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Abstract. In this paper, we study the existence and uniqueness of solu-
tions for nonlinear Hammerstein, Volterra–Hammerstein, and Volterra
equations in the space of functions of bounded second variation in the
sense of Shiba, (Λ2

pBV ([a, b])).

Mathematics Subject Classification. 45G10, 45D05, 47H10, 26A45.

Keywords. Integral equation, bounded second variation in the sense
of Shiba, Hammerstein, Volterra–Hammerstein, Volterra, existence and
uniqueness.

1. Introduction

Integral equations and integro-differential equations arise in many branches
of physics and engineering. For example, in potential theory, acoustics, elas-
ticity, fluid mechanics, radiant transfer, and population theory. For the past
decade, many attempts to solve the nonlinear Hammerstein, Hammerstein–
Volterra, and Volterra integral equations were carried out by different studies
using numerical methods, since these equations arise in many applications
on physics, mathematics, and chemistry, such as stereology, heat conduction,
crystal growth, and heat radiation from a semi-solid. Various methods have
been used to approximate the solution of such integral equations. For exam-
ple, in [1], a variation of the Nystrom method is introduced; in [2], they work
with the classical method of successive approximations; in [3] and [4], some
collocation methods were developed. On the other hand, the bounded varia-
tion functions have been suitable in the study of optimal control problems, as
well as in the calculus of variations. Furthermore, these functions are useful
for image retrieval problems and are well adapted to the study of parameter
identification problems, such as the coefficients of an elliptical machine or a
parabolic operator.
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In [5] Ereú, Giménez, and Pérez studied the solutions of nonlinear
Hammerstein and Volterra–Hammerstein integral equations in the space of
functions of bounded variation in the sense of Shiba, denoted by ΛpBV . The
proofs of their results were based on the Banach Contraction Principle. They
considered the Hammerstein equation defined as

x(t) = g(t) + λ

∫
I

K(t, s)f(x(s))ds, λ ∈ I, t ∈ I = [0, b], (1.1)

and the Volterra–Hammerstein equation

x(t) = g(t) +
∫ t

0

K(t, s)f(x(s))ds, t ∈ I = [0, b], (1.2)

where the integration is taken in the sense of Lebesgue, and they assumed
the following hypotheses:
H1) g : I → R is a function of Λp-bounded variation.
H2) f : R → R is a locally Lipschitz function.
H3) K : I × I → R is a function, such that

VΛp
(K(·, s), I) ≤ M(s), for a.e. s ∈ I,

where M : I → R is an Lp integrable function, and K(t, ·) is Lebesgue
integrable for each t ∈ I = [0, b].

Together with some additional hypotheses, they showed that there exists a
number τ > 0, such that for every λ with |λ| < τ , the Eq. (1.1) has a unique
solution in ΛpBV ([0, b]).

In a similar way, in [5], they studied the solutions of Volterra equation

x(t) = g(t) +
∫ t

a

K(t, s)f(x(s))ds, t ∈ I = [a, b], (1.3)

in the space of functions ΛpBV , and the proofs of their results were based
on the Leray–Schauder Alternative theorem. Under the hypotheses H1) and
H2), and the additional hypothesis
H4) Let K : {(t, s) ∈ [a, b] × [a, b] : s ≤ t} → R be a function, such that

|K(s, s)|
(λ1)

1
p

+ VΛp
(K(·, s) : [s, b]) ≤ h(s), for a.e. s ∈ [a, b],

where h : I → R+ is an Lp integrable function, and K(t, ·) is Lebesgue
integrable on [a, t] for each t ∈ [a, b],

they proved that there exists a unique solution x̂ ∈ ΛpBV for the Eq. (1.3).

Motivated by the paper [5], in this work, we consider the Hammerstein
Eq. (1.1), the Volterra–Hammerstein integral Eq. (1.2), and the Volterra Eq.
(1.3). Under certain hypotheses, we study the solutions of these equations
in the class of functions of bounded second variation in the sense of Shiba,
(Λ2

pBV ) with 1 ≤ p < ∞.
This paper is structured as follows: Sect. 2 on preliminaries, which pro-

vides the necessary results for the proofs of the main theorems. Section 3
presents the existence and uniqueness results for Hammerstein equation and
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Volterra–Hammerstein integral equations, whose proofs are based on the Ba-
nach Contraction Principle. In addition, the existence and uniqueness of solu-
tions for Volterra equation are proved using the Leray–Schauder Alternative
theorem. In Sect. 4, an application problem is presented; finally, some con-
clusions are drawn at the last section.

2. Preliminaries

This section is a review of the preliminary results which are fundamentals
for the development of the main theorems. For the purpose of studying the
solutions of the nonlinear integral Eqs. (1.1), (1.2), and (1.3), we consider the
following hypotheses:
(Ĥ1) f : I → R is a function of (Λ, 2, p)−th bounded second variation

on [a, b], that is, f ∈ Λ2
pBV ([a, b]).

(Ĥ2) K : I × I → R is a function, such that

VΛ,2,p(K(·, s), I) ≤ M(s), for a.e. s ∈ I,

where M : I → R is an Lp integrable function, and {K(t, ·)}t∈I is
bounded in L1(I), which is to say that there exists Ĉ > 0, such that
‖K(t, ·)‖1 ≤ Ĉ for every t ∈ I. The variation VΛ,2,p(·, I) will be defined
below.
The following two theorems are used in the proof of the main results to

guarantee the existence and uniqueness of solutions of the integral equations
to be studied, and are stated here, so the paper is self-contained.

Theorem 2.1. {Banach Contraction Principle.} Let f : X → X be a contrac-
tion mapping on a complete metric space and B ⊆ X be a closed subset, such
that f(B) ⊆ B. Then, f has a unique fixed point in B.

Theorem 2.2. {Leray–Schauder Alternative.} Let U be an open subset of a
Banach space (X, ‖.‖) with 0 ∈ U . Suppose there exists a nondecreasing con-
tinuous function φ : [0,+∞) → [0,+∞) satisfying φ(z) < z for z > 0. The
function H : U → X is such that verifies ‖H(x) − H(y)‖ ≤ φ (‖x − y‖) for
all x, y ∈ U , where U is the closure of U in X. In addition, H(U) is bounded,
and x �= λH(x) for all x ∈ ∂U (boundary of U) and λ ∈ (0, 1]. Then, H has
a fixed point in U .

Next, we present the theory needed in this paper such as definitions,
remarks, and lemmas that will be strongly used in the proofs of the main
theorems.

In [6] is introduced the concept of the classes of functions of bounded
second variation in the sense of Shiba, where it is shown that this class of
functions, denoted by Λ2

pBV , is a normed vector space. In [7], it is proved in
addition that this is a Banach space. The following definitions were considered
in these papers.

Definition 2.3. A sequence of positive real numbers Λ = {λi}∞
i=1 is a W-

sequence if {λi}∞
i=1 is nondecreasing, and

∑
(1/λi) = +∞.
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Definition 2.4. Π3([a, b]) denote the set of partitions π = {xi}n
i=0 of the in-

terval [a, b] containing at least three points, (π ∈ Π3([a, b])).

