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Singular Quasilinear Schrödinger Equations
with Exponential Growth in Dimension
Two
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Abstract. In this work, we study the existence of positive solution for
the following class of singular quasilinear Schrödinger equations:

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u =
f(u)

|x|a in R
2,

where a ∈ (0, 2), g : R → R+ is a continuously differentiable function,
V (x) is a positive potential and the nonlinearity f(u) can exhibit critical
exponential growth. In order to prove our existence result, we combine
minimax methods with a singular version of the Trudinger-Moser in-
equality.
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1. Introduction and Main Result

In this paper, we consider quasilinear Schrödinger equations of the form

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u =
f(u)
|x|a in R

2, (1.1)

where a ∈ (0, 2), g : R → R+ is a continuously differentiable function, V :
R

2 → R is a positive potential and f : R → R is a continuous function
that can exhibit critical exponential growth in sense of the Trudinger–Moser
inequality (see (1.8)).
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The study of equation (1.1) is related with the existence of solitary wave
solutions for the nonlinear Schrödinger equation

i∂tw = −Δw + W (x)w − p̃(x, |w|2)w − Δ[ρ(|w|2)]ρ′(|w|2)w in R
N ,

(1.2)

where N ≥ 1, w : R × R
N → C is the unknown function, W : R

N → R

is a given potential, ρ : R+ → R and p̃ : RN × R+ → R are real functions
satisfying appropriate conditions. Equation (1.2) is called in the current lit-
erature as Generalized Quasilinear Schrödinger Equation and it has been
accepted as model in many physical phenomena depending on the function
ρ. For instance, if ρ(s) = 1 then we have the classical semilinear Schrödinger
equation, see [25]. When ρ(s) = s, the equation arises from fluid mechan-
ics, plasma physics and dissipative quantum mechanics, see [23,27,31]. For
ρ(s) = (1 + s)1/2, (1.2) models the propagation of a high-irradiance laser in
a plasma as well as the self-channeling of a high-power ultrashort laser in
matter, see [24]. For further physical applications, we quote [3,32].

When we consider standing wave solutions for (1.2), that is, solutions
of type w(t, x) = exp(−iEt)u(x), where E ∈ R and u is a real function, we
know that w satisfies (1.2) if and only if the function u(x) solves the elliptic
equation (see [8])

− Δu + V (x)u − Δ[ρ(u2)]ρ′(u2)u = p(x, u) in R
N , (1.3)

where V (x) := W (x) − E and p(x, u) := p̃(x, u2). Now, if we take

g2(u) = 1 +
[(ρ(u2))′]2

2
,

then (1.3) turns into quasilinear elliptic equation (see [33])

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = p(x, u) in R
N , (1.4)

which becomes (1.1) when N = 2 and p(x, u) = f(u)/|x|a. For example,
when we have g2(s) = 1+2s2, that is, ρ(s) = s, we obtain the superfluid film
equation in plasma physics

− Δu + V (x)u − Δ(u2)u = p(x, u) in R
N , (1.5)

which has been extensively studied, see for example [7,18,29,32]. More gener-
ally, if we put g2(s) = 1+2γ2(s2)2γ−1, γ > 1/2, that corresponds to ρ(s) = sγ ,
we get the equation

− Δu + V (x)u − γΔ(|u|2γ)|u|2γ−2u = p(x, u) in R
N , (1.6)

which was addressed for instance in [1,14,28,37]. Now, if we consider ρ(s) =
(1 + s)1/2, that is, g2(s) = 1 + s2/[2(1 + s2)] we obtain

− Δu + V (x)u − Δ[(1 + u2)1/2]
u

2(1 + u2)1/2
= p(x, u) in R

N , (1.7)

which was studied for instance in [6,10].

Motivated by these physical aspects, Eq. (1.4) has attracted a lot of at-
tention of many researchers and some existence and multiplicity results have
been obtained (see [5,10–13,19,26,33–36]). In this work, more specifically, we
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intend to prove that equation (1.1) admits at least one positive solution. To
achieve this goal, we shall apply variational methods in combination with a
version singular of the Trudinger-Moser inequality.

As in the papers [10,12,33], we assume the following assumptions on
the function g(s):
(g0) g ∈ C1(R,R+) is even, g′(s) ≥ 0 for all s ≥ 0 and g(0) = 1;
(g1) there exists α ≥ 1 such that (α − 1)g(s) ≥ g′(s)s for all s ≥ 0;

(g2) lim
s→+∞

g(s)
sα−1

=: β > 0.

Typical examples satisfying (g0)−(g2) are given by the functions:
(a) g(s) ≡ 1 (α = 1 and β = 1);
(b) g(s) = (1 + 2s2)1/2 (α = 2 and β =

√
2);

(c) g(s) = (1 + 2γ2(s2)2γ−1)1/2 (α = 2γ and β =
√

2γ),
which appear in the context of mathematical physics as indicated previously.

As it is known, the main difficulties in dealing with problem (1.4) is
the lack of compactness, which is inherent to elliptic problems defined in
unbounded domains and the fact that the energy functional associated to
(1.4) is not generally well defined in the usual Sobolev space, because the
presence of the integral

∫
RN g2(u)|∇u|2 (see more details in Sect. 2). Hence,

a direct variational approach is not possible.
To the best of our knowledge, the first existence result for generalized

quasilinear elliptic problem of the type (1.4) in unbounded domains involving
variational methods was due to [33]. The authors have used a change of
variables and the Mountain-Pass Theorem to obtain positive solutions for
(1.4) when p(x, u) is superlinear and has subcritical growth . Later on, by
using change of variable, many authors proposed the critical problem when
p(x, u) is the form |u|α2∗−2u + f(u), see for instance [12,13]. In [12], by
using the semilinear dual equation, the authors postulated that the number
α2∗ = 2αN/(N − 2) must be the critical exponent for an equation of type
(1.4) in R

N (N ≥ 3). In the paper [26], Li and Wu studied the existence,
multiplicity and concentration of solutions for the critical case (N ≥ 3).

In the subcritical case, through change of variable, the authors in [19]
studied problem (1.4) by using Orlicz space framework and proved the exis-
tence of positive solutions via minimax methods. Moreover, they considered
the nonlinearity p(x, t) behaving like t at the origin and t3 at infinity. Re-
cently, by using the non-Nehari manifold method, Chen et al. in [5] proved
that (1.4) admits a ground state solution under a monotonicity condition
and some standard growth conditions on p(x, u). In [10], Deng and Huang
proved the existence of ground state solutions for (1.4) by using Jeanjean’s
monotonicity trick (see [21]).

Next, we assume that V : R2 → R is a continuous function satisfying
the condition
(V ) there exists a constant V0 > 0 such that V (x) ≥ V0 for all x ∈ R

2.
Unlike the articles cited above, this is the only condition imposed on the po-
tential V . Here, we do not need another condition on V in order to guarantee
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some compactness result. Instead we exploit the fact that the embedding

X :=
{

v ∈ H1(R2);
∫

R2
V (x)v2dx < ∞

}

↪→ Lp(R2, |x|−adx)

is compact (see Section 2).

