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On the Connected Power Graphs
of Semigroups of Homogeneous Elements
of Graded Rings

Emil Ilić-Georgijević

Abstract. In this paper, by the power graph G(S) of a semigroup S
we mean an undirected graph whose vertices are elements of S and
where two vertices are adjacent if and only if they are distinct and one
of them is a power of the other. Let R =

⊕
s∈S Rs be a ring graded

by a groupoid S. Inspired by the problems raised in Abawajy et al.
(Electron J Graph Theory Appl 1(2):125–147, 2013) we investigate the
question of connectedness of the power graph of the multiplicative semi-
group HR =

⋃
s∈S Rs of homogeneous elements of R. We establish that

G(HR) is connected if and only if all of the homogeneous elements of R
are nilpotent. If G(HR) is connected, then the power graphs G(Re) of
the multiplicative semigroups Re, where e runs through the set of all
idempotent elements of S, are also connected. The converse, however,
does not hold in general, but we prove that it does hold under some
additional assumptions. If R has no nontrivial homogeneous right or
left zero divisors, then H∗

R = HR\{0} is a semigroup under the multi-
plication of R, and S is a semigroup. If, moreover, R is with unity and
S is cancellative, we prove that G(H∗

R) is connected if and only if S is
a monoid with unity e, and the power graphs G(Re\{0}) and G(S) are
connected.

Mathematics Subject Classification. Primary 05C25; Secondary 05C40,
16W50.
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1. Introduction

Let S be a semigroup. The directed power graph
−→G (S) of S is a directed

graph with S as the set of vertices and (u, v) is an arc if and only if u �= v
and v is a power of u. The undirected power graph G(S) of S is the underlying
undirected graph of

−→G (S), that is, S is the set of vertices and two distinct
vertices are adjacent if and only if one of them is a power of the other. The
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directed power graphs of groups are defined in [27], and the directed power
graphs of semigroups are first introduced and studied in [28–30]. In these
papers, as explained in [1], the term ‘power graph’ is used for the directed
power graph, which covers the notion of the undirected power graph as the
underlying undirected graph of the directed power graph. The undirected
power graphs are the main object of study in [6], as well as in [3,4], and
where they are also briefly referred to as the power graphs. In this paper,
we use the brief term ‘power graph’ for an ‘undirected power graph’ since we
focus on undirected power graphs only.

Studying not only power graphs, but also enhanced power graphs and
Cayley graphs of algebraic structures is important since such graphs have
many useful applications, see for instance [2,18,20,22–24,26,31,32,36–38]
and references therein.

Power graphs (both directed and undirected) of both groups and semi-
groups are widely present in the recent literature. The reader is referred to
the survey [1] and references therein, and for the more recent results, one
may consult for instance [5,34,35] and their references. As observed in [1], it
is interesting to investigate the power graphs of ring constructions. Graded
rings form one of the most important classes of ring constructions (cf. [22]).

Let R be a ring, and S a partial groupoid, that is, a set with a par-
tial binary operation. Also, let {Rs}s∈S be a family of additive subgroups
of R, called components. We say that R =

⊕
s∈S Rs is S-graded and R in-

duces S (or R is an S-graded ring inducing S) [21,22,25] if the following two
conditions hold:

(i) RsRt ⊆ Rst whenever st is defined;
(ii) RsRt �= 0 implies that the product st is defined.

The set HR =
⋃

s∈S Rs is called the homogeneous part of R, and it is obvi-
ously a semigroup with respect to multiplication of R. Elements of HR are
called homogeneous elements of R.

The definition of an S-graded ring inducing S applies to both associative
and nonassociative rings but throughout the paper, all rings are assumed
to be associative. Examples of S-graded rings inducing S can be found in
[11,12,16,17,22,25]. Note that the notion of an S-graded ring inducing S
covers all the other notions of graded rings, including group rings and crossed
products.

Problem 1.1. (Problem 11 in [1]) Let G be a group, R a ring, and let R[G] =
⊕

g∈G Rg be a group ring. Reduce various parameters of the graphs
−→G (HR[G])

and G(HR[G]) to the corresponding properties of the coefficient ring R and
the group G.

Problem 1.2. (Problem 12 in [1]) Let G be a group with unity e, and let
R =

⊕
g∈G Rg be a crossed product or a group-graded ring. Reduce the

various parameters of the graphs
−→G (HR) and G(HR) to the corresponding

properties of the subring Re and the group G.

In this paper, we are interested in the connectedness of the power graph
G(HR), where R =

⊕
s∈S Rs is generally an S-graded ring inducing S. The
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aim is to investigate how the connectedness of G(HR), and, in some cases, of
G(HR\{0}), depends on the connectedness of the power graphs G(Re) of the
multiplicative semigroups Re, where e runs through the set of all idempotent
elements of S, and, where appropriate, on the connectedness of the power
graph of S.

2. Preliminaries

To formulate and prove the results, we recall some notions and facts regarding
semigroups and S-graded rings inducing S. For more details, the reader is
referred to [8,22].