Definition 2.5. Let 1 ≤ p < ∞, and let Λ = {λi}∞
i=0

be a W-sequence. The
(Λ, 2, p)-th variation of f on [a, b] is defined by

VΛ,2,p(f ; [a, b]) = VΛ,2,p(f) = sup
π

(
n−2∑
i=0

|Q1(f ; xi+2, xi+1) − Q1(f ; xi+1, xi)|p
λi

)1/p

,

where Q1(f ;β, α) = f(β)−f(α)
β−α , and the supremum is taken over all the par-

titions π = {xi}n
i=0 ∈ Π3([a, b]). The sum above is called an approximated

sum for VΛ,2,p(f ; [a, b]).

We say that f has (Λ, 2, p)−th bounded second variation on [a, b] when-
ever VΛ,2,p(f ; [a, b]) < ∞. We denote the space of such functions by Λ2

pBV
([a, b]).

Remark 2.6. Λ2
pBV ([a, b]) together with the norm ‖f‖Λ,2,p = ‖f‖∞ + VΛ,2,p

(f ; [a, b]) is a Banach space. See [7].

The following three lemmas have been proved in [6], and are highly
useful results for some of the main theorems.

Lemma 2.7. Let 1 ≤ p < ∞, f, g ∈ Λ2
pBV ([a, b]), and λ ∈ R. Then

VΛ,2,p(f + λg) ≤ VΛ,2,p(f) + |λ|VΛ,2,p(g).

Lemma 2.8. If 1 ≤ p < ∞ and f ∈ Λ2
pBV ([a, b]), then Q1(f ; ·, ·) is bounded

on [a, b] × [a, b].

Remark 2.9. It can be easily shown from the Lemma above that if f ∈
Λ2

pBV ([a, b]), then f is bounded.

Lemma 2.10. If f ∈ Λ2
pBV ([a, b]), where 1 ≤ p < ∞, then f is Lipschitz and

hence is continuous on [a, b].

Remark 2.11. Denote Lb
a(f) the Lipschitz constant of a function f : [a, b] →

R, that is

Lb
a(f) := sup

{∣∣∣∣f(x2) − f(x1)
x2 − x1

∣∣∣∣ : x1, x2 ∈ [a, b], x1 �= x2

}
.

The following lemma is proved in the same way as Lemma 2.8 in [6].

Lemma 2.12. Let K : I × I → R. If K(·, s) ∈ Λ2
pBV ([s, b]), then there exists

a function C(s), such that |Q1(K(·, s); ·, ·)|p ≤ C(s) on [s, b] × [s, b].

In [7], it is shown that if g ∈ Λ2
pBV ([a, b]) is strictly increasing, and if

f ∈ Λ2
pBV ([g(a), g(b)]), then the composition f ◦ g ∈ Λ2

pBV ([a, b]). Here, we
prove this result by removing the requirement that g is strictly increasing.

Lemma 2.13. If g ∈ Λ2
pBV ([a, b]), and f ∈ Λ2

pBV ([g(a), g(b)]), then

f ◦ g ∈ Λ2
pBV ([a, b]).
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Proof. Let Λ = {λi}i≥0 be a W -sequence. Let us consider a partition π =
{ti}n

i=0 ∈ Π3([a, b]) such that a = t0 < t1 < · · · < tn−1 < tn = b. We need to
consider several cases for the proof.

• Suppose g(ti+2) = g(ti+1) and g(ti+1) = g(ti), and thus

|Q1(f ◦ g; ti+2, ti+1) − Q1(f ◦ g; ti+1, ti)|p
λi

=

∣∣∣ 0
ti+2−ti+1

− 0
ti+1−ti

∣∣∣p
λi

= 0.

• Suppose g(ti+2) �= g(ti+1) and g(ti+1) = g(ti), then

|Q1(f ◦ g; ti+2, ti+1) − Q1(f ◦ g; ti+1, ti)|p
λi

=

∣∣∣ f(g(ti+2))−f(g(ti+1))
ti+2−ti+1

∣∣∣p
λi

=

∣∣∣ f(g(ti+2))−f(g(ti+1))
g(ti+2)−g(ti+1)

× g(ti+2)−g(ti+1)
ti+2−ti+1

∣∣∣p
λi

=

∣∣∣ f(g(ti+2))−f(g(ti+1))
g(ti+2)−g(ti+1)

∣∣∣p
∣∣∣ g(ti+2)−g(ti+1)

ti+2−ti+1

∣∣∣p
λi

= |Q1(f ; g(ti+2), g(ti+1))|p ×

∣∣∣ g(ti+2)−g(ti+1)
ti+2−ti+1

− g(ti+1)−g(ti)
ti+1−ti

∣∣∣p
λi

≤ (M1)p ×

∣∣∣ g(ti+2)−g(ti+1)
ti+2−ti+1

− g(ti+1)−g(ti)
ti+1−ti

∣∣∣p
λi

,

where M1 = sup{Q1(f ;β, α); α, β ∈ [g(a), g(b)]} is assured by Lemma
2.8.

• A similar argument to above applies when g(ti+2) = g(ti+1) and g(ti+1)
�= g(ti)

|Q1(f ◦ g; ti+2, ti+1) − Q1(f ◦ g; ti+1, ti)|p
λi

≤ (M1)p ×

∣∣∣ g(ti+2)−g(ti+1)
ti+2−ti+1

− g(ti+1)−g(ti)
ti+1−ti

∣∣∣p
λi

,

where M1 = sup{Q1(f ;β, α); α, β ∈ [g(a), g(b)]}.
• For the case g(ti+2) �= g(ti+1) and g(ti+1) �= g(ti), the proof is identical

to that of Theorem 5 in [7]

|Q1(f ◦ g; ti+2, ti+1) − Q1(f ◦ g; ti+1, ti)|p
λi

≤ 2p (M1)p ×

∣∣∣ g(ti+2)−g(ti+1)
ti+2−ti+1

− g(ti+1)−g(ti)
ti+1−ti

∣∣∣p
λi

+2p (M2)p ×

∣∣∣ f(g(ti+2))−f(g(ti+1))
g(ti+2)−g(ti+1)

− f(g(ti+1))−f(g(ti))
g(ti+1)−g(ti)

∣∣∣p
λi

.

Therefore

VΛ,2,p(f ◦ g; [a, b]) ≤ 3M1 VΛ,2,p(g; [a, b]) + M2 VΛ,2,p(f ; [g(a), g(b)]) < ∞,
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with M2 = sup{Q1(g;β, α); α, β ∈ [a, b]}, so we can conclude that

f ◦ g ∈ Λ2
pBV ([a, b]).

�

Lemma 2.14. Suppose that f and K satisfy hypotheses Ĥ1 and Ĥ2, respec-
tively. Let F be defined as F (x)(t) =

∫
I
K(t, s)f(x(s))ds for every x ∈

Λ2
pBV (I), with I = [0, b]. Then

VΛ,2,p(F (x)) ≤ b
p−1
p ‖f‖∞

(∫
I

(M(s))p ds

) 1
p

< +∞.

Proof. By Lemma 2.13, we have that f ◦ x ∈ Λ2
pBV ([0, b]). Even more, f

is continuous on [0, b], because f is Lipschitz, and hence f is Lebesgue in-
tegrable. Since K(t, .) is Lebesgue integrable for every t ∈ I, we have that
K(t, ·)f(x(·)) is Lebesgue integrable for every t ∈ I. Thus, the function F (x)
is well defined. Let Λ = {λi}i≥0 be a W -sequence, and π = {ti}n

i=0 ∈ Π3([0, b])
a partition, such that 0 = t0 < t1 < · · · < tn−1 < tn = b. Let us study

VΛ,2,p(F (x)) = sup
π

(
n−2∑
i=0

|Q1(F (x); ti+2, ti+1) − Q1(F (x); ti+1, ti)|p
λi

)1/p

.