About the nonlinearity f(u), we introduce the notion of criticality in dimen-
sion two for this class of problems. More precisely, we say that f : R → R

has critical exponential growth at +∞ if there exists ς0 > 0 such that

lim
s→+∞ f(s)e−ςs2α

=
{

0, for all ς > ς0,
+∞, for all ς < ς0.

(1.8)

As far as we know, this is the first work dealing with this class of quasilinear
Schrödinger equations and involving exponential critical growth with singu-
larity. We point out that (1.8) extends the definition founded in the papers
[15,17,30]. Since the exponent 2α can be bigger than 2, the growth (1.8) is
better than the usual growth eςs2

. This is possible due to the properties of the
function g(s). Moreover, we assume that f satisfies the following conditions:

(f1) f(s) = o(s) as s → 0+ and f(s) = 0, for all s ∈ (−∞, 0];
(f2) there exist θ > α such that

0 < 2θF (s) := 2θ
∫ s

0

f(t)dt ≤ sf(s), for all s ∈ (0,+∞);

(f3) there exist constants s0,M0 > 0 such that

F (s) ≤ M0f(s), for all s ≥ s0;

(f4) there exists ξ0 > 0 such that

lim inf
s→+∞ sf(s)e−ς0s2α ≥ ξ0.

An elementary example of function satisfying (f1) − (f4) is given by
f(s) = F ′(s), where F (s) = s3αes2α

for s ≥ 0 and F (s) = 0 for s < 0, with
constant ς0 = 1.

Now, let C∞
0 (R2) be the space of infinitely differentiable functions with

compact support and H1(R2) the usual Sobolev space with the norm

‖u‖1,2 =
[∫

R2
(|∇u|2 + u2)dx

]1/2

.

In this context, we say that a function u : R
2 → R is a weak solution of

problem (1.1) if u ∈ H1(R2) ∩ L∞
loc(R

2) and for all ϕ ∈ C∞
0 (R2) it holds

∫

R2
g2(u)∇u∇ϕdx +

∫

R2
g(u)g′(u)|∇u|2ϕ +

∫

R2
V (x)uϕdx −

∫

R2
f(u)ϕdx = 0.

(1.9)

Now, we may state our main result.

Theorem 1.1. Suppose that (g0)−(g2), (V ), (1.8) and (f1)−(f4) are satisfied.
Then, problem (1.1) has a positive solution.
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As already mentioned, the main difficulty in treating this class of
Schrödinger equations in R

2 is the possible lack of compactness as well as
the critical exponential growth. Our result extends and improves the papers
[14,15,17,30] in the sense that we are considering a broader class of operators.
In order, to prove Theorem 1.1, we use a change of variables and we trans-
form equation (1.1) into a semilinear one. The functional energy, denoted by
I, associated to this semilinear problem is well defined and it is differentiable
in the subspace X of H1(R2) (for details see Sect. 2). Therefore, we justify
that critical points of I provide weak solutions to problem (1.1).

The hypotheses (f1) and (f2) are sufficient conditions to guarantee the
geometry of a suitable version of the Mountain-Pass Theorem (see Theorem
2.7). Moreover, (f2) is important to prove that Cerami sequences are bounded
(see Lemma 4.1). With respect to the hypothesis (f4), it is fundamental to
prove an estimate for the minimax level of I, see Proposition 5.1. Further-
more, (f4) is more general than a similar condition found in [15], because
here we do not require a lower bounded for the constant ξ0. The hypothesis
(f3) is central for the proof of the convergence in Lemma 4.4. These last two
results allows us to obtain the estimate

(
α

β

)2

ς0‖∇vn‖2
2 < 4π

for n sufficiently large, where (vn) is a Cerami sequence at the minimax level.
This estimate is fundamental for applying Corollary 4.7 and consequently is
used in the proof of Theorem 1.1. The conditions of the type (f3) and (f4)
were considered in the pioneering work due to de Figueiredo et al. [9].
The outline of the paper is as follows: in the forthcoming section is the re-
formulation of the problem and some preliminary results, including the ap-
propriate variational setting to study the quasilinear problem, the regularity
of the dual energy functional and properties of its critical points. Moreover,
we present the singular Trudinger-Moser inequality due to [4]. In Sect. 3, we
prove that the energy functional satisfies the geometric conditions of Theorem
2.7. Section 4 is dedicated to the proof of some technical results involving the
Cerami sequences associated to the energy functional. In Sect. 5, we derive
an important estimate for the mountain pass level and Sect. 6 is devoted to
the proof of the main result of the work.

2. Variational Setting and Preliminaries

We begin this section by defining the following subspace X of H1(R2):

X =
{

v ∈ H1(R2);
∫

R2
V (x)v2dx < ∞

}

,

which is a Hilbert space equipped with the inner product

〈u, v〉X =
∫

R2
(∇u∇v + V (x)uv)dx, u, v ∈ X (2.1)
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and its corresponding norm ‖v‖X = 〈v, v〉1/2. It is clear that the hypothesis
(V ) implies the continuity of the embedding X ↪→ H1(R2). Furthermore, by
considering the weighted Lebesgue space

Lp(R2, |x|−adx) =
{

u : R2 → R : u is mensurable and
∫

R2

|u|p
|x|a dx < ∞

}

,

we have the following compactness lemma:

Lemma 2.1. Suppose p ≥ 2 and a ∈ (0, 2). Then, the embedding X ↪→
Lp(R2, |x|−adx) is compact.

Proof. See Theorem 1.2 in [38]. �

Now, we are going to introduce our variational structure. As observed
in the Introduction, formally (1.1) is the Euler-Lagrange equation associated
to the energy functional

J(u) =
1
2

∫

R2
g2(u)|∇u|2dx +

1
2

∫

R2
V (x)u2dx −

∫

R2

F (u)
|x|a dx. (2.2)

The first difficulty that we have to deal with is to find an appropriate vari-
ational setting in order to apply variational methods to study the existence
of critical points for J , because g2(u)|∇u|2 is not necessary in L1(R2) if
u ∈ H1(R2). To overcome this difficulty, we follow ideas introduced in [33]
(see also [13]), that is, we make use of the change of variables

v = G(u) =
∫ u

0

g(s)ds.

Hence, after this change of variables, we obtain the new functional

I(v) = J(G−1(u)) =
1
2

∫

R2
(|∇v|2 + V (x)[G−1(v)]2)dx −

∫

R2

F (G−1(v))
|x|a dx,

(2.3)

which is well defined in the space X, under the conditions on g, V and f . For
an easy reference, we list below the main properties of the function G−1.

