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Abstract. In this paper, we establish global higher integrability of the
gradient of the solution of the quasilinear elliptic equation Ajsu =

div (%F) in R™, where A4 is the so called A-Laplace operator.
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1. Introduction

We are interested in higher integrability of the gradient of the solution of the
following problem:

u € WHARM),
(P) { Aqu = div (O(F)) in R™

where n > 2, F = (Fy,...,F,) € LAR"), Au = div(0(Vu)), O(X) =
a(|X])
IX]

X, and A(t) = fot a(s)ds, with a a function in C*((0,00)) N C?([0, 00)) satis-
fying a(0) = 0, and the condition
!
a < ta'(t)
a(t)
Without loss of generality, we shall assume that ag < 1 < a;.

We call a solution of problem (P) any function « € Wh4(R™) that
satisfies

<a; Yt>0, agp,a; positive constants. (1.1)

/ @(Vu).Vgpd:E:/ O(F).Vedr Ve € D(R™)
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We recall the definition of the Orlicz space LA (R™) and its norm (see
[10])

LAR") = {u € LY(R") : A(lu(x)])dz < o0 } ,

]R n

[T inf{k >0 /WA(@)M < 1}

The dual space of LA(R") is the Orlicz space LA(R”), where A(t) =
fot a~!(s)ds and a~! is the inverse function of a.

The Orlicz-Sobolev space W14 (R™) and its norm are given by
WHAR") = {ue LAR") = [Vul € LAR™) },  lullia = [ulla +[[Vul]a.

Both LA(R™) and WH4(R") are reflexive Banach spaces.
The following useful inequalities can be easily deduced from (1.1) (see

ta(t)
< A(t) <ta(t) V>0 1.2
O <A < talt) ez o, (12)
sa(t) < sa(s) +ta(t) Vs, t >0, (1.3)
min (s, s")a(t) < a(st) < max(s*,s™)a(t) Vs,t >0, (1.4)
A
min (st sltar) . +(21 < A(st) < (1 + ay) max(s' T, s19) A(t) Vs, t>0.
(1.5)
Using (1.5) and the convexity of A, we obtain

A(s+t)=A (2. (s ;r t)) <(1+a)2"" A (S;Ft)

< (1+a1)2"(A(s) + A(t)) Vs, t>0 (1.6)

We also recall the following monotonicity inequality (see [3])

a((IX]? +Y]%)1/?)
(IX2 +1Y[?)1/2
Y(X,Y) € R*™\{0} (1.7)

where C(A,n) is a positive constant depending only on A and n.
There is a wide range of functions a(t) satisfying (1.1). In particular,
we observe that we have ag = a; = p — 1 if and only if a(t) = ct* for some

positive constant c. In this case, we have A(t) = % and Ay = cA,, where

(@(X) - e(y)) (X —Y) = C(An)|X - Y]?

A, is the p—Laplace operator. We refer to [4] for more examples of these
functions.

Definition 1.1. We say that a function A : [0,00) — [0, 00) is an N —function
if A7 € C1((0,00)) N CY([0,00)), A’(0) = 0, and A’ satisfies (1.1).

Here is the main result of this paper.
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Theorem 1.1. Let B : [0,00) — [0,00) be a function such that B o A™! is
an N—function and let u € WHA(R™) be a solution of problem (P). If F €
LB(R™), then we have |Vu| € LB(R") with

/ B(|Vu|)dz < c/ B(|F|)de
where C' is a positive constant depending only on n, A, and B.

Remark 1.1. We would like to mention that this regularity is well known for
the Laplace equation (see [8]). For the p-Laplace equation, we refer to [8] and
to [5] for systems.

Ezample 1.1. Assume that ® is an N—function with ® = ¢ and let B =
® o A. Then, B is an N—function as a compose of two N —functions, namely
® and A. Moreover, Bo A~ = ® is also an N —function. Hence, the following
functions satisfy the assumption of Theorem 1.1:

Corollary 1.1. Under the assumption of Theorem 1.1, if moreover, the inte-
—1 —1

gral floo B,L+(1t) dt is finite, then we have u € C,,(R™), where u(t) = too B,L+(1S)ds
¢ s

and C,(R™) is the space of continuous functions with p as a modulus of con-
tinuity.