Assume that

Ai = |Q1(F (x); ti+2, ti+1) − Q1(F (x); ti+1, ti)|p

=
∣∣∣∣F (x)(ti+2) − F (x)(ti+1)

ti+2 − ti+1
− F (x)(ti+1) − F (x)(ti)

ti+1 − ti

∣∣∣∣
p

=
∣∣∣∣
∫

I

[
K(ti+2, s) − K(ti+1, s)

(ti+2 − ti+1)
− K(ti+1, s) − K(ti, s)

(ti+1 − ti)

]
f(x(s))ds

∣∣∣∣
p

≤ sup
s∈I

|f(x(s))|p
∣∣∣∣
∫

I

K(ti+2, s) − K(ti+1, s)
(ti+2 − ti+1)

− K(ti+1, s) − K(ti, s)
(ti+1 − ti)

ds

∣∣∣∣
p

.

Now, since p ≥ 1, and the function xp is convex on [0,+∞), we can use the
normalization and Jensen’s inequality to get

Ai ≤ bp−1 sup
s∈I

|f(x(s))|p
∫

I

|Q1(K(·, s); ti+2, ti+1) − Q1(K(·, s); ti+1, ti)|p ds.

Thus

n−2∑
i=0

Ai

λi

≤
n−2∑
i=0

bp−1 sups∈I |f(x(s))|p ∫
I
|Q1(K(·, s); ti+2, ti+1) − Q1(K(·, s); ti+1, ti)|p ds

λi

= bp−1 sup
s∈I

|f(x(s))|p
∫

I

n−2∑
i=0

|Q1(K(·, s); ti+2, ti+1) − Q1(K(·, s); ti+1, ti)|p
λi

ds.
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Raising both sides of the inequality to the power
1
p

yields
(

n−2∑
i=0

Ai

λi

) 1
p

≤ b
p−1
p sup

s∈I
|f(x(s))|

×
(∫

I

n−2∑
i=0

|Q1(K(·, s); ti+2, ti+1) − Q1(K(·, s); ti+1, ti)|p
λi

ds

) 1
p

,

taking supremum in the above inequality, and by Hypothesis Ĥ2, it follows
that VΛ,2,p(K(·, s) : I) ≤ M(s), where M is Lp integrable, so we conclude
that:

VΛ,2,p(F (x)) ≤ b
p−1
p ‖f‖∞

(∫
I

(M(s))p ds

) 1
p

< +∞.

This completes the proof. �

Lemma 2.15. Suppose that f and K satisfy hypotheses Ĥ1 and Ĥ2, respec-
tively. Assume F (x) is the integral function for every x ∈ Λ2

pBV (I), with
I = [0, b], defined as in the previous lemma. Then, for every x, y ∈ Λ2

pBV (I),
the inequality

VΛ,2,p(λ (F (x) − F (y)))

≤ b
p−1
p Lb

0(f) |λ| ‖x − y‖Λ,2,p

(∫
I

(M(s))p ds

) 1
p

, λ ∈ I,

holds, where Lb
0(f) is the Lipschitz constant associated with f restricted to

the interval I.

Proof. Let x, y ∈ Λ2
pBV (I), Λ = {λi}i≥0 be a W -sequence, and π = {ti}n

i=0 ∈
Π3([0, b]) a partition, such that 0 = t0 < t1 < · · · < tn−1 < tn = b. By the
definition, we have

VΛ,2,p(λ (F (x) − F (y)))

= sup
π

(
n−2∑
i=0

|Q1(λ (F (x) − F (y)) ; ti+2, ti+1) − Q1(λ (F (x) − F (y)) ; ti+1, ti)|p
λi

)1/p

.

Thus

Q1(λ (F (x) − F (y)) ; ti+2, ti+1)

=
λ (F (x) − F (y)) (ti+2) − λ (F (x) − F (y)) (ti+1)

ti+2 − ti+1

=
λ
[∫

I [K(ti+2, s) − K(ti+1, s)] f(x(s))ds − ∫
I [K(ti+2, s) − K(ti+1, s)] f(y(s))ds

]
ti+2 − ti+1

=
λ
[∫

I [K(ti+2, s) − K(ti+1, s)] [f(x(s)) − f(y(s))] ds
]

ti+2 − ti+1
. (2.1)
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Analogously, we have that

Q1(λ (F (x) − F (y)) ; ti+1, ti)

=
λ
[∫

I
[K(ti+1, s) − K(ti, s)] [f(x(s)) − f(y(s))] ds

]
ti+1 − ti

. (2.2)

We proceed now as in the proof of Lemma 2.14. By replacing (2.1) and (2.2),
we have

Bi = |Q1(λ (F (x) − F (y)) ; ti+2, ti+1) − Q1(λ (F (x) − F (y)) ; ti+1, ti)|p

=

∣∣∣∣∣
λ
[∫

I
[K(ti+2, s) − K(ti+1, s)] [f(x(s)) − f(y(s))] ds

]
ti+2 − ti+1

−λ
[∫

I
[K(ti+1, s) − K(ti, s)] [f(x(s)) − f(y(s))] ds

]
ti+1 − ti

∣∣∣∣∣
p

=
∣∣∣∣λ

∫
I

H(ti+2, ti+1, ti, s) [f(x(s)) − f(y(s))] ds

(ti+2 − ti+1)(ti+1 − ti)

∣∣∣∣
p

,

where

H(ti+2, ti+1, ti, s) = (ti+1 − ti) [K(ti+2, s) − K(ti+1, s)]
−(ti+2 − ti+1) [K(ti+1, s) − K(ti, s)] .

By Lemma 2.10, f is Lipschitz, and thus

Bi ≤ |λ|p (Lb
0(f)

)p
sup
s∈I

|x(s) − y(s)|p
∫

I

∣∣∣∣K(ti+2, s) − K(ti+1, s)
(ti+2 − ti+1)

− K(ti+1, s) − K(ti, s)
(ti+1 − ti)

∣∣∣∣
p

ds

= |λ|p (Lb
0(f)

)p
sup
s∈I

|x(s)

−y(s)|p
∫

I

|Q1(K(·, s); ti+2, ti+1) − Q1(K(·, s); ti+1, ti)|p ds.

Again, since p ≥ 1, and xp is convex on [0,∞), we can normalize and use the
Jensen’s inequality to have

n−2∑
i=0

|Q1(λ (F (x) − F (y)) ; ti+2, ti+1) − Q1(λ (F (x) − F (y)) ; ti+1, ti)|p
λi

≤
n−2∑
i=0

|λ|p (
Lb

0(f)
)p

sups∈I |x(s) − y(s)|p
∫
I

|Q1(K(·, s); ti+2, ti+1) − Q1(K(·, s); ti+1, ti)|p ds

λi

≤ b
p−1

(
L

b
0(f)|λ| sup

s∈I
|x(s) − y(s)|

)p

×
∫
I

n−2∑
i=0

|Q1(K(·, s); ti+2, ti+1) − Q1(K(·, s); ti+1, ti)|p ds

λi

ds.
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Raising to the power
1
p
, and by Hypothesis Ĥ2, we get

(
n−2∑
i=0

|Q1(λ (F (x) − F (y)) ; ti+2, ti+1) − Q1(λ (F (x) − F (y)) ; ti+1, ti)|p
λi

) 1
p

≤ b
p−1
p Lb

0(f)|λ| ‖x − y‖Λ,2,p

×
(∫

I

n−2∑
i=0

|Q1(K(·, s); ti+2, ti+1) − Q1(K(·, s); ti+1, ti)|p ds

λi
ds

) 1
p

≤ b
p−1
p Lb

0(f)|λ| ‖x − y‖Λ,2,p

(∫
I

(M(s))p ds

) 1
p

.