Lemma 2.2. Under conditions (g0) − (g2), we have the following properties:
1. G−1 is increasing; also G e G−1 are odd functions;
2. 0 < [G−1(t)]′ = 1

g(G−1(t)) ≤ 1 = 1
g(0) for all t ∈ R;

3. |G−1(t)| ≤ |t| for all t ∈ R;
4. G−1(t)

α ≤ t
g(G−1(t)) ≤ G−1(t) for all t ≥ 0 and [G−1(t)]2

α ≤ G−1(t)t
g(G−1(t)) ≤

[G−1(t)]2 for all t ∈ R;
5. |G−1(t)|α−1

g(G−1(t)) ≤ 1
β for all t ∈ R;

6. |G−1(t)|α ≤ α
β |t| for all t ∈ R;

7. G−1(t)
t1/α →

(
α
β

)1/α

as t → +∞;
8. there exists a positive constant C such that

|G−1(t)| ≥
{

C|t|, |t| ≤ 1,
C|t|1/α, |t| ≥ 1.
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Proof. The item (1) follows from the monotonicity of G and since g is even.
To prove (2), just to derive the equality G(G−1(t)) = t. For item (3), we
use the Mean Value Theorem and (2) to conclude that |G−1(t)| = |G−1(t) −
G−1(0)| = [G−1(ξ)]′|t| ≤ |t| for some ξ between 0 and t. Therefore this item
is proved.

In order to show (4), consider σ1(t) := αt − g(G−1(t))G−1(t) and
σ2(t) := g(G−1(t))G−1(t) − t. We have σ1(0) = σ2(0) = 0 and by (g0) − (g1)

σ′
1(t) = α − 1 − g′(G−1(t))G−1(t)

g(G−1(t))
≥ 0 and σ′

2(t) =
g′(G−1(t))G−1(t)

g(G−1(t))
≥ 0.

Thus, σ1(t) ≥ 0, σ2(t) ≥ 0 for all t ≥ 0 and the first part is done. For the
second part, just to observe that G−1(t)t ≥ 0 for all t ∈ R.

Next, from (g0) − (g2) we deduce that g(s) ≥ β|s|α−1 for all s ∈ R and
taking s = G−1(t) we obtain (5). From item (5) and using integration, the
proof of item (6) follows.

Now, let us check (7). By the limit in (g2), given ε > 0 there exists
R > 0 such that g(s) ≤ 1 + βεs

α−1 for s ≥ R, where βε = β + ε. By using
(6), (g0) and the Mean Value Theorem, for t0 ≥ R we get

G−1(t) − G−1(t0) =
∫ t

t0

1
g(G−1(s))

ds ≥
∫ t

t0

1

g

((
α
β

)1/α

s1/α

)ds

≥
∫ t

t0

1

1 + βε

(
α
β

)α−1
α

s
α−1

α

ds

≥
∫ t

t0

1

βε

(
α
β

)α−1
α

s
α−1

α

ds −
∫ t

t0

1

β2
ε

(
α
β

) 2(α−1)
α

s
2(α−1)

α

ds.

If α > 2 and by calculating the last two integrals, there exists a positive
constant C1 such that

G−1(t) ≥ G−1(t0) − α

βε

(
α
β

)α−1
α

t
1/α
0 +

α

β2
ε (α − 2)

(
α
β

)α−1
α

(t
2−α

α
0 − t

2−α
α )

+
α

βε

(
α
β

)α−1
α

t1/α

≥ −C1 +
α

βε

(
α
β

)α−1
α

t1/α.

As βε → β when ε → 0+, we conclude that

lim inf
t→+∞

G−1(t)
t1/α

≥
(

α

β

)1/α

.
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Using again (6) we establish the desired limit for α > 2. If α = 2, for all
t > t0 + 1 ≥ R + 1 there exists a positive constant C2 satisfying

G−1(t) ≥ G−1(t0) +
2

βε

(
2
β

)1/2
(t1/2 − t

1/2
0 ) − 1

β2
ε

(
2
β

)
∫ t

t0

1
s
ds

≥ −C2 log t +
2

βε

(
2
β

)1/2
t1/2,

from where we reach

lim inf
t→+∞

G−1(t)
t1/2

≥
(

2
β

)1/2

.

which is the desired limit. Finally, for 1 < α < 2 we have the estimate

G−1(t) ≥ −
(

α

β

)1/α

t
1/α
0 − α

2−α
α

β2/α(2 − α)
t
2−α

α +
α

βε

(
α
β

)α−1
α

t1/α

and similarly we get the result. To conclude, item (8) follows directly from
(7). �

The next proposition presents an important compactness result.

Proposition 2.3. Suppose that (V) is satisfied. Then, the map v → G−1(v)
from X into Lp(R2, |x|−adx) is compact for 2 ≤ p < ∞.

Proof. Let (vn) ⊂ X be a bounded sequence in X. By Lemma 2.2-(2),(3)
we have ‖G−1(vn)‖ ≤ ‖vn‖. Thus, (G−1(vn)) is bounded in X and since
the embedding X ↪→ Lp(R2, |x|−adx) is compact for 2 ≤ p < ∞, up to a
subsequence, there exists w ∈ Lp(R2, |x|−adx) such that G−1(vn) → w in
Lp(R2, |x|−adx) and the proof is done. �

It is standard to see that under the assumptions on V , g and f , the
functional I is of class C1 on X with

I ′(v)ϕ =
∫

R2

(

∇v∇ϕ + V (x)
G−1(v)

g(G−1(v))
ϕ

)

dx −
∫

R2

f(G−1(v))
g(G−1(v))|x|a ϕdx,

(2.4)

for v, ϕ ∈ X and therefore critical points of I turn out to be weak solutions
of the semilinear equation

− Δv + V (x)
G−1(v)

g(G−1(v))
=

f(G−1(v))
g(G−1(v))|x|a in R

2. (2.5)

We also observe that given ε > 0, q ≥ 1 and ς > ς0, by (f1) and (1.8) there
exists a constant Cε > 0 satisfying

|f(s)| ≤ ε|s| + Cε|s|q−1(eςs2α − 1) for all s ∈ R. (2.6)

We will see in Proposition 2.6 that if v ∈ H1(R2) is a critical point of
the functional I, then u = G−1(v) is a weak solution of (1.1). Therefore, to
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obtain weak solutions of (1.1), it will be sufficient to look for critical points
of I.

At first, let us recall the following Trudinger-Moser inequality due to
[16]:

Lemma 2.4. If ς > 0, a ∈ (0, 2) and u ∈ H1(R2), then
∫

R2

(eςu2 − 1)
|x|a dx < ∞. (2.7)

Moreover, if 0 < ς < 2π(2 − a) and ‖u‖2 ≤ M , then there exists a positive
constant C = C(ς, a,M), which depends only on M , a and ς, such that

sup
‖∇u‖2≤1

∫

R2

(eςu2 − 1)
|x|a dx ≤ C. (2.8)

In many arguments, we will need of the following lemma:

Lemma 2.5. Let ς > 0 and r ≥ 1. Then

(eςs2 − 1)r ≤ erςs2 − 1, for all s ∈ R.

Proof. Just analyze the limits of the function ξ(s) = (eςs2 − 1)r/(erςs2 − 1)
at the origin and at infinity applying the L’Hôpital rule. �

Proposition 2.6 (Critical points of I and solutions of (1.1)). Every critical
point v of I belongs to C0,ϑ

loc (R2) for some ϑ ∈ (0, 1) and u = G−1(v) is a
weak solution of (1.1).

Proof. Every critical point v of I satisfies the equation −Δv = w in R
2 in

weak sense, where

w(x) =
1

g(G−1(v))

[
f(G−1(v))

|x|a − V (x)G−1(v)
]

.