Proof. From Theorem 1.1, we know that u € W15(R"). Since the integral
oo B~ . . .
IA B q¢ is finite, the result follows from the embedding W3 (R") C

¢
C,(R™) (see [1, Theorem 8.40]). O

Remark 1.2. Since (BoA™!')’ satisfies (1.1), using (1.5) with ¢ = 1 and s = 1,
we see that there exist two positive constants p > 1 and K such that

0<BoA! C

K
>§ for all ¢ > 1.

tH
Therefore, the integral floc BoA™! (%) dt is finite. This property will be used
in the proof of Theorem 1.1 in Sect. 3.

In the sequel, we will denote by u a solution of problem (P). In Sect. 2,
we recall some well known results about A—harmonic functions and establish
a few Lemmas to pave the way for the proof of Theorem 1.1 which will be
given in Sect. 3.
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2. Some Auxiliary Lemmas

Let zp € R™ and R > 0. For each open ball Br(zg) in R™ of center g and
radius R, let v be the unique solution of the following problem:

v € WHA(Bg(wo)),
(Py) A v =0 in Bgr(zy),
v=u in 0Bg(xo)
First, we recall some properties of the solution of problem (Fy).

Lemma 2.1.

/ a(|[Vv])|Vu| < 2“1“/ a(|Vu|)|Vu|dz
BR(ZE())

Br(zo)
Proof. See [3], Proof of Lemma 3.1. O
Remark 2.1. Using (1.2) and Lemma 2.1, we obtain

/ A(|Vol|)dz §/ a(|Vv])|Vu|dz
BR(IQ)

BR(ZEQ)

< gmt2 a(|V|)|Vu|dz
Br(zo)

<@ +a1)2“1+2/ A(Vu)dz
Br(zo0)
Lemma 2.2. There exists a positive constant C, = C1(n,ay) such that

sup A(Veh < Th [ A(vel)ds
Brya(zo) R Br(zo)

Proof. See [9], Lemma 5.1.
For each function f : R™ — R (R"), let (f)zy,r = m fBr(zO) fdxz and

(f)r=(f)o,- Then we have the following property of the
function v. 0

Lemma 2.3. There exist two positive constants o = a(n,a1) < 1 and Cy =
Cy(n,ay) such that we have for any r € (0, R)

J o a9 Vombde < () A(T0 = (To)a s
Br(mo) BR(

o)

Proof. See [9], Lemma 5.1. O
Remark 2.2. Using (1.6), Remark 2.1, and Jensen’s inequality, we obtain

[ Ao (Vonabds < f  AQTU] (Vo
Br(zo) Br(xo)

< (1 +a)2 (f . )A(|W|>dx+A<<w>mmR|>>

= (1+a1)2" (f A(lwdx”(f |WIdx>>
Br(zo) Br(zo)
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<(1+a)2™ ]/ A(|Vol|)dz —|—/ A(|Vol|)dz
Br(zo) Br(zo)

_a +a1)2‘“+1/ A(|Vo|)de

Br(zo)

<(1+ a1)222“1+3/ A(|Vul|)dx (2.1)
Br(zo)

Combining (2.1) and Lemma 2.3, we obtain

r

f Ao (o) o) < Co(14a1)2% 5 ( )“/ A(|Vuf)dz
Br(z0) R Br(zo)

The next lemma is the key tool in the proof of Theorem 1.1.

Lemma 2.4. There exist two positive constants v = v(n,ap,a1) and m =
m(a,n,ap,a1) such that for each ¢ € (0,1), we have for any o € R, R >0
and r € (0, R):

gl R\™
][BT(IO)|A(|VuI)—(A(|Vu|))r|d:c < satirey (r> ][BR(IO)A(FDdz

1 T\«
+y (5a0+1+ r )][ A(|Vu|)dz
5(11(1+a1) (R) Br(zo) (| |)

The proof of Lemma 2.4 requires several lemmas. O

Lemma 2.5. Let G : R*"\{0} — R defined by

_ [ all6:) _
Ge.) = [ “glae o=+ a-ox.