Taking supremum yields

VΛ,2,p (λ(F (x) − F (y))) ≤ b
p−1
p Lb

0(f)|λ| ‖x − y‖Λ,2,p

(∫
I

(M(s))p ds

) 1
p

,

and the proof is complete. �

The following lemma is a special case of the triangle inequality. The
proof is a consequence of the Lemmas 2.14 and 2.7.

Lemma 2.16. Suppose that f and K satisfy hypotheses Ĥ1 and Ĥ2, respec-
tively. Let G : Λ2

pBV (I) → Λ2
pBV (I) be defined by G(x)(t) := g(t)+λF (x)(t),

where F (x) is defined just as in Lemma 2.14, and λ ∈ I = [0, b]. Then

‖G(x)‖Λ,2,p ≤ ‖g‖Λ,2,p + |λ| ‖F (x)‖Λ,2,p .

Lemma 2.17. Let T = {(t, s) : 0 ≤ t ≤ b, 0 ≤ s ≤ t}, and K : T → R be a
function, such that K(·, s) ∈ Λ2

pBV ([s, b]). If k(s, s) = 0 for every s ∈ [0, b]

or if there exists a function L1 : [0, b] → [0,+∞), such that
∣∣∣K(t,s)

t−s

∣∣∣ ≤ L1(s)
for every s, t ∈ [0, b], with t �= s, then for

K̂(t, s) =
{

K(t, s), 0 ≤ s ≤ t
0 t < s ≤ b;

we have that

VΛ,2,p

(
K̂(·, s), [0, b]

)

≤
(

(L1(s))
p +

(
1 + 2p+1

)
C(s)

λ0

) 1
p

+ VΛ,2,p (K(·, s), [s, b]) , (2.3)

where C(s) is guaranteed by the Lemma 2.12. In the case that K(s, s) = 0,
we consider L1(s) = 0 in (2.3).

Proof. Let Λ = {λi}i≥0 be a W -sequence, s ∈ [0, b] and π = {ti}n
i=0 ∈

Π3([0, b]) be a partition, such that 0 = t0 < t1 < · · · < tn−1 < tn = b, then
s ∈ [tr, tr+1] for some r, with 0 ≤ r ≤ n − 1. Thus
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n−2∑
i=0

∣∣∣ K̂(ti+2,s)−K̂(ti+1,s)
ti+2−ti+1

− K̂(ti+1,s)−K̂(ti,s)
ti+1−ti

∣∣∣p
λi

=

∣∣∣ K̂(t2,s)−K̂(t1,s)
t2−t1

− K̂(t1,s)−K̂(t0,s)
t1−t0

∣∣∣p
λ0

+

∣∣∣ K̂(t3,s)−K̂(t2,s)
t3−t2

− K̂(t2,s)−K̂(t1,s)
t2−t1

∣∣∣p
λ1

+ · · · +

∣∣∣ K̂(tr+1,s)−K̂(tr,s)
tr+1−tr

− K̂(tr,s)−K̂(tr−1,s)
tr−tr−1

∣∣∣p
λr−1

+

∣∣∣ K̂(tr+2,s)−K̂(tr+1,s)
tr+2−tr+1

− K̂(tr+1,s)−K̂(tr,s)
tr+1−tr

∣∣∣p
λr

+ · · · +

∣∣∣ K̂(tr+3,s)−K̂(tr+2,s)
tr+3−tr+2

− K̂(tr+2,s)−K̂(tr+1,s)
tr+2−tr+1

∣∣∣p
λr+1

+ · · · +

∣∣∣ K̂(tn,s)−K̂(tn−1,s)
tn−tn−1

− K̂(tn−1,s)−K̂(tn−2,s)
tn−1−tn−2

∣∣∣p
λn−2

=

∣∣∣K(tr+1,s)
tr+1−tr

∣∣∣p
λr−1

+

∣∣∣K(tr+2,s)−K(tr+1,s)
tr+2−tr+1

− K(tr+1,s)
tr+1−tr

∣∣∣p
λr

+

∣∣∣K(tr+3,s)−K(tr+2,s)
tr+3−tr+2

− K(tr+2,s)−K(tr+1,s)
tr+2−tr+1

∣∣∣p
λr+1

+ · · · +

∣∣∣K(tn,s)−K(tn−1,s)
tn−tn−1

− K(tn−1,s)−K(tn−2,s)
tn−1−tn−2

∣∣∣p
λn−2

.

Now, from Lemma 2.12, there exists a function C(s), such that

|Q1(K(·, s); ·, ·)|p ≤ C(s) on [s, b] × [s, b].

Hence, by the case
∣∣∣K(t,s)

t−s

∣∣∣ ≤ L1(s) for every s, t ∈ [0, b], we have

n−2∑
i=0

∣∣∣ K̂(ti+2,s)−K̂(ti+1,s)
ti+2−ti+1

− K̂(ti+1,s)−K̂(ti,s)
ti+1−ti

∣∣∣p
λi

≤ (L1(s))
p

λ0
+

2p+1C(s)
λ0

+ V p
Λ,2,p (K(·, s), [s, b])

≤ (L1(s))
p

λ0
+

(1 + 2p+1)C(s)
λ0

+ V p
Λ,2,p (K(·, s), [s, b]) .
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For the case in which K(s, s) = 0 for every s ∈ [0, b], we have

n−2∑
i=0

∣∣∣ K̂(ti+2,s)−K̂(ti+1,s)
ti+2−ti+1

− K̂(ti+1,s)−K̂(ti,s)
ti+1−ti

∣∣∣p
λi

≤

∣∣∣K(tr+1,s)−K(s,s)
tr+1−s

∣∣∣p
λ0

+
2p

∣∣∣K(tr+2,s)−K(tr+1,s)
tr+2−tr+1

∣∣∣
λ0

+
2p

∣∣∣K(tr+1,s)−K(s,s)
tr+1−s

∣∣∣p
λ0

+

∣∣∣K(tr+3,s)−K(tr+2,s)
tr+3−tr+2

− K(tr+2,s)−K(tr+1,s)
tr+2−tr+1

∣∣∣p
λr+1

+ · · · +

∣∣∣K(tn,s)−K(tn−1,s)
tn−tn−1

− K(tn−1,s)−K(tn−2,s)
tn−1−tn−2

∣∣∣p
λn−2

≤ (1 + 2p+1)C(s)
λ0

+ V p
Λ,2,p (K(·, s), [s, b]) .

Therefore, in both cases, the inequality

n−2∑
i=0

∣∣∣ K̂(ti+2,s)−K̂(ti+1,s)
ti+2−ti+1

− K̂(ti+1,s)−K̂(ti,s)
ti+1−ti

∣∣∣p
λi

≤ (L1(s))
p

λ0
+

(
1 + 2p+1

)
C(s)

λ0
+ V p

Λ,2,p (K(·, s), [s, b]) ,

holds. Raising to the power 1
p , and taking supremum, we have

VΛ,2,p

(
K̂(·, s), [0, b]

)

≤
(

(L1(s))
p

λ0
+

(
1 + 2p+1

)
C(s)

λ0
+ V p

Λ,2,p (K(·, s), [s, b])
) 1

p

.