From this, for t > 1, according to (2.6), (5) and (10) of Lemma 2.2, Lemma
2.5, for almost everywhere x ∈ BR ≡ BR(0), we obtain

|w(x)|t ≤
[ |G−1(v)
g(G−1(v))

]t [
C1

|x|a +
C2

|x|a (eς[G−1(v)]2α − 1) + V (x)
]t

≤ C3

[
1

|x|at
+

1
|x|at

(
et(α

β )2ςv2 − 1
)

+ M t
R

]

where MR := sup{V (x) : x ∈ BR}. Now, considering t > 1 such that 0 <
at < 2 and using Lemma 2.4 we conclude that w ∈ Lt(BR). So, applying
Schauder regularity theory, it follows that v ∈ C0,ϑ

loc (R2) to some ϑ ∈ (0, 1).
In particular, v ∈ L∞

loc(R
2). The rest of the argument follows in a similar way

to the proof of Proposition 2.9 in [14]. �

To conclude this section, we present a version of the Mountain-Pass
Theorem, which is a consequence of the Ekeland Variational Principle as
developed in [2]. We will also need to establish a local version of the same
theorem.



120 Page 10 of 25 U. B. Sever et al. MJOM

Theorem 2.7. (Mountain-Pass Theorem) Let X be a Banach space and Φ ∈
C1(X;R) with Φ(0) = 0. Let S be a closed subset of X which disconnects
(archwise) X. Let v0 = 0 and v1 ∈ X be points belonging to distinct connected
components of X\S. Suppose that

inf
S

Φ ≥ σ > 0 and Φ(v1) ≤ 0 (2.9)

and let

Γ = {γ ∈ C([0, 1];X) : γ(0) = 0 and γ(1) = v1}. (2.10)

Then

c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)) ≥ σ

and there exists a Cerami sequence1 for Φ at the level c. The number c is
called the mountain-pass level of Φ.

3. Geometric Properties

In this section, we are going to show that the functional I satisfies the geo-
metric conditions (2.9). For this, we need to obtain some technical lemmas.

Lemma 3.1. Assume that (V ) and (g0) − (g2) hold. If v ∈ X, ς > 0, t >

0 and ‖v‖2 ≤ M with
(

α
β

)2

ς‖∇v‖2
2 < 2π(2 − a), then there exists C =

C(a, α, ς,M, t) > 0 such that
∫

R2

eς|G−1(v)|2α − 1
|x|a |G−1(v)|tdx ≤ C‖G−1(v)‖t.

Proof. Consider r > 1 close to 1 such that
(

α
β

)2

rς‖∇v‖2
2 < 2π(2 − ar),

ar < 2 and ts ≥ 2, where s = r/(r−1). Using (5) of Lemma 2.2 and Holder’s
inequality, we have

∫

R2

eς|G−1(v)|2α − 1
|x|a |G−1(v)|tdx ≤

[∫

R2

(e(
α
β )2ςv2 − 1)r

|x|ar
dx

]1/r

‖G−1(v)‖t
ts

and by Lemmas 2.4, 2.5 and the continuous embedding H1(R2) ↪→ Lts(R2),
we conclude

∫

R2

eς|G−1(v)|2α − 1

|x|a |G−1(v)|tdx ≤
⎡

⎣
∫

R2

e

(
α
β

)2
rς‖∇v‖2

2

(
v

‖∇v‖2

)2

− 1

|x|ar
dx

⎤

⎦

1
r

‖G−1(v)‖t
ts

≤ C1‖G−1(v)‖t
ts ≤ C‖G−1(v)‖t,

which proves the lemma. �

1(vn) such that Φ(vn) → c and ‖Φ′(vn)‖(1 + ‖vn‖).
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Lemma 3.2. Assume that (V) holds. If v ∈ H1(R2) and t ≥ 2, then there
exists C = C(t) > 0 such that

∫

R2

|G−1(v)|t
|x|a dx ≤ C‖G−1(v)‖t.

Proof. Let r > 1 be close to 1 such that ar < 2 and s = r/(r − 1). Using
Hölder’s inequality and the continuous embedding X ↪→ Lq(R2) for all 2 ≤
q < ∞, we obtain
∫

R2

|G−1(v)|t
|x|a dx ≤

∫

|x|>1
|G−1(v)|tdx +

(∫

|x|≤1

1

|x|ar
dx

)1/r (∫

|x|≤1
|G−1(v)|tsdx

)1/s

≤ ‖G−1(v)‖t
t + C1‖G−1(v)‖t

ts

≤ C‖G−1(v)‖t

and the proof follows. �

In view of the last estimates, we can prove that the functional I has the
mountain-pass geometry. For this purpose, for ρ > 0, we define

Sρ =
{

v ∈ X :
∫

R2
|∇v|2dx +

∫

R2
V (x)[G−1(v)]2dx = ρ2

}

.

Since Q : X → R, defined by

Q(v) =
∫

R2
{|∇v|2 + V (x)[G−1(v)]2}dx,

is a continuous function, it follows that Sρ is a closed subset that disconnects
the space X.

Lemma 3.3. Suppose that (V ), (g0) and (f1) are satisfied. Then, there exist
ρ > 0 and σ > 0 satisfying

I(v) ≥ σ, for all v ∈ Sρ.

Proof. From the estimate (2.6), given ε > 0 there is Cε > 0 such that

|F (s)| ≤ ε

2
s2 + Cε|s|t(eςs2α − 1), for all s ∈ R, t > 2. (3.1)

Now, if
(

α
β

)2

ςρ2 < 2π(2−a), by using (3.1), Lemma 3.1, Lemma 3.2, Lemma

2.2-(2) and the continuous embedding H1(R2) ↪→ Lt(R2), we obtain

I(v) ≥ 1
2
Q(v) − ε

2
C‖G−1(v)‖2 − C1‖G−1(v)‖t

≥
(

1
2

− ε

2
C

)

Q(v) − C1Q(v)t/2.

Taking 0 < ε < 1/C and since t > 2, we may choose 0 < ρ < β
α

(
2π(2−a)

ς

)1/2

such that
(

1
2 − ε

2C
)
ρ2 − C1ρ

t > 0. Thus, considering σ =
(

1
2 − ε

2C
)
ρ2 −

C1ρ
t > 0 we conclude I(v) ≥ σ for all v ∈ Sρ. �
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Lemma 3.4. Suppose that (V ), (g0) − (g2) and (f2) are satisfied. Then, there
exists e ∈ X such that Q(e) > ρ2 and

I(e) < 0 < σ ≤ inf
v∈Sρ

I(v).

Proof. First, consider ϕ ∈ C∞
0 (R2, [0, 1])\{0} such that supp(ϕ) = B1. From

(f2), there are positive constants C1 and C2 such that F (s) ≥ C1|s|2θ − C2

for all s ∈ R. Thus, for t > 0 we have

I(tϕ) =
1
2

∫

B1

(|∇(tϕ)|2 + V (x)[G−1(tϕ)]2)dx −
∫

B1

F (G−1(tϕ))
|x|a dx

≤ t2

2

∫

B1

(|∇ϕ|2 + V (x)ϕ2)dx − C1

∫

B1

|G−1(tϕ)|2θ

|x|a dx + C2

∫

B1

1
|x|a dx

≤ t2
[‖ϕ‖2

2
− C1

∫

B1

|G−1(tϕ)|2θ

t2|x|a dx +
C2

t2

∫

B1

1
|x|a dx

]

.

