 13dys + 9den,

fo =144 co4 + 816 + 48 cao + 8 ¢34 + 48 c40 + 40 52 + 200 c79 + 136 dp7
— 48 dy13 + 40 dos — 48 d3q + 8 dyz + 40 dg1,

f3 =462 coq + 39 c16 + 90 coo + 55 ¢34 + T8 ¢a9 + 35 ¢52 + 347 crp + 423 do7
—90dy3 + 35das — 78d31 + 43 dys3 + 31 dg1,

fa=10672coq + 144 c16 + 96 coa + 16 ¢34 + 96 €40 + 80 ¢52 + 368 ¢70 + 528 do7
—96d13 +80das — 96 d31 + 16 dys3 + 64 dg1.

Since g(w) is a symmetrical polynomial of degree 8, it has at most 4 simple

zeros in w € (0,1). Hence G(w) also has four as the upper bound of the

number of its zeros in w € (0, 1). To show this upper bound can be reached,
we consider the following quartic system

i = —y+ 2%y + 2y® + ¢ |caor + c12%y + c202y? + crzzy®

13483
7680

—cro — do7) y* + crox”

114853
7680

29399
+ (— + 3c70 + d07) zy’ + 007971 )

+ce120%y + e527°y? + cazzty® + <— + 5C7O> 2Py + cosa?y®

7680

g =2+ 2% +y' + e |daor + a0y + doz®y? + cooxy® + doay® + droz”

1 8633
+(§ — 2¢70)2% + dsax®y? — (5670 + 3840) aty® + dsaxdy?
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—cso?y® + digry® + do7y7] ;

where the coefficients ¢;; and d;; are any real constants. The corresponding
function G(w) can be expressed as

_ (1 - w) o 017 . 10747 4 15211 . 21677 ,
Olw) = =279 _ a7 B
@) = oy (“’ 60 T 20 Y 60 YT e ©
15211 1074 1
5 , 07 7w2 o7 1)

w

N
c72w11?; (w )w—Q)(w_;)(w_?))(w_i)
(w— 4)(w—5)<w_5)

which has exactly four simple zeros w1 = 1/2,ws = 1/3,ws = 1/4,wq = 1/5.
So we complete the proof of the first result. O

Based on Lemma 3.9, we have Corollary 3.10.

Corollary 3.10. For any sufficiently small || # 0, the following properties
hold.

1. For n = 2, system (3.2) has at most 4 periodic solutions bifurcating
from the periodic annulus around the center (0,0) of system (3.2)|.=o,
and this upper bound is sharp.

2. For the even number n > 4, system (3.2) has at most 3n — 3 periodic
solutions bifurcating from the periodic annulus around the center (0,0)
of system (3.2)]c=o.

Equivalently, we have Lemma 3.11.

Lemma 3.11. For any sufficiently small |e| # 0, the following statements are
true.

1. For n =2, system (1.2) has at most 4 limit cycles bifurcating from the
periodic annulus around the center (0,0) of system (1.2)|.—o, and this
upper bound is sharp.

2. For the even number n > 4, system (1.2) has at most 3n— 3 limit cycles
bifurcating from the periodic annulus around the center (0,0) of system

(1'2)|5:O-

Proof of Theorem 1.1. Theorem 1.1 follows directly from Lemmas 3.8 and
3.11. O

4. Discussions

In this paper, we obtained a bound for the maximum number of limit cycles
that bifurcate from a non-Hamiltonian quartic reversible center by adding
perturbed terms which are the sum of homogeneous polynomials of degree
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3k + 1 for 1 < k < n. Our initial idea is to consider general degree n per-
turbations of the center, but the main difficulty exists in the technical and
cumbersome computations of the averaged function. We leave this as a future
research problem.

By observing the proofs of Lemma 3.6, Corollary 3.7, and Lemma 3.9,
we have an intuition that the difference between the obtained number of
limit cycles in cases n = 2 and n > 3 lies in the relation of coefficients
of the resulting polynomial g(w), see equation (3.13). In addition, in the
proof of Corollary 3.7 for n = 3, we noticed a fact that the variables in the
coefficients of the function g(w) (see (3.15)) are quite enough. So we have
a conjecture that for any n > 4, the bound 3n — 3 is also sharp. However,
we cannot prove this conjecture. Maybe the problem can be solved with the
aid of some beautiful mathematical techniques or most advanced computing
technologies. How to explain the upper bound is sharp remains a question
for further investigation.
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