Since p > 1, (a + b)
1
p ≤ a

1
p + b

1
p holds. Then

VΛ,2,p

(
K̂(·, s), [0, b]

)

≤
(

(L1(s))
p +

(
1 + 2p+1

)
C(s)

λ0

) 1
p

+ VΛ,2,p (K(·, s), [s, b]) ,

and this complete the proof. �

3. Main Theorems

In this section, the main theorems of this paper are proved, which guarantee
the existence and uniqueness of continuous solutions of the Eqs. (1.1), (1.2),
and (1.3) in the space of functions of (λ, 2, p)-th bounded second variation,
Λ2

pBV (I). In addition to the hypotheses considered in Sect. 2, we consider
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Ĥ3) Let T = {(t, s) : 0 ≤ t ≤ b, 0 ≤ s ≤ t}, K : T → R be such that
K(t, ·) ∈ L1 ([0, t]), ‖K(t, ·)‖1 ≤ Ĉ for each t ∈ [0, b], and K(·, s) satisfy
the hypotheses of Lemma 2.17, such that(

(L1(s))
p +

(
1 + 2p+1

)
C(s)

λ0

) 1
p

+ VΛ,2,p (K(·, s), [s, b]) ≤ m(s),

where m : I → R is Lp integrable.
Ĥ4) Let T = {(t, s) ∈ [a, b] × [a, b] : s ≤ t}, K : T → R be such that

K(t, ·) ∈ L1 ([a, t]), ‖K(t, ·)‖1 ≤ Ĉ for each t ∈ [a, b], and K(·, s) satisfy
the hypotheses of Lemma 2.17 for every s ∈ [a, b], such that
(

(L1(s))
p +

(
1 + 2p+1

)
C(s)

λ0

) 1
p

+ VΛ,2,p (K(·, s), [s, b]) ≤ h(s),

where h : [a, b] → R is Lp integrable.

Theorem 3.1. Suppose that f, g satisfy Hypothesis Ĥ1, and that K satisfies
Hypothesis Ĥ2. Then, there exists a number τ > 0 such that for every λ
satisfying |λ| < τ , the Eq. (1.1) has a unique solution in Λ2

pBV (I), defined
on I = [0, b].

Proof. Let Λ = {λi}i≥0 be a W -sequence, and π = {ti}n
i=0 ∈ Π3([0, b]) a

partition, such that 0 = t0 < t1 < · · · < tn−1 < tn = b. Take r > 0, such that
‖g‖Λ,2,p < r. Choose a number τ > 0, such that

‖g‖Λ,2,p + τ‖f‖∞

[
Ĉ + b

p−1
p

(∫
I

(M(s))pds

) 1
p

]
< r and (3.1)

τLb
0(f)

[
Ĉ + b

p−1
p

(∫
I

(M(s))pds

) 1
p

]
< 1, (3.2)

where Ĉ is assured by Hypothesis Ĥ2, and by Lemma 2.10, there exists
the Lipschitz constant Lb

0(f) restricted to the interval I. Define the function
G : Λ2

pBV (I) → Λ2
pBV (I) by G(x)(t) = g(t) + λ

∫
I
K(t, s)f(x(s))ds. For

the proof, we use Theorem 2.1, the Banach Contraction Principle. For this
purpose, we denote the closed ball of center 0 and radius r in the space
Λ2

pBV (I) by Br. We show first that G(Br) ⊂ Br. Indeed, for every x ∈ Br,
it follows from Lemma 2.16 that:

‖G(x)‖Λ,2,p ≤ ‖g‖Λ,2,p + |λ| ‖F (x)‖Λ,2,p . (3.3)

However

‖F (x)‖Λ,2,p = ‖F (x)‖∞ + VΛ,2,p (F (x))

= sup
t∈I

|F (x)(t)| + VΛ,2,p (F (x))

= sup
t∈I

∣∣∣∣
∫

I

K(t, s)f(x(s))ds

∣∣∣∣ + VΛp
(F (x))

≤ ‖f‖∞ sup
t∈I

(∫
I

|K(t, s)| ds

)
+ VΛ,2,p (F (x))
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≤ ‖f‖∞ Ĉ + VΛ,2,p (F (x)) . (3.4)

Thus, by Lemma 2.14, the inequality (3.4) yields

‖F (x)‖Λ,2,p ≤ ‖f‖∞

[
Ĉ + b

p−1
p

(∫
I

(M(s))p ds

) 1
p

]
.

Replacing the above inequality in (3.3), and by the inequality (3.1), we obtain

‖G(x)‖Λ,2,p ≤ ‖g‖Λ,2,p + |λ| ‖f‖∞

[
Ĉ + b

p−1
p

(∫
I

(M(s))p ds

) 1
p

]

≤ ‖g‖Λ,2,p + τ ‖f‖∞

[
Ĉ + b

p−1
p

(∫
I

(M(s))p ds

) 1
p

]

< r.

Thus, G(Br) ⊂ Br. Now, we prove that G is a contraction mapping. Take
x, y ∈ Br, then

‖G(x) − G(y)‖Λ,2,p = ‖G(x) − G(y)‖∞ + VΛp
(G(x) − G(y))

=
∥∥∥∥λ

∫
I

K(t, s)[f(x(s)) − f(y(s))]ds

∥∥∥∥
∞

+ VΛ,2,p (λ (F (x) − F (y)))

= sup
t∈I

∣∣∣∣λ
∫

I

K(t, s)[f(x(s)) − f(y(s))]ds

∣∣∣∣ + VΛ,2,p (λ (F (x) − F (y))) .

By Lipschitz condition of f , hypothesis Ĥ2), and Lemma 2.15 we have that

‖G(x) − G(y)‖Λ,2,p

≤ Lb
0(f)|λ| ‖x − y‖∞ sup

t∈I

(∫
I

|K(t, s)| ds

)

+b
p−1
p Lb

0(f)|λ| ‖x − y‖Λ,2,p

(∫
I

(M(s))p ds

) 1
p

≤ τLb
0(f)

[
Ĉ + b

p−1
p

(∫
I

(M(s))p ds

) 1
p

]
‖x − y‖Λ,2,p .

Therefore, by (3.2), G is a contraction mapping, and by Theorem 2.1, G has
a unique fixed point in Br, which is to say that there exists a unique x ∈ Br,
such that

g(t) + λ

∫
I

K(t, s)f(x(s))ds = x(t).

Therefore, x is the only solution of the Eq. (1.1). �

Remark 3.2. By the previous theorem, the solution x of the Eq. (1.1) belongs
to space Λ2

pBV (I), this implies that x is continuous, by Lemma 2.10.
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Theorem 3.3. Suppose that g satisfies the Hypothesis Ĥ1, K satisfies the Hy-
pothesis Ĥ3 and that f satisfies the Hypothesis Ĥ1, such that

Lb
0(f)

⎡
⎣Ĉ + b

p−1
p

(∫ b

0

(m(s))pds

) 1
p

⎤
⎦ < 1,

where Lb
0(f) is the Lipschitz constant associated with f restricted to the in-

terval [0, b] and Ĉ is assured by Hypothesis Ĥ3. Then, the Eq. (1.2) has a
unique solution in Λ2

pBV , defined on I = [0, b].