Since 2θ − 2α > 0, for x ∈ B1, by using Lemma 2.2-(7), it follows that

|G−1(tϕ(x))|2θ

t2
=

(
G−1(tϕ(x))

α
√

tϕ(x)

)2α

|G−1(tϕ(x))|2θ−2αϕ(x)2 →

+∞ as t → +∞.

Thus, according to Fatou’s Lemma, we obtain
∫

B1

|G−1(tϕ)|2θ

t2|x|a dx → +∞ as t → +∞.

and therefore I(tϕ) → −∞. Setting e := tϕ with t large enough, the proof is
finished. �

4. On Cerami Sequences for I

The purpose of this section is to prove some results about the Cerami se-
quences for the functional I. The first one is the following:

Lemma 4.1. Suppose that (V ), (g0) − (g1) and (f2) are satisfied. Let (vn) be
in X such that I(vn) → c ∈ R and I ′(vn)vn → 0 as n → +∞. Then, Q(vn)
is bounded and (vn) is bounded in H1(R2).

Proof. Using Lemma 2.2-(4) and (f2), we obtain

I(vn) − α

2θ
I′(vn)vn =

(
1

2
− α

2θ

)∫

R2
|∇vn|2dx +

1

2

∫

R2
V (x)[G−1(vn)]2dx

− α

2θ

∫

R2
V (x)

G−1(vn)

g(G−1(vn))
vndx −

∫

R2

F (G−1(vn))

|x|a dx

+
α

2θ

∫

R2

f(G−1(vn))

g(G−1(vn))|x|a vndx

≥
(

1

2
− α

2θ

)

Q(vn)

+
1

2θ

∫

{G−1(vn)>0}

f(G−1(vn))G−1(vn) − 2θF (G−1(vn))

|x|a dx
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≥
(

1

2
− α

2θ

)

Q(vn).

Since I(vn) = c + on(1) and I ′(vn)vn = on(1), as n → +∞, it follows that
(

1
2

− α

2θ

)

Q(vn) ≤ c + on(1). (4.1)

Now, since θ > α, for some constant C > 0 we have

Q(vn) =
∫

R2
{|∇vn|2 + V (x)[G−1(vn)]2}dx ≤ C. (4.2)

In view of (4.1), it remains to show that
∫
R2 v2

ndx is bounded. By condition
(V ) and Lemma 2.2-(8) there exists a constant C1 > 0 such that

∫

R2
v2

ndx =
∫

{|vn|≤1}
v2

ndx +
∫

{|vn|>1}
v2

ndx

≤ 1
C2

1V0

∫

R2
V (x)[G−1(vn)]2dx +

1
C2α

1

∫

R2
[G−1(vn)]2αdx.

(4.3)

Next, we will use the Gagliardo-Nirenberg inequality (see [22], p. 31), which
asserts

‖u‖q ≤ C(ϑ)‖u‖1−ϑ
r ‖∇u‖ϑ

2 (4.4)

for all u ∈ H1(R2) ∩ Lr(R2), where 1 ≤ r < ∞, 0 < ϑ ≤ 1 and 1
q = 1−ϑ

r .
Setting u = G−1(vn), ϑ = 1 − 1

α and r = 2, we have q = 2α. Hence, by using
(V ) and (4.4), we get
∫

R2
|G−1(vn)|2αdx ≤ C(ϑ)2α

V0

(∫

R2
V (x)[G−1(vn)]2dx

)(∫

R2
|∇vn|2dx

)α−1

.

(4.5)

From (4.2), (4.3) and (4.5), it follows that
∫
R2 v2

ndx is bounded and the lemma
is proved. �

Corollary 4.2. Suppose that (V ), (g0) − (g1) and (f2) are satisfied. Let (vn)
be a Cerami sequence for I in X. Then, there exists C > 0 such that

∫

R2

|f(G−1(vn))vn|
g(G−1(vn))|x|a dx ≤ C.

Proof. By Lemma 2.2-(4) and since I ′(vn)vn → 0 as n → +∞, we have
∫

R2

f(G−1(vn))vn

g(G−1(vn))|x|a dx ≤
∫

R2
|∇vn|2dx +

∫

R2
V (x)[G−1(vn)]2dx + on(1)

≤ Q(vn) + on(1).

By the previous lemma, Q(vn) is bounded and the above estimate shows the
result. �

Lemma 4.3. Suppose that (V ), (g0) − (g1) and (f1) − (f2) are satisfied. Let
(vn) be a Cerami sequence for I. Then, (vn) has a subsequence, still denoted
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by (vn), such that vn ⇀ v in H1(R2) such that
∫
R2 V (x)|G−1(v)|2dx < ∞

and
f(G−1(vn))

g(G−1(vn))|x|a → f(G−1(v))
g(G−1(v))|x|a in L1

loc(R
2), as n → +∞.

Proof. According to Lemma 4.1, (vn) is bounded in H1(R2). Thus, up to
a subsequence, vn ⇀ v in H1(R2). Furthermore, the function v satisfies∫
R2 V (x)|G−1(v)|2dx < ∞, because Q(vn) is bounded and by Fatou’s Lemma

∫

R2
V (x)|G−1(v)|2dx ≤ lim inf

n→+∞

∫

R2
V (x)|G−1(vn)|2dx ≤ C.

Now, it is sufficient to prove that
∫

BR

|f(G−1(vn))|
g(G−1(vn))|x|a dx →

∫

BR

|f(G−1(v))|
g(G−1(v))|x|a dx, as n → +∞.

By using Lemma 4.1, Lemma 2.2-(3) and since the embedding H1(R2) ↪→
Lt

loc(R
2), for all t ≥ 1, is compact, we can assume that G−1(vn) → G−1(v)

strongly in Lt(BR) for any t ∈ [1,+∞). Moreover, by using items (2) and
(3) of Lemma 2.2, Lemma 2.4, Corollary 4.2, estimate (2.6) and Holder’s
inequality, we obtain

|G−1(v)| ∈ L1(BR),
f(G−1(v))

g(G−1(v))|x|a ∈ L1(BR) and

∫

R2

|f(G−1(vn))vn|
g(G−1(vn))|x|a ≤ C.

The rest of the argument follows the same steps as in the proof of Lemma
4.3 in [14]. �

Lemma 4.4. Suppose that (V ), (g0) − (g1) and (f1) − (f3) are satisfied. Let
(vn) be a Cerami sequence for I in X. Then, (vn) has a subsequence, still
denoted by (vn), such that

F (G−1(vn))
|x|a → F (G−1(v))

|x|a in L1(R2), as n → +∞,

where v is the weak limit of (vn) in H1(R2) with
∫
R2 V (x)|G−1(v)|2dx < ∞.

Proof. From Lemma 2.2-(4) and Corollary 4.2 we have

1
α

∫

R2

|f(G−1(vn))G−1(vn)|
|x|a dx ≤

∫

R2

|f(G−1(vn))vn|
g(G−1(vn))|x|a dx ≤ C.