Let S be a semigroup. A subsemigroup I of S is said to be an ideal if
SI ∪ IS ⊆ I. Let I and J be ideals of S such that J ⊆ I. The Rees quotient
semigroup I/J is defined as the semigroup with zero 0 obtained from I by
identifying all elements of the ideal J with 0. If I is with zero and J = 0,
then I/J = I. In case J = ∅, we put I/J = I. The quotient I/J is called a
factor of S.

Let S be a semigroup with zero 0. An element x ∈ S is said to be
nilpotent if there exists a positive integer n such that xn = 0. We say that S
is nil if it entirely consists of nilpotent elements.

Let R =
⊕

s∈S Rs be an S-graded ring inducing S. The degree δ(a)
of a nonzero homogeneous element a of R is defined as the unique s ∈ S
such that a ∈ Rs. Let us define δ(0) = 0, R0 = 0, and S0 = S ∪ {0}. By
putting st = 0 for pairs (s, t) for which st was not originally defined, we
make S0 a groupoid throughout the article (see for instance [19]). Obviously,
R =

⊕
s∈S Rs =

⊕
s∈S0 Rs. Moreover, without loss of generality, we assume

throughout the article, unless otherwise stated, that 0 ∈ S, since the zero
element of R may be regarded as a component of R, in which case, of course,
S0 = S. However, in case S is a groupoid with or without a zero, we put
S0 = S ∪ {0} (here if S has a zero, 0 is a new adjoined zero). Moreover, if S
is a groupoid with zero 0, then R is said to be a contracted S-graded ring if
it is S-graded with R0 = 0. If S is without a zero, then an S-graded ring R
is a contracted S0-graded ring.

A subring A of R is said to be homogeneous if A =
⊕

s∈S A ∩ Rs.
Moreover, the largest homogeneous subring of R contained in a subring A
of R is equal to

⊕
s∈S A ∩ Rs. In particular, if A is a homogeneous ideal

of R, then R/A =
⊕

s∈S Rs/A ∩ Rs is a graded ring too. If T ⊆ S, then
RT :=

⊕
t∈T Rt. Of course, if T is a subgroupoid (ideal) of S, we have that

RT is a homogeneous subring (ideal) of R. The ring R is said to be graded-nil
if all of its homogeneous elements are nilpotent.

We also recall that R is said to be graded by a cancellative S if each of
the equalities su = tu �= 0 or us = ut �= 0 implies s = t for s, t, u ∈ S.

Next, we recall some facts on the structure of semigroups and its relation
to graded rings, to facilitate the proof of Theorem 3.14.

By a 0-simple semigroup we mean a semigroup S with zero 0 such that
there are no other ideals of S except for {0} and S itself.
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If E(S) denotes the set of all idempotent elements of a semigroup S,
then E(S) can be partially ordered by the relation ≤ defined by e ≤ f if and
only if e = ef = fe. A 0-simple semigroup S is said to be completely 0-simple
if it contains a primitive idempotent element, that is, an idempotent which
is minimal among nonzero idempotent elements of S under ≤.

Let G be a group, I and Λ nonempty sets, and let P = (pλi) be a
Λ× I-matrix with entries in G0. The Rees matrix semigroup M0(G0; I,Λ;P )
over G0 with sandwich matrix P consists of all triples (g; i, λ), for i ∈ I,
λ ∈ Λ, and g ∈ G0, where all triples of the form (0; i, λ) are identified with
0, and multiplication is defined by the rule (g; i, λ)(h; j, μ) = (gpλjh; i, μ).
In case G is trivial, the Rees matrix semigroup M0(G0; I,Λ;P ), denoted by
M0(e0; I,Λ;P ), is called elementary Rees matrix semigroup, which is actually
the rectangular 0-band I × Λ.

By the Rees Theorem, a completely 0-simple semigroup is isomorphic to
a Rees matrix semigroup in which every row and every column of the sand-
wich matrix contains a nonzero entry, and conversely, every such semigroup
is completely 0-simple.

Let S = M0(G0; I,Λ;P ) be a Rees matrix semigroup, and let e be the
unity of G. Define ∼⊆ S × S by (g; i, λ) ∼ (h; j, μ) if and only if i = j and
λ = μ. Clearly, ∼ is a congruence on S, and S′ = S/ ∼ is isomorphic to the
elementary Rees matrix semigroup M0(e0; I,Λ;P ′) with P ′ = (p′

λi), where
p′

λi = 0 if pλi = 0 and p′
λi = e otherwise. If R =

∑
(g;i,λ)∈S R(g;i,λ) is a

contracted S-graded ring, then we may regard R as a contracted S′-graded
ring with the components R′

(e;i,λ) =
∑

g∈G R(g;i,λ) (see Remark 1 in [7]).
Obviously, each R′

(e;i,λ) is a G-graded ring.

3. Results

The following result from [6] is frequently used throughout the article.