Proof. Take r > 0, such that

‖g‖Λ,2,p + ‖f‖∞

⎡
⎣Ĉ + b

p−1
p

(∫ b

0

(m(s))pds

) 1
p

⎤
⎦ < r, (3.5)

where Ĉ is assured by Hypothesis Ĥ3. Let Λ = {λi}i≥0 be a W -sequence,
and π = {ti}n

i=0 ∈ Π3([0, b]) a partition, such that 0 = t0 < t1 < · · · < tn−1 <

tn = b. Define the functions G̃(x)(t) = g(t) + F̃ (x)(t), where F̃ (x)(t) =∫ t

0
K(t, s)f(x(s))ds with t ∈ [0, b], x ∈ Λ2

pBV , and

K̂(t, s) =
{

K(t, s), 0 ≤ s ≤ t
0 t < s ≤ b.

(3.6)

To prove the theorem, we use the Banach Contraction Principle. We begin
by showing that G̃(Br) ⊂ Br. For all x ∈ Br by Lemma 2.16, we have that∥∥∥G̃(x)

∥∥∥
Λ,2,p

≤ ‖g‖Λ,2,p +
∥∥∥F̃ (x)

∥∥∥
Λ,2,p

, (3.7)

but ∥∥∥F̃ (x)
∥∥∥

Λ,2,p
= ‖F̃ (x)‖∞ + VΛ,2,p(F̃ (x))

= sup
t∈I

∣∣∣∣
∫ t

0

K(t, s)f(x(s))ds

∣∣∣∣ + VΛ,2,p(F̃ (x))

≤ ‖f‖∞ sup
t∈I

(∫ t

0

|K(t, s)|ds

)
+ VΛ,2,p(F̃ (x))

≤ Ĉ ‖f‖∞ + VΛ,2,p(F̃ (x)). (3.8)

To compute VΛ,2,p(F̃ (x)), we apply a similar argument to that in the proof
of Lemma 2.14

VΛ,2,p(F̃ (x)) = sup
π

(
n−2∑
i=0

|Q1(F̃ (x); ti+2, ti+1) − Q1(F̃ (x); ti+1, ti)|p
λi

)1/p

.

Consider

Ai =
∣∣∣Q1(F̃ (x); ti+2, ti+1) − Q1(F̃ (x); ti+1, ti)

∣∣∣p

=

∣∣∣∣∣
F̃ (x)(ti+2) − F̃ (x)(ti+1)

ti+2 − ti+1
− F̃ (x)(ti+1) − F̃ (x)(ti)

ti+1 − ti

∣∣∣∣∣
p
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=

∣∣∣∣∣
∫ ti+2

0
K(ti+2, s)f(x(s))ds − ∫ ti+1

0
K(ti+1, s)f(x(s))ds

ti+2 − ti+1

−
∫ ti+1

0
K(ti+i, s)f(x(s))ds − ∫ ti

0
K(ti, s)f(x(s))ds

ti+1 − ti

∣∣∣∣∣
p

=

∣∣∣∣∣∣

∫ b

0

[
K̂(ti+2, s) − K̂(ti+1, s)

]
f(x(s))ds

ti+2 − ti+1

−
∫ b

0

[
K̂(ti+1, s) − K̂(ti, s)

]
f(x(s))ds

ti+1 − ti

∣∣∣∣∣∣

p

≤ sup
s∈I

|f(x(s))|p
∫ b

0

∣∣∣∣∣
K̂(ti+2, s) − K̂(ti+1, s)

ti+1 − ti+1)
− K̂(ti+1, s) − K̂(ti, s)

(ti+1 − ti)

∣∣∣∣∣
p

ds

= sup
s∈I

|f(x(s))|p
∫ b

0

∣∣∣Q1(K̂(·, s); ti+2, ti+1) − Q1(K̂(·, s); ti+1, ti)
∣∣∣p ds.

By normalizing and applying the Jensen’s inequality, we obtain

Ai ≤ b
p−1
p sup

s∈I
|f(x(s))|p

∫ b

0

∣∣∣Q1(K̂(·, s); ti+2, ti+1) − Q1(K̂(·, s); ti+1, ti)
∣∣∣p ds.

Now, proceeding as in the proof of Lemma 2.14, by Lemma 2.17, and Hy-
pothesis Ĥ3, we have

VΛ,2,p(F̃ (x)) ≤ b
p−1
p ‖f‖∞

(∫ b

0

(m(s))p ds

) 1
p

. (3.9)

Replacing (3.8) and (3.9) in the inequality (3.7) yields

∥∥∥G̃(x)
∥∥∥

Λ,2,p
≤ ‖g‖Λ,2,p + ‖f‖∞

⎡
⎣Ĉ + b

p−1
p

(∫ b

0

(m(s))pds

) 1
p

⎤
⎦

< r.

To show that G̃ is a contraction mapping, we argue as in the proof of Theo-
rem 3.1. For x, y ∈ Br, we have that
∥∥∥G̃(x) − G̃(y)

∥∥∥
Λ,2,p

=
∥∥∥F̃ (x) − F̃ (y)

∥∥∥
∞

+ VΛ,2,p

(
F̃ (x) − F̃ (y)

)

≤ Lb
0(f)

⎡
⎣Ĉ + b

p−1
p

(∫ b

0

(m(s))p ds

) 1
p

⎤
⎦ ‖x − y‖Λ,2,p .

By hypothesis, we have that G̃ is a contraction mapping, by Theorem 2.1,
G̃ has a unique fixed point in Br, which is to say that there exists a unique
x̃ ∈ Br, such that
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g(t) +
∫ t

0

K(t, s)f(x̃(s))ds = x̃(t).

Therefore, x̃ is a unique solution of Eq. (1.2). �

Theorem 3.4. Suppose that g satisfies the Hypothesis Ĥ1, K satisfies the Hy-
pothesis Ĥ4 and that f satisfies the Hypothesis Ĥ1, such that

Lb
a(f)

⎡
⎣Ĉ + b

p−1
p

(∫ b

a

(m(s))pds

) 1
p

⎤
⎦ < 1,

where Lb
a(f) is the Lipschitz constant associated with f restricted to the in-

terval [a, b] and Ĉ is assured by Hypothesis Ĥ4. Then, the Eq. (1.3) has a
unique solution in Λ2

pBV , defined on I = [a, b].

Proof. The proof is analogous to the proof of the previous theorem, using
Banach Contraction Principle. �

For a different proof, the following theorems are proved, using the al-
ternative Leray–Schauder Theorem.

Theorem 3.5. Suppose that g satisfies the Hypothesis Ĥ1, K satisfies the Hy-
pothesis Ĥ4 and that f satisfies the Hypothesis Ĥ1, such that

Lb
a(f)

⎡
⎣Ĉ + b

p−1
p

(∫ b

a

(m(s))pds

) 1
p

⎤
⎦ < 1,

where Lb
a(f) is the Lipschitz constant associated with f restricted to the in-

terval [a, b] and Ĉ is assured by Hypothesis Ĥ4. Then, there exists a solution
x̂ ∈ Λ2

pBV for the Eq. (1.3).