Then there exists two positive constants cq, n depending only on n and
a1, and Cq, , depending only on n and ay such that:

. ale +1d) a(lel+ 1<
e+ ] €1+ ]

The proof of Lemma 2.5 is based on the following lemma proved in [2]
for n = 2 and whose proof extends easily to n > 3.

V(¢,¢) € R*™\{0}, < G(£,¢) € Cagm

Lemma 2.6. Letn >2, p>1 and let F, : R?"\{0} — R defined by

1
Fy(6,0) = /O b€+ (1 — )Pt

Then, there exists two positive constants c(p,n) < C(p,n) depending only on
p and n such that:

V(EC) ERPN0}, o) (€2 +1¢1?) T < Fp(6,Q) < Com) (€2 +1¢) %
Proof of Lemma 2.5. For (£,¢) € R?"\{0}, we set

¢ ¢
Xg=——>— Xi=——"
TR+ P T (R [P
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It follows that
0 = (€ + 1)V (0 X0+ (1 =) X1),  [0:] = (€7 +1¢*) /[t X0+ (1 =) Xa .
Then, we have by inequality (1.4)

a(|6:]) < max ([tXo + (1 — ) X1]|%, [tXo + (1 — ) X1 )a((|€]* + |¢[*)1/?)
min ([tXo + (1 — £)X1|%, [tXo + (1 — ) X1]7)a((|€]? + |¢[*)Y?) < a(]6:])
Note that since [t X+ (1 —¢)X1| <t Xo|+ (1 —0)| X <t+(1—-t) =1

and 0 < ag < ay, we have [tXo+ (1 — ) X1|" < [tXo + (1 — t)X;]%. Hence
we get

|tXo + (1= ) X1 a((|€7 + [¢1)'?) < a(|6y])
< [tXo + (1= 1) Xa|a((|€* + [¢[)"?)
which leads to

a 2 2\1/2 a 2 2\1/2
(P 5 1P)') _ e oy < ) 2L 1)

Fa1+1(X0aX1) (‘€|2 + |<|2)1/2 (‘§|2 + |<|2)1/2

Now, if we apply Lemma 2.6 with p = ag + 1 and p = a1 + 1, we get
since | Xo|? + | X1]? =1

ag—1
Fa0+1(X0,X1) S C(ao + 1,n)(|X0\2 + |X1|2) 2 = C(ao + 1,”)

aq—1

Fay41(Xo0, X1) 2 cay1.0 (| Xol® +1X1%) 2 = c(ar +1,n)

Finally, we obtain

a((l€* +1¢1*)'?) a((lg]* +1¢1%)'?)
(1617 + 1¢2)*/2 (17 + 1¢2)1/2

Since the two norms |¢| + |¢] and (|€> + |¢|*>)'/? are equivalent, the
lemma follows using (1.4) O

< G(€7 C) < C(ao + 17”)

c(a; +1,n)

Lemma 2.7. For any X,Y € R", we have:
A(X]) =z A(IY]) + (©(Y), X —Y)

Proof. Let X,Y € R™. First, we have

1

AQXD = AQYD = [ GIAGX + (0= oy e
- L B <X+ (1 -V, X -V >
= /O A(tX + (1 —0)Y)). [tX + (1 —t)Y| dat
o <tX+(1-HY, X -V >
7/0 a(|tX + (1 - 1)Y]). X+ (1-1)Y] a
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1
- / (O(X + (1 — H)Y), X — V) dt
0
Next, using (1.7), this leads to

A(X]) - A(Y]) = / LO(X + (1= 1Y), (X — V) dr

1
> [ ew)Hx - )
0
=(0(Y),X -Y)
which achieves the proof. O

Lemma 2.8. For any § € (0,1), X, Y € R™, we have:

Cs
| < dai(l+ar)

where C3 = (14 a1)Cqyn and Cy = (1 +a1)2%Cs

[A(X]) = A(YD A(IX = Y]) + Cad™ (A X)) + A(IY])

Proof. Let § € (0,1), X,Y € R™. First, we have
La
[A(X]) = A(IY])] = /O &[A(ItX + (1 - t)Y)]dt‘
1
<tX+(1-Y,X-Y >
= A(tX + (1 =t)Y)]). ! dt
[ tex -+ - oy S DTS \
1
<tX+(1-0)Y,X-Y >
- tX + (1 —1)Y]). dt
[ atex v -y LY \
La(tX + (1 —t)Y)
[tX + (1 —-1t)Y|

dt

IN

X =YX+ D).

Next, we get by using Lemma 2.5

JA(X]) = A(Y])| € CagmlX = Y].(IX] + 'YUW

= Capn| X = Y].a(|X] + [Y]) (2.2)
We observe that we have by (1.2)—(1.4), for s,t > 0 since § € (0,1)

S

s s s
= 0N < —. < a|l—-.
sa(t) = 50" a(t) < w-.a(0t) < 5 a( = >+6ta(5t)

s 1 sa(s) 41
< — — ao — "\ ao
S G e a(s) + 6to*a(t) Jer(iran) + 0% a(t)

1+a o
< rrran Als) + (L4 o tA®) (2.3)

Using (2.2) and (2.3), with s = | X — Y| and ¢t = | X| + |Y|, we get

1 ap,n
AQXD) — AQYD] < 2S00 41 ) 4 (14 )G i

A(|X]+[YT) (2.4)
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Using (1.6), we get from (2.4)

O a a
AIXD = AQYD] £ 5o ANX = YD) + (1 +01)%27 Cop 3

(A(X]) +A(IYT)
Hence, the lemma follows. O
Lemma 2.9. There exist two positive constants Cs = % and

Co = (14 a1)2 (1+ (14 a1)2772) (Cs + 1) such that we have for
eachn € (0,1) , zo € R", R>0 andr € (0, R):

R\" Cs
A(Vu—=Voh)de < | =) oramen A(|F|)d
fBr(g;O) (|VU VUD = (’r) (771+¢11(1+a1) ][BR(wo) (| |) T

+Cgn™ ][ A(\Vu|)dx)
Br(zo)

Proof. We observe that by translation, it is enough to prove the lemma for
xo = 0. Using w = (u — v)xp, as a test function for problems (P) and (FP)
and subtracting the two equations and using (2.3), we get for n € (0, 1):

/B (@(VU) - @(Vv))(Vu — Vo)dz

=/ WD b Guda </ a(|F)).|Vwlde
Br ‘F‘ Br
1
= %/ A(F)dz + (1+a)n™* [ A(|Vw|)dz (2.5)
n 1 1 Br Ba
Using (2.5) and (1.7), we get

C(A,n) a(|Vu| + |Vo|) 5 14+ ay /
- . d A(F|)
], R e Vel < e [ AGFba

+(1+ 611)77“0+1 A(|Vw|)dz
Br

or

o[Vl + Vo) o
——  |Vwl|*dz
/BR ELZ B

< T/ A(|F|)dx 4 Cynott BRA(|Vw\)dm (2.6)
By (1.2), we can write

[ aqvulas < [ [Vula(valds

. B,
:/ \Vw\a(|Vw|)dx+/ [Vwla(|Vw|)dz (2.7)
Eq- 2,

where Ey, = B, N { (|[Vu| + [Vv|)a(|Vw|) < |Vwl|a(|Vu| + |Vv|) } and
By = B 0 (IVu| + [Vo])a(|Vw]) > [Vwla(|Vul + [Vo]) }.
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From the definition of E ,, we see that
\Y \Y
/ IVla(|Vol)de < / olVul + V) |24, (2.8)
B, By, [Vul+ [Vl
Using the monotonicity of a, the definition of Fs ,, and Young’s inequality,

we get

/ Vowla(|Vel)de < / a(|Vu| + |Vo|).| Vel dz
EQ,T EQ,T
a(|Vul + Vo) o ) ? )
< _ . 2
< /E2,r ( Va7 Vol [Vw]| ((|Vu] + |Vo|)a(|]Vu| + |[Vv])) 2 da