Thus, similarly to Lemma 4.3, we get

f(G−1(vn))
|x|a → f(G−1(v))

|x|a in L1
loc(R

2), as n → +∞. (4.6)

Next, by using (f2) and (f3), for each R > 0, there exists C > 0 such
that F (G−1(vn)) ≤ C[f(G−1(vn))] in BR. This together with (4.6) and the
generalized Lebesgue dominated convergence theorem, up to a subsequence,
implies that

F (G−1(vn))
|x|a → F (G−1(v))

|x|a in L1(BR), for all R > 0.
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To conclude the convergence of the lemma, it is sufficient to prove that given
δ > 0, there exists R > 0 such that

∫

Bc
R

F (G−1(vn))
|x|a dx ≤ δ and

∫

Bc
R

F (G−1(v))
|x|a dx ≤ δ.

For this, we also note that by (f2) and (f3), there exists C1 > 0 satisfying

|F (x, s)| ≤ C1|f(x, s)|, for all (x, s) ∈ R
2 × R.

Thus, for each A > 0, we obtain
∫

|x|>R

|G−1(vn)|>A

F (G−1(vn))
|x|a dx ≤ C1

∫

|x|>R

|G−1(vn)|>A

|f(G−1(vn))|
|x|a dx

≤ C1

A

∫

R2

|f(G−1(vn))G−1(vn)|
|x|a dx.

Since
∫

R2

|f(G−1(vn))G−1(vn)|
|x|a dx ≤ C,

given δ > 0, we may choose A > 0 such that

C1

A

∫

R2

|f(G−1(vn))G−1(vn)|
|x|a dx <

δ

2
.

Thus,
∫

|x|>R

|G−1(vn)|>A

F (G−1(vn))
|x|a dx ≤ δ

2
. (4.7)

Moreover, since f has critical exponential growth and satisfies (f1) and (f2),
there exists C(A) > 0 such that

F (x,G−1(s)) ≤ C(A)|G−1(s)|2, for all (x,G−1(s)) ∈ R
2 × [−A,A].

Therefore,
∫

|x|>R

|G−1(vn)|≤A

F (G−1(vn))
|x|a dx ≤ C(A)

∫

|x|>R

|G−1(vn)|≤A

|G−1(vn)|2
|x|a dx

≤ 2C(A)
∫

|x|>R

|G−1(vn)|≤A

|G−1(vn) − G−1(v)|2
|x|a dx

+ 2C(A)
∫

|x|>R

|G−1(vn)|≤A

|G−1(v)|2
|x|a dx.

Hence, by using Proposition (2.3), given δ > 0, we may choose R > 0 satis-
fying

∫

|x|>R

|G−1(vn)|≤A

F (G−1(vn))
|x|a dx ≤ δ

2
. (4.8)

From (4.7) and (4.8), given δ > 0, there exists R > 0 such that
∫

|x|>R

F (G−1(vn))
|x|a dx ≤ δ.
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Similarly, we obtain
∫

|x|>R

F (G−1(v))
|x|a dx ≤ δ.

Combining all the above estimates and since δ > 0 is arbitrary, it follows
that

∫

R2

F (G−1(vn))
|x|a dx →

∫

R2

F (G−1(v))
|x|a dx, as n → +∞,

and this completes the proof. �

Lemma 4.5. Suppose that (V ), (g0) − (g1) and (f1) − (f2) are satisfied. If
(vn) ⊂ X is a Cerami sequence for I such that vn ⇀ v weakly in H1(R2)
with

∫
R2 V (x)|G−1(v)|2dx < ∞, then

∫

R2
∇v∇ϕdx +

∫

R2

V (x)G−1(v)
g(G−1(v))

ϕdx

=
∫

R2

f(G−1(v))
g(G−1(v)|x|a ϕdx, for all ϕ ∈ C∞

0 (R2).

Proof. First, we have that I ′(v)ϕ is well defined for ϕ ∈ C∞
0 (R2) and therefore

just prove that I ′(v)ϕ = 0 for all ϕ ∈ C∞
0 (R2). Note that

I ′(vn)ϕ − I ′(v)ϕ −
∫

R2
(∇vn − ∇v)∇ϕdx

=
∫

R2

[
G−1(vn)

g(G−1(vn))
− G−1(v)

g(G−1(v))

]

V (x)ϕdx

+
∫

R2

[
f(G−1(vn))

g(G−1(vn))|x|a − f(G−1(v))
g(G−1(v))|x|a

]

ϕdx. (4.9)

In view of vn ⇀ v weakly in H1(R2), we have vn → v in Lp
loc(R

2), with p ≥ 1.
Then, up to a subsequence,

vn(x) → v(x) a.e. in K := supp ϕ, as n → +∞,
|vn(x)| ≤ |wp(x)| for every n ∈ N and a.e. in K, with wp ∈ Lp(K).

Consequently,

G−1(vn)
g(G−1(vn))

→ G−1(v)
g(G−1(v))

a.e. in K, as n → +∞.

Furthermore, by the continuity of V and Lemma 2.2-(2) and (3), there exists
a constant C > 0 such that

|V (x)G−1(vn)ϕ|
g(G−1(vn))

≤ |V (x)vnϕ| ≤ C|w2‖ϕ| ∈ L1(K).

Using these estimates, Lebesgue Dominated Convergence Theorem and the
weak convergence vn ⇀ v in H1(R2), we obtain
∫

R2
(∇vn − ∇v)∇ϕdx → 0 and

∫

R2

[
G−1(vn)

g(G−1(vn))
− G−1(v)

g(G−1(v))

]

V (x)ϕdx → 0,
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as n → +∞. In addition, by Lemma 4.3, we have

∫

R2

f(G−1(vn))
g(G−1(vn))|x|a ϕdx →

∫

R2

f(G−1(v))
g(G−1(v))|x|a ϕdx.

Hence, taking the limit in (4.9), we get I ′(vn)ϕ − I ′(v)ϕ → 0 for all ϕ ∈
C∞

0 (R2) and once I ′(vn) → 0, we conclude I ′(v)ϕ = 0 for all ϕ ∈ C∞
0 (R2).

This finalizes the proof. �

Lemma 4.6. Suppose that (V ), (g0)−(g1) and (f1)−(f2) are satisfied. Let (vn)

be a Cerami sequence for I in X such that
(

α
β

)2

ς0‖∇vn‖2
2 < 2π(2−a). Then,

(vn) has a subsequence, still denoted by (vn), such that

∫

R2

f(G−1(vn))(v − vn)
g(G−1(vn))|x|a dx → 0,

as n → +∞, where v is the weak limit of (vn) in H1(R2) with
∫
R2 V (x)|G−1

(v)|2dx < ∞.

Proof. By (2.6), given ε > 0, there exists Cε > 0 such that

∣
∣
∣
∣
f(G−1(vn))(v − vn)

g(G−1(vn))

∣
∣
∣
∣≤ε|G−1(vn)‖v − vn|+Cε[e(ς0+ε)|G−1(vn)|2α − 1]|v − vn|.