Proof. The idea of the proof is to verify the hypothesis of Theorem 2.2,
Leray–Schauder Alternative. To this end, we use an analogous argument to
that of the proof of Theorem 3.3. Let r > 0, such that

‖g‖Λ,2,p + ‖f‖∞

⎡
⎣Ĉ + (b − a)

p−1
p

(∫ b

a

(h(s))pds

) 1
p

⎤
⎦ < r. (3.10)

Take Λ = {λi}i≥0 be a W -sequence, and π = {ti}n
i=0 ∈ Π3([a, b]) a partition,

such that a = t0 < t1 < · · · < tn−1 < tn = b. Define the functions H(x)(t) =
g(t)+F̂ (x)(t), where F̂ (x)(t) =

∫ t

a
K(t, s)f(x(s))ds with t ∈ [a, b], x ∈ Λ2

pBV ,
and

K̂(t, s) =
{

K(t, s), a ≤ s ≤ t
0 t < s ≤ b; (3.11)

by the technique used to prove Theorem 3.3, for all x ∈ Br, we can show
that
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‖H(x)‖Λ,2,p

≤ ‖g‖Λ,2,p + ‖f‖∞

⎡
⎣Ĉ + (b − a)

p−1
p

(∫ b

a

(h(s))pds

) 1
p

⎤
⎦ < r, (3.12)

‖H(x) − H(y)‖Λ,2,p

≤ Lb
a(f)

⎡
⎣Ĉ + (b − a)

p−1
p

(∫ b

a

(h(s))p ds

) 1
p

⎤
⎦ ‖x − y‖Λ,2,p . (3.13)

Define the function φ : [0,+∞) → [0,+∞) as

φ(z) =

⎡
⎣Ĉ + (b − a)

p−1
p

(∫ b

a

(h(s))p ds

) 1
p

⎤
⎦ z.

It is clear that φ(z) < z, by the hypothesis. Now, let us assume that there is
x ∈ Br, such that x = λH(x) for some λ ∈ (0, 1]. We wish to show that x is
an interior point of the ball. Indeed

‖x‖Λ,2,p = λ‖H(x)‖Λ,2,p ≤ ‖H(x)‖Λ,2,p.

From the preceding expression and the inequality (3.12), it follows that
‖x‖Λ,2,p < r, so x is an interior point of the ball. On the other hand, H(x) is in
Λ2

pBV , because both g and F̂ (x) belong to the space, so H(x) is bounded by
Remark 2.9, and by Theorem 2.2, Leray–Shauder Alternative, H has a fixed
point, which is to say that there exists x̂ ∈ Λ2

pBV , such that H(x̂)(t) = x̂(t).
Thus, x̂ is a solution of the Volterra Eq. (1.3). �

Theorem 3.6. Suppose that g satisfies the Hypothesis Ĥ1, K satisfies the Hy-
pothesis Ĥ4 and that f satisfies the Hypothesis Ĥ1, such that

Lb
a(f)

⎡
⎣Ĉ + b

p−1
p

(∫ b

a

(m(s))pds

) 1
p

⎤
⎦ < 1, and

Lb
a(f)

⎡
⎣2(b − a) sup

s∈[a,b]

|K(s, s)| + 4(b − a)2− 1
p

(∫ b

a

C(s)ds

) 1
p

+4(λ0)
1
p (b − a)2− 1

p

(∫ b

a

(h(s))pds

) 1
p

⎤
⎦ < 1,

where Lb
a(f) is the Lipschitz constant associated with f , Ĉ is assured by

Hypothesis Ĥ4, sups∈[a,b] |K(s, s)| < +∞, and C(s) is as in the Lemma 2.12.
Then, there exists a unique solution x̂ ∈ Λ2

pBV of the equation (1.3), defined
on I = [a, b].

Proof. Let Λ = {λi}i≥0 be a W -sequence, s ∈ [a, b], π = {ti}n
i=0 ∈ Π3([a, b])

a partition, such that a = t0 < t1 < · · · < tn−1 < tn = b, then s ∈ [ti, ti+1]
for some i, 0 ≤ i ≤ n − 2. Theorem 3.5 guarantees the existence of a solution
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of the Volterra Eq. (1.3). So assume for the sake of contradiction that there
exist two different solutions of the Eq. (1.3), say x̂, ŷ. First, notice that

|ŷ(t) − x̂(t)|p =
∣∣∣∣
∫ t

a

K(t, s)[f(ŷ(s)) − f(x̂(s))]ds

∣∣∣∣
p

≤ (t − a)p−1

∫ t

a

|K(t, s)|p |f(ŷ(s)) − f(x̂(s))|p ds

≤ (b − a)p−1

∫ b

a

|K(t, s)|p (Lb
a(f))p |ŷ(s) − x̂(s)|p ds.

Raising both sides of this inequality to the power 1
p yields

|ŷ(t) − x̂(t)| ≤ (b − a)
p−1
p Lb

a(f)

(∫ b

a

|K(t, s)|p |ŷ(s) − x̂(s)|p ds

) 1
p

≤ (b − a)
p−1
p Lb

a(f)‖ŷ − x̂‖∞

(∫ b

a

|K(t, s)|p ds

) 1
p

.

Taking supremum on t ∈ [a, b]

‖ŷ − x̂‖∞ ≤ (b − a)
p−1
p Lb

a(f)‖ŷ − x̂‖∞ sup
t∈[a,b]

(∫ b

a

|K(t, s)|p ds

) 1
p

.

Then, it follows that:

1 ≤ (b − a)
p−1
p Lb

a(f) sup
t∈[a,b]

(∫ b

a

|K(t, s)|p ds

) 1
p

. (3.14)

On the other hand, notice that, for τ ∈ [s, b]∣∣∣Q1(K̂(·, s); b, τ) − Q1(K̂(·, s); τ, s)
∣∣∣p

λ0

≤
n−2∑
i=0

∣∣∣Q1(K̂(·, s); ti+2, ti+1) − Q1(K̂(·, s); ti+1, ti)
∣∣∣p

λi

≤ V p
Λ,2,p

(
K̂(·, s), [a, b]

)
.

Thus, by Hypothesis Ĥ4, we obtain∣∣∣Q1(K̂(·, s); τ, s) − Q1(K̂(·, s); b, τ)
∣∣∣

≤ (λ0)
1
p VΛ,2,p

(
K̂(·, s), [a, b]

)

≤ (λ0)
1
p

⎡
⎣
(

(L1(s))
p +

(
1 + 2p+1

)
C(s)

λ0

) 1
p

+ VΛ,2,p (K(·, s), [s, b])
⎤
⎦

≤ (λ0)
1
p h(s).
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Then, by Lemma 2.12, we have
∣∣∣Q1(K̂(·, s); τ, s)

∣∣∣ ≤ (C(s))
1
p + (λ0)

1
p h(s).

Thus ∣∣∣K̂(τ, s) − K̂(s, s)
∣∣∣ ≤

[
(C(s))

1
p + (λ0)

1
p h(s)

]
|τ − s|

= (C(s))
1
p |τ − s| + (λ0)

1
p |τ − s|h(s)

≤ (C(s))
1
p |b − a| + (λ0)

1
p |b − a|h(s),

and hence

|K(τ, s)| ≤ |K(s, s)| + (C(s))
1
p |b − a| + (λ0)

1
p |b − a|h(s).

Therefore, we have that

|K(τ, s)|p ≤ 2p |K(s, s)|p + C(s) (4|b − a|)p + λ0 (4|b − a|h(s))p
.