<= = Vv + 2L Vu| + |V Vul + |V
; /w |vi7uu‘ Vol [Vw|*dx 1 (IVu| + |Vo|)a(|Vu| + |Vo|)dz

Es
1 a(|Vul + |Vul) 5 (1+a1)77/
<= | S e VwPde + [ A q
/E [Vl + Vol [Vwlidz + — (IVul + [Vo|)dz

n -
(2.9)
Combing (2.6), (2.7), (2.8), and (2.9), and using (1.6) and Remark 2.1,

we arrive at

/ A(ul)ds

1/ a(|§7u\+|€v|) 9 (1—|—a,1)77/
g, |Vu|+ |Vl | | 4 Br ([Vul + Vo)

Cs o
= 77(1+)+1/BR A(|F|)dz + Csn /BR A(|Vw|)dz

1
+M/ A(|Vu| + |Vo|)d
4 Br

C u 14+a1)n
< W%HL A(|F|)d$ + <05'f] o+ (41)> /l; A(|VU| + |Vv|)dx
R R

< (T4a)2* <C5n“° + (Hfl)") </BR A(|Vu|)dx+/

Br
Cs
+na1(1+a1)+1 /BR A(|F[)dz

< (14a1)2" <C5 * HZ“) 1+ 1+ a1)2“1+2)n“°/ A(|Vul)dz

Br
Cs
+na1(1+a1)+1 /BR A(|F|)dz

Hence, the lemma follows.

Ui

A(|Vv|)d:r)

O

Proof of Lemma 2.4. Let 6 € (0,1), R > 0 and r € (0, R). First, we have by
Lemma 2.8 used for X = Vu(z) and Y = Vu(y)
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f A(IVa]) — (A(Va])), )dz

r

-/,

< / A(Vu()]) — A(Vu(y)))ldzdy
B, xB,.

C
< sty AVulo) =~ Vu()hdsdy

dx

fB (A(Vu@)]) = AIVu(y)))dy

+Cy0%0 ! <fB,~><Br A(|Vu(z)|)dzedy + f A(Vu(y))dxdy)

— CB
S - / L AT~ V() hasdy

B, X B,

+2C,6% ! / A(|Vu(z)|)dz
B,

Cs

< sty | AQVal@) = (Tu),]+[Va(y) - (Vu),)dody
B, xB,.

+2C’45a°+1/ A(|Vul|)dx
B
This leads by (1.6) to

/B\ [A([Vul) = (A(Vul))|da

1 2"
< Gl m)a A(IVu(z) - (Vu),|)dady
§ar(1l+ar) B, x B,

+f L AT - <Vu>r|>dmdy)

+2c45“0+1f A(Vul)dz

T

_ 203(1 + a1)2a1

ar(1+ax) / A(|Vu — (Vu),|)dz + 2045%“/ A(|Vul)dz
)a1 1 B, .

(2.10)

Using (1.6) again, we get
/ AV — (Va),|)dz
B,

< / A(|Vu — Vol + Vv — (Vo) | + [(Vu), — (Vv),|)dz
B,

< (1 +a1)2™ <]/B A(|Vu — Vo|)de

r

o AGTe— (Vo) |+ (V) - <W>r>dx>

B,
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< (1—|—a1)2a1]/ A(|Vu — Vo|)dx