Hence, by Lemma 2.2-(5), one has

∣
∣
∣
∣

∫

R2

f(G−1(vn))(v − vn)
g(G−1(vn))|x|a dx

∣
∣
∣
∣

≤ εC1

∫

R2

|G−1(vn)‖G−1(v − vn)|
|x|a dx

+ εC1

∫

R2

|G−1(vn)‖G−1(v − vn)|α
|x|a dx

+ Cε

∫

R2

[e(ς0+ε)|G−1(vn)|2α − 1]|G−1(v − vn)|
|x|a dx

+ Cε

∫

R2

[e(ς0+ε)|G−1(vn)|2α − 1]|G−1(v − vn)|α
|x|a dx.
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By Hölder’s inequality and choosing t > 1 such that t′ = t/(t − 1) ≥ 2, we
get
∣
∣
∣
∣

∫

R2

f(G−1(vn))(v − vn)
g(G−1(vn))|x|a dx

∣
∣
∣
∣

≤ εC1

(∫

R2

|G−1(vn)|2
|x|a dx

) 1
2
(∫

R2

|G−1(v − vn)|2
|x|a dx

) 1
2

+ εC1

(∫

R2

|G−1(vn)|2
|x|a dx

) 1
2
(∫

R2

|G−1(v − vn)|2α

|x|a dx

) 1
2

+ Cε

{∫

R2

[et(ς0+ε)|G−1(vn)|2α − 1]
|x|a dx

} 1
t
{∫

R2

|G−1(v − vn)|t′

|x|a dx

} 1
t′

+ Cε

{∫

R2

[et(ς0+ε)|G−1(vn)|2α − 1]
|x|a dx

} 1
t
{∫

R2

|G−1(v − vn)|αt′

|x|a dx

} 1
t′

.

(4.10)

Next, note that there exists t > 1 sufficiently close to 1, ε > 0 sufficiently
small and C > 0 such that

∫

R2

et(ς0+ε)|G−1(vn)|2α − 1
|x|a dx ≤ C. (4.11)

Indeed, we can infer that for n sufficiently large, there exists t > 1, sufficiently

close to 1, and ε > 0 sufficiently small so that
(

α
β

)2

t(ς0 + ε)‖∇vn‖2
2 <

2π(2 − a). Hence, by Lemma 2.2-(7) and Lemma 2.4, we get

∫

R2

et(ς0+ε)|G−1(vn)|2α − 1
|x|a dx ≤

∫

R2

e
t(ς0+ε)(α

β )2‖∇vn‖2
2

(
|vn|

‖∇vn‖2

)2

− 1
|x|a dx ≤ C,

which proves (4.11). Since G−1(vn − v) is a bounded sequence in X and
for p ∈ [2,+∞) the embedding X ↪→ Lp(R2; |x|−adx) is compact, up to a
subsequence, we have

∫

R2

|G−1(v − vn)|t′

|x|a dx → 0 and
∫

R2

|G−1(v − vn)|αt′

|x|a dx → 0.

Therefore, from (4.10) and (4.11) we conclude the proof of the theorem. �

We recall that the minimax level of I is given by

0 < cm = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), (4.12)

where Γ = {γ ∈ C([0, 1];X) : γ(0) = 0 and γ(1) = e} and e was given in
Lemma 3.4.

As a consequence of Lemma 4.6, we have the following result, which is
essential for the proof of Theorem 1.1.

Corollary 4.7. Suppose that (V ), (g0)− (g2) and (f1)− (f2) are satisfied. Let
(vn) be a Cerami sequence for I in X at the level cm satisfying (α/β)2 ς0‖∇
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vn‖2
2 < 2π(2 − a) and vn ⇀ 0 weakly in X. Then cm = 0, where cm is given

in (4.12).

Proof. Indeed, since I ′(vn)vn → 0,
∫

R2
|∇vn|2dx +

∫

R2

V (x)G−1(vn)
g(G−1(vn)

vn =
∫

R2

f(G−1(vn))
g(G−1(vn)|x|a vn + on(1).

Hence, by Lemma 2.2-(4) we have
∫

R2
|∇vn|2dx +

1
α

∫

R2
V (x)[G−1(vn)]2dx

≤
∫

R2

f(G−1(vn))
g(G−1(vn)|x|a vn + on(1) ≤

∫

R2

f(G−1(vn))G−1(vn)
|x|a dx + on(1).

(4.13)

Moreover, as I(vn) → cm we get

cm =
1
2

∫

R2
|∇vn|2dx +

1
2

∫

R2
V (x)[G−1(vn)]2dx

−
∫

R2

F (G−1(vn))
|x|a dx + on(1). (4.14)

Then, by (4.13), (4.14) and Lemma 4.6-(2),(3), we conclude that cm = 0 as
we desired. �

5. Minimax Level Estimate

In this section, we obtain an estimate for the mountain pass level of I, which
will be crucial to study the behavior of Cerami sequences for I. For this, let
r > 0 and consider the Moser’s sequence defined by

Mn(x, r) =
1√
2π

⎧
⎪⎪⎨

⎪⎪⎩

√
log n, if |x| ≤ r

n ,
log(r/|x|)√

log n
, if r

n ≤ |x| ≤ r,

0, if |x| > r,

which satisfies Mn ∈ H1
0 (Br), ‖∇Mn‖2 = 1 for all n ∈ N and

‖Mn‖2
2 =

r2

4 log n
− r2

2n2
− r2

4n2 log n
.

Proposition 5.1. Assume that (V ), (g0) − (g2), (f1), (f2) and (f4) are satis-
fied. Then, the minimax level cm satisfies

cm <
(2 − a)π
(α

β )2ς0
. (5.1)

Proof. To prove (5.1), it is sufficient to obtain n ∈ N such that

max
t≥0

I(tM̃n) <
(2 − a)π
(α

β )2ς0
,
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where M̃n = Mn/‖Mn‖. Suppose, for the sake of contradiction, that for all
n ∈ N, we have

max
t≥0

I(tM̃n) ≥ (2 − a)π
(α

β )2ς0
. (5.2)

In view of Lemma 3.3 and Lemma 3.4, for all n ∈ N, there exists tn > 0 such
that

I(tnM̃n) = max
t≥0

I(tM̃n). (5.3)

By Lemma 2.2-(3), (5.2), (5.3), (f2) and ‖M̃n‖ = 1, it follows that

t2n ≥ 2(2 − a)π
(α

β )2ς0
, (5.4)

because

t2n
2

=
t2n
2

∫

R2

(
|∇M̃n|2 + V (x)M̃2

n

)
dx

≥ 1
2

∫

R2

{
|∇(tnM̃n)|2 + V (x)[G−1(tnM̃n)]2

}
dx

−
∫

R2

F (G−1(tnM̃n))
|x|a dx ≥ (2 − a)π

(
α
β

)2

ς0

.

Next, we will show that the sequence (tn) is bounded. To achieve this goal,
let us remember that d

dtI(tM̃n) = 0 at t = tn, that is, I ′(tnM̃n) · M̃n = 0.
Thus,

t2n

∫

R2

[

|∇M̃n|2 + t−2
n V (x)

G−1(tnM̃n)

g(G−1(tnM̃n))
tnM̃n

]

dx

−
∫

R2

f(G−1(tnM̃n))

g(G−1(tnM̃n))|x|a
tnM̃ndx = 0.