Thus
∫ t

a

|K(t, s)|p ds

≤
∫ t

a

sup
τ∈[s,b]

|K(τ, s)|p ds

≤
∫ b

a

2p

[
sup

s∈[a,b]

|K(s, s)|p + C(s) (2|b − a|)p + λ02p|b − a|p (h(s))p

]
ds

= 2p(b − a) sup
s∈[a,b]

|K(s, s)|p + 4p(b − a)p

×
∫ b

a

C(s)ds + λ04p(b − a)p

∫ b

a

(h(s))pds.

It follows that:

(b − a)
p−1
p Lb

a(f) sup
t∈[a,b]

(∫ t

a

|K(t, s)|p ds

) 1
p

≤ Lb
a(f)

⎡
⎣2(b − a) sup

s∈[a,b]

|K(s, s)| + 4(b − a)2− 1
p

(∫ b

a

C(s)ds

) 1
p

+4(λ0)
1
p (b − a)2− 1

p

(∫ b

a

(h(s))pds

) 1
p

⎤
⎦ .

Therefore, from the hypothesis and the inequality (3.14), we get a contradic-
tion. Therefore, it is guaranteed the uniqueness of the solution of the equation
(1.3), which completes the proof. �
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4. Application

In this section, we present an application problem, where the nonlinear
Hammerstein–Volterra integral equation is solved by means of numerical
methods. Here, it guaranteed the uniqueness and continuity of the solution
in the space of functions of bounded second variation in the sense of Shiba.

Example. (Application) Since several problems in mathematics, physics, and
chemistry are modeled by the integral Eqs. (1.1), (1.2), and (1.3), diverse
numerical methods have been used to approximate solutions of nonlinear
Hammerstein–Volterra integral equations, such as the successive approxima-
tion method introduced in [2], a collocation-type method developed in [4].
In [3], Brunner proposed a collocation-type method for the nonlinear in-
tegral Eq. (1.2), and discussed its connection with the iterated collocation
method; in [8], it is studied an approximation by means of the fixed point
method for the nonlinear Hammerstein–Volterra integral equation. Consider
the Hammerstein–Volterra integral equation

x(t) = 2
15 t6 − 1

3 t4 + t2 − 1 +
∫ t

0
(t2 − s2)x2(s)ds, con 0 ≤ t ≤ 1. (4.1)

Let us show that there is a continuous unique solution in the space of bounded
second variation functions in the Shiba sense, considering 0 ≤ t ≤ 1

2 .
We verify the hypotheses of Theorem 3.3.

1. In [7], it is shown that f(t) = t2 ∈ Λ2
pBV ([0, 1

2 ]).
2. In [6], it is proved that Λ2

pBV ([a, b]) contains all affine functions, and in
[7], it is proved in addition that Λ2

pBV ([a, b]) is a Banach algebra. Thus,

we have that g(t) =
(

2
15

t6 − 1
3
t4 + t2 − 1

)
∈ Λ2

pBV ([0, 1
2 ]).

3. Define

K̂(t, s) =
{

K(t, s), 0 ≤ s ≤ t
0, t < s ≤ 1

2 ,
(4.2)

where K(t, s) = t2 −s2. It is clear that K(t, ·) is Lebesgue integrable, and

∫ t

0

|K(t, s)|ds =
∫ t

0

|t2 − s2|ds ≤
∫ t

0

(t2 + s2)ds =
4
3
t3 ≤ 1

6
= Ĉ.

On the other hand, by Lemma 2.17, we have

VΛ,2,p

(
K̂(·, s),

[
0,

1
2

])
≤

(
(L1(s))

p +
(
1 + 2p+1

)
C(s)

λ0

) 1
p

+VΛ,2,p

(
K(·, s),

[
s,

1
2

])
.
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To compute VΛ,2,p

(
K(·, s), [s, 1

2 ]
)
, consider

Bi =
|Q1(K(·, s); ti+2, ti+1) − Q1(K(·, s); ti+1, ti)|p

λi

=

∣∣∣∣ (t
2
i+2 − s2) − (t2i+1 − s2)

ti+2 − ti+1
− (t2i+1 − s2) − (t2i − s2)

ti+1 − ti

∣∣∣∣
p

λi

=
|ti+2 − ti|p

λi
,

so VΛ,2,p

(
K(·, s), [s, 1

2 ]
) ≤ 2

(
1
2 − s

)
(λ0)

1
p

, See example 1 in [7]. However

|Q1 (K(·, s);x, y)|p =
∣∣∣∣K(x, s) − K(y, s)

x − y

∣∣∣∣
p

= |x + y|p ≤ 1,

and
∣∣∣∣K(t, s)

t − s

∣∣∣∣ = |t + s| ≤ 1
2

+ s.

Then, C(s) = 1, and L1(s) = 1
2 + s. Consequently

VΛp

(
K̂(·, s), [0, 1]

)
≤

((
1
2 + s

)p + (1 + 2p+1)
) 1

p + 2
(

1
2 − s

)
(λ0)

1
p

≤
(

1
2 + s

)
+

(
1 + 2p+1

) 1
p + 2

(
1
2 − s

)
(λ0)

1
p

= M(s).

Therefore, it is evident that M(s) is Lp integrable.

4. Considering p = 1 and for any W-sequence with λ0 > 3.75, in particular
for λ0 = 4, we have

∫ 1
2

0

(M(s))p ds =
∫ 1

2

0

((
1
2 + s

)
+ 5 + 2

(
1
2 − s

)
4

)
ds = 0.78125;

therefore, L
1
2
0 (f)

[
Ĉ + b

p−1
p

(∫ 1
2

0
(M(s))pds

) 1
p

]
= 1

[
1
6 + 0.78125

]
=0.94791

< 1. Note that considering any other value of p, for example p = 2 and for
any W-sequence with λ0 > 6.510024, in particular for λ0 = 7, we have

∫ 1
2

0

(M(s))p ds =
∫ 1

2

0

((
1
2 + s

)
+ 3 + 2

(
1
2 − s

)
(7)

1
2

)2

ds = 1.2917,

so L
1
2
0 (f)

[
Ĉ + b

p−1
p

(∫ 1
2

0
(m(s))pds

) 1
p

]
= 1

[
1
6 +

√
1
2

√
1.2917

]
= 0.97031 <

1. In general, considering any value of p ≥ 1 and a suitable λ0, it is guaran-

teed that L
1
2
0 (f)

[
Ĉ + b

p−1
p

(∫ 1
2

0
(M(s))pds

) 1
p

]
< 1. Hence, all conditions

of Theorem 3.3 are satisfied, and thus, the equation (4.1) has a unique
continuous solution in Λ2

pBV , which is defined on [0, 1
2 ]. �
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5. Conclusion

In this paper, we proved existence-uniqueness theorems for nonlinear Ham-
merstein, Hammerstein–Volterra, and Volterra integral equations in the space
of functions of bounded second variation in the sense of Shiba. In addition, we
proved that solutions not only exist but are continuous. For the proofs of the
theorems for nonlinear Hammerstein, and Hammerstein–Volterra equations,
we used the Banach Contraction Principle and for nonlinear Volterra equa-
tion, we used the Leray–Schauder theorem. We also presented an application
problem. We hope that the ideas and techniques used in this paper may be
an inspiration to readers that are interested in studying these nonlinear inte-
gral equations in some new spaces of generalized bounded variation, and that
these results may be also a contribution to different areas whose applications
are modeled by this type of integral equations.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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