T

+(1 + ap)?2%» (/B A(Vo — (Vv),|)dz +/ A(|(Vu), — (Vv)r|)dx>

- B,
(2.11)
Using Jensen’s inequality, we derive
f A((Va)s — (Vo) |)dz = A <H (Vi — Vo)dao )
B, B
< f A(|Vu — Vol)dz (2.12)
B
From (2.11) and (2.12), we obtain
/ A(Vu — (Vu),|)dz
B,
< (1+a1)2‘“(1+(1+a1)2‘“)/ A(|Vu — Vo|)dz
+(1 4 ay)?2% ]/ A(|Vv — (Vv),|)dz (2.13)
B

Combining (2.10) and (2.13), we obtain
C
[ 1A0vul) — (A(uD) e < i A(Tu = Velda

+& A(|Vo — (Vo) |)dz + 20,67 A(|Vu|)dx
§a1(1+a1) B, B,
(2.14)

where C7 = 2C3(1 + a1)?2%2%1 (1 + (1 + a1)2%) and Cg = 2C3(1 + ap)323%.
Finally, by taking into account Remark 2.2 and Lemma 2.8, we obtain
from (2.14) for any n € (0,1)

f|A(|Vu)—(A(|vu|))de§(ngial)@y

,
(i | AP+ o | aqwulyaz)
n taa(ltar) Br Br(zo)
CsCo 202443 (7\¢
+m(1 + al) 2 (E) A(|Vu|)dm

Br

+2C,6% ! f A(|Vul)dz
B,

To conclude the proof, we let v = max(C5Cr, C4C7+CoCg(1+ay)?2241+3
20,), m = n 4 efnltaldia)) ,nq choose 5 such that n = (%)Mrn or

ao
a+n

n= (%) “0 . Then we obtain
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[ 1a0vu - agvanlas < s (%) agras

T

1 T\
ap+1 - (=
w1 (0 4 st (5)7) f, A0Tuas

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. First, we recall that for
each function f € L'(R"™), the Hardy-Littlewood maximal function associ-
ated with f is given by

M{fl(eo) =sup { |f@)lde, meR”
r>0 B,.(z0)
and the sharp maximal function associated with f is defined by
Fla)=sw [ |f = (ugslde, 0 € R
BT(IO)

r>0

Proof of Theorem 1.1. We deduce from Lemma 2.4 that we have for every

6€(0,1),7>0, R= —oryranr H=a1(1+a1)+w, and
5 «
o € R™
g
f [A(Vu]) = (A(Vul)))de < <2 A(|F|)dz
By (z0) Brxo)

9§t f A(|Vul)dz

Brwo)
which leads to
v a
(A(IVul)(z0) < 5o MIA(FD (o) + 296" T MIA([Vul)) (o) (3.1)
Now, let B be a function such that BoA~! is an N —function and assume
that F € C§°(R") and |Vu| € LB(R"). Then by using (1.6), we obtain from

(3.1) (see [6]) for 7/ = y(1+¢1)2¢, where ¢; is the equivalent to the constant
ay for the function Bo A~!

/ B(Vl)de < / B (A7(A( V) (@) da

< 2/ §1ta0 /]Rn B (A" M[A(|Vu)](z)) dz

+ | BT MAGF)] @) da (3:2)

By the Hardy-Littlewood maximal theorem (see [7]), we have for some
positive constant Cy depending only upon n, A and B

[ Barmage@)a <y [ iR 03

n

[ Bermagvaie) e <o [ Bivaar @

n
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We deduce then from (3.2), (3.3) and (3.4) that

/
/ B(|vu|)dxg27’0951+ao/ B(\vundm”éf"/ B(IF))dz (3.5)
n RTZ

n

Now, if we choose ¢ such that § € (O, min (1, (27/6’9)7ﬁ)), we get

7' Cy
< .
/n BUVur < o sy /Rn B(|F|)dz (3.6)

This completes the proof when F' € C§°(R") and |Vu| € LZ(R"). Next,
we will establish it when F' € LZ(R"). To do that, we consider a sequence
(Fy)r of vector functions in C§°(R™) that converges to F in LZ(R"™). We
denote by (ug)r the sequence of unique solutions of the following problem

( k){ u, € WHA(RD),

div(©(Vuy)) = div(O(F)))  inR"