By Lemma 2.2-(4), (f2) and ‖∇M̃n‖2 ≤ 1, one has

t2n = t2n

∫

R2

[

|∇M̃n|2 + V
t2nM̃2

n

t2n

]

dx ≥ t2n

∫

R2

[

|∇M̃n|2 +
G−1(tnM̃n)tnM̃n

t2ng(G−1(tnM̃n))

]

dx

=

∫

R2

f(G−1(tnM̃n))

g(G−1(tnM̃n))|x|a
tnM̃ndx ≥

∫

B r
n
(0)

f(G−1(tnM̃n))

g(G−1(tnM̃n))|x|a
tnM̃ndx

≥ 1

α

∫

B r
n
(0)

f(G−1(tnM̃n))G−1(tnM̃n)

|x|a dx. (5.5)

According to (f4), given ε > 0 there exists Rε > 0 such that

sf(s) ≥ (ξ0 − ε)eς0|s|2α

, for all s ≥ Rε. (5.6)
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Since G−1(tnM̃n) > Rε in B r
n
(0) for n sufficiently large, using (5.5) and

(5.6), we obtain

t2n ≥ ξ0 − ε

α

∫

B r
n

(0)

eς0|G−1(tnM̃n)|2α

|x|a dx. (5.7)

In view of Lemma 2.2-(7), given η > 0 there exists Rη > 0 such that

|G−1(s)|2α ≥
[(

α

β

)2

− η

]

s2, for all s ≥ Rη. (5.8)

Thus, for n sufficiently large (without loss of generality we can assume Rε >
Rη), using (5.7) and (5.8) we get

t2n ≥ ξ0 − ε

α

∫

B r
n

(0)

e
ς0

[
(α

β )2−η
]
t2nM̃2

n

|x|a dx

=
ξ0 − ε

α
e
ς0

[
(α

β )2−η
]

1
2π

log n

‖Mn‖2 t2n 2π

2 − a

( r

n

)2−a

=
ξ0 − ε

α
e
ς0

[
(α

β )2−η
]

1
2π

log n

‖Mn‖2 t2n−(2−a) log n 2π

2 − a
r2−a. (5.9)

Hence,

1 ≥ ξ0 − ε

α
e
ς0

[
(α

β )2−η
]

1
2π

log n

‖Mn‖2 t2n−(2−a) log n−2 log tn 2π

2 − a
r2−a, (5.10)

which implies

ς0

[(
α

β

)2

− η

]
1
2π

log n

‖Mn‖2
t2n − (2 − a) log n − 2 log tn ≤ C.

This estimate shows that (tn) is bounded, otherwise, once ‖Mn‖2 ≤ 1 +
‖V ‖L∞(Br)‖Mn‖2

2, we have

ς0

[(
α

β

)2

− η

]
1
2π

log n

‖Mn‖2
t2n − (2 − a) log n − 2 log tn

≥ t2n log n

⎧
⎪⎪⎨

⎪⎪⎩

ς0

[(
α
β

)2

− η

]

2π
(
1 + ‖V ‖L∞(Br)‖Mn‖2

) − 2 − a

t2n
− 2 log tn

t2n log n

⎫
⎪⎪⎬

⎪⎪⎭

→ +∞, as n → +∞,

which is a contradiction with (5.10). Thus, by (5.4), (5.9) and since (tn) is
bounded, there are constants C1 = C1(a, ς0, α, β, η) > 0 and C2 > 0 such
that

C1
log n

‖Mn‖2
− log n ≤ C2. (5.11)
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However,

C1
log n

‖Mn‖2
− log n =

C1 log n − ‖Mn‖2 log n

‖Mn‖2

≥
C1 log n −

[
1 + ‖V ‖L∞(Br)

(
r2

4 log n
− r2

2n2 − r2

4n2 log n

)]
log n

1 + ‖V ‖L∞(Br)

(
r2

4 log n
− r2

2n2 − r2

4n2 log n

)

=
(C1 − 1) log n + ‖V ‖L∞(Br)

(
r2

4n2 + r2 log n
2n2 − r2

4

)

1 + ‖V ‖L∞(Br)

(
r2

4 log n
− r2

2n2 − r2

4n2 log n

) −→ +∞,

as n → +∞, which contradicts (5.11). The proposition is proved. �

6. Proof of Theorem 1.1

According to Lemma 3.3 and Lemma 3.4, the hypotheses of Theorem 2.7 are
satisfied. Thus, the minimax level cm of I is positive and there is a Cerami
sequence (vn) for I at the level cm. Applying Lemma 4.1 and 4.3, we may
assume, without loss generality, that vn ⇀ v weakly in H1(R2) for some
v ∈ H1(R2) with

∫
R2 V (x)|G−1(v)|2dx < ∞. From Lemma 4.5, v is a weak

solution of equation (2.5). Now, suppose by contradiction, that v is zero. In
view of Lemma 4.4 and since I(vn) → cm as n → +∞, we reach

1
2

∫

R2

{
|∇vn|2 + V (x)

[
G−1(vn)

]2}
dx = cm + on(1). (6.1)

From Proposition 5.1, we have

cm < (2 − a)π/(
α

β
)2ς0. (6.2)

Using condition (V ), (6.1) and (6.2), there exists n0 ∈ N such that
(

α

β

)2

ς0‖∇vn‖2
2 < 2π(2 − a), for all n ≥ n0.

Thus, in view of Corollary 4.7, we get cm = 0, which is a contradiction.
Therefore, v �= 0.

Next, we prove that v is nonnegative. Indeed, if v− = max{−v, 0} then
v− ∈ H1(R2) and by density we get
∫

R2
|∇v−|2dx +

∫

R2
V (x)

G−1(v)

g(G−1(v))
(−v−)dx =

∫

R2

f(G−1(v))

g(G−1(v))|x|a (−v−)dx ≤ 0.

On the other hand, we know that G−1(v)
g(G−1(v)) (−v−) ≥ 0 and this implies that

∫
R2 |∇v−|2dx = 0. Thus, v− = 0 almost everywhere in R

2 and therefore
v ≥ 0. In order to prove that v > 0 in R

2, we suppose, otherwise, that there
exists x0 ∈ R

2 such that v(x0) = 0. Notice that 2.5 can be written in the
form

−Δv + c(x)v = V (x)
v − G−1(v)
g(G−1(v))

+
f(G−1(v))

g(G−1(v))|x|a ≥ 0
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where c(x) = V (x) v
g(G−1(v)) > 0 for all x ∈ R

2. Recalling that v ∈ C0,ϑ
loc (R2),

using Strong Maximum Principle (see [20], Theorem 8.19) in an arbitrary ball
centered in x0, we can conclude that v ≡ 0, which is impossible. Therefore,
v has to be strictly positive. In view of Proposition 2.6 we reach u = G−1(v)
is a positive solution of (1.1) and the proof of Theorem 1.1 is complete.
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[22] Kavian, O.: Introduction á la Thèorie Des Points Critiques et Applications aux
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