Since Fj has compact support in R”, there exists [, > 0 such that
suppt(Fy) C By, and therefore we have for all k

div(©(Vuy)) =0 in R"\B, (3.7)

We will prove that |Vuy| € LB(R"). Since ux, € C1(R™), it is enough to
show that f{‘$|>2lk} B(|Vug(z)|)dx < co. We observe that because of (3.7),
we can apply Lemma 2.3 in Bj;_;, (x) for each x € R"\ By,

Ch
ANV (@) < /B AT (3.8)

As observed in Remark 1.2, there exists two positive constants p and
K such that

0<BoA !(st) < Ks"Bo A (t) Vs, t > 0. (3.9)
Using (3.8) and (3.9), and taking into account Remark 1.2, we get

/ B(|Vuy(2)])dz
(lel>20}

o
K cl/ A(|Vug|)dy / BoA™! (é) dz
Bluj-i, (2) {2120} (lz] = be)m
H 1 1
< Kwnp (Cl/ (IVugl) dy> / """Bo A~ (7> dr
n 20, (r—lg)™

A(|Vug|) dy) rfl;C "1BoA™! (é) dr
n 21k (r—b)"

n—1
_ Kon2™7 (Cl A(| V) dy> T Boat (%) dt < oo

n

< Kwp2™ ! (C1
R

It follows that |Vug| € LB (R™). Therefore, (3.6) is valid for u; and we
have

[ Bvudas < s g [ BGRDa W ao)
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Since F), — F strongly in L?(R"), we deduce from (3.10) that we have
for some positive integer kg
29'Cy
(1 —29'Cyd1ta0) Jpn

B(|Vur|)da < = B(|F))dz VE>ko (3.11)

Rn

Therefore, uy, is uniformly bounded in W15 (R™) and consequently has
a weakly convergent subsequence to some function v in W15(R"). Using
Lemma 2.7 with function B, we get

b(|V
B(|Vuk|)dx2/ B(|Vv|)dx—|—/ < (lv:||>Vv,Vuk—Vv> da
R‘!L n
(3.12)

Passing to the limit in (3.11) and taking into account (3.12) and the

convergence for the weak topology, we infer that

R — B(F)as  (313)
L TUVIVEE S 51 0y Coa1Fa0) Jgn * '

The proof of the theorem will be complete if we prove that v is a solution
of problem (P). To this end, we observe that it is enough to show that ©(Vuy,)
has a weakly convergent subsequence in L4 (R™) to ©(Vwv). The proof is well
known for monotone and continuous operators. We give it here for the sake
of completeness.

Using w = uy, — v as a test function for problem (Py), we get

R™

. O(Vuyg).(Vuy, — Vo)dr = - O(Fy).(Vu, — Vu)dz (3.14)

Now, given that Vuy is uniformly bounded in LAR"), ©(Vuy,) is uni-
formly bounded in L4(R™), and, therefore, has a weakly convergent subse-

quence to some vector function V in L4(R™). Moreover, u; — v weakly in
WLB(R"?) and Fy, — F strongly in LZ(R™). Therefore, in particular, ux — v
weakly in WHA(R") and Fy, — F strongly in L4(R™). Hence, we obtain from
(3.14)

limsup/ \Vuk|a(|Vuk|)dx:/ V.Vudz (3.15)
k—oo R R

At this point, we use (1.7) for X = Vu; and a vector function Y €
LAR™)

/ (O(Vug) —O(Y)).(Vu, — Y)dz > 0.
Letting k — oo and taking into account (3.15), one can check that
/ (V-06()).(Vv-Y)dz > 0.

Now choosing Y = Vv — AJ, where X is a positive number and 9 is an
arbitrary vector function in D(R"™), we obtain

/ (V = 0(Vo — A9)).9da > 0.
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Letting A — 0, we get [, (V —©(Vv)).9dz > 0. Since ¥ is arbitrary in
D(R™), it follows that V' = ©(Vwv) in R™. This achieves the proof. O

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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