Proposition 3.1. (Proposition 2.7 in [6]) Let S be a semigroup. Then, if the
power graph G(S) is connected, S contains at most one idempotent element.

The following lemma is clear but we include its proof for the sake of
completeness.

Lemma 3.2. Let S be a semigroup with a nonempty set of idempotent ele-
ments E(S). If e ∈ E(S), and if G(S) is connected, then s and e are adjacent
in G(S) for every e �= s ∈ S.

Proof. Since G(S) is connected and E(S) is nonempty, Proposition 3.1 tells
us that S contains exactly one idempotent element, denote it by e. Let s �= e
be an element of S. Since G(S) is connected, there exists a path between e
and s, say e, s1, s2, . . . , sk, s. Since s1 �= e, and since s1 and e are adjacent
in G(S), there exists a positive integer n1 such that sn1

1 = e. Now, s1 and s2

are adjacent in G(S), so s
n′
2

1 = s2, for some positive integer n′
2, or s

n′′
2

2 = s1,
for some positive integer n′′

2 . In any case, sn2
2 = e, for some positive integer

n2. So, inductively, like in the proof of Proposition 2.7 in [6], we obtain that



MJOM On the Connected Power Graphs of Semigroups Page 5 of 14 119

there exists a positive integer n such that sn = e. Hence, s and e are adjacent
in G(S). �

Let R =
⊕

s∈S Rs be an S-graded ring inducing S. Our interest in
relating the connectedness of the power graphs of the semigroups of the ring
components of R with the connectedness of the power graph of HR stems out
the following observation.

Theorem 3.3. Let R =
⊕

s∈S Rs be an S-graded ring inducing S. Then the
power graph G(HR) is connected if and only if R is a graded-nil ring.

Proof. Let the power graph G(HR) be connected. By Proposition 3.1, the
connectedness of G(HR) implies that 0 is the only idempotent element of the
semigroup HR. Let 0 �= x ∈ HR. According to Lemma 3.2, we have that x
and 0 are adjacent in G(HR). Hence, xn = 0, for some positive integer n,
that is, x is nilpotent. It follows that HR is a nil semigroup. Hence, R is a
graded-nil ring.

Conversely, if R is a graded-nil ring, then HR is a nil semigroup. Hence,
every vertex of G(HR) is adjacent to 0. Therefore, the power graph G(HR) is
connected. �

The previous theorem holds in greater generality. Namely, we note that
Lemma 3.2, together with Proposition 3.1, tells us in particular that the
power graph of an arbitrary semigroup S with zero is connected if and only
if S is a nil semigroup. We record this in the form of the following corollary.

Corollary 3.4. Let S be a semigroup with zero. Then, G(S) is connected if
and only if S is nil.

There are many graded rings which are in particular graded-nil, provided
that some conditions on their homogeneous subrings or on their grading sets
are satisfied. For instance, results from Section 6.3 in [22], together with
Theorem 3.3, give many examples of graded rings such that the power graphs
of their homogeneous parts are connected.

Likewise, there are many examples of rings which are not graded-nil. For
instance, group rings over fields, observed as group graded rings. However,
according to Theorem 2.9 in [6], the power graph of a group G is connected
if and only if G is periodic. Let F be a finite field, G a finite group, and F [G]
the group ring. Observe F [G] as a G-graded ring

⊕
g∈G Fg, and put HF [G] =

⋃
g∈G Fg. Clearly, HF [G] is not a nil semigroup, and so, by Theorem 3.3,

the power graph of HF [G] is not connected. On the other hand, H∗
F [G] =

HF [G]\{0} forms a group. Since H∗
F [G] is finite, the power graph of H∗

F [G] is
connected. Let us take a look at this situation more closely in the general
setting.

Let R =
⊕

s∈S Rs be an S-graded ring inducing S, which has no nontriv-
ial homogeneous right or left zero divisors. Then, if Rs and Rt are nonzero,
we have that RsRt �= 0, and so st exists. Therefore, in this case, there is
no need to assume that zero is a component of R, and therefore, no need
of introducing the zero element 0 into S. We simply index by S only the
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nonzero additive subgroups of R. Then, it follows that S is an associative
groupoid, that is, a semigroup. Namely, RsRtRu �= 0 implies (st)u = s(tu).
Also, the set H∗

R = HR\{0} is a semigroup under the multiplication of R.
Since there are no nontrivial homogeneous right or left zero divisors, 0 is an
isolated vertex in G(HR). Hence, the power graph G(HR) is not connected.
However, as we have seen, the connectedness of the power graph G(H∗

R) is
not seldom. Note that, in this case, G(H∗

R) coincides with the graph obtained
from G(HR) by removing the vertex 0. Now, let us assume that R is moreover
a ring with unity 1, and that S is cancellative. Then we know that the set of
all idempotent elements E(S) of S is finite, the ring components Re of R are
rings with unities 1e, and 1 =

∑
e∈E(S) 1e (see for instance [19]).

Theorem 3.5. Let R =
⊕

s∈S Rs be an S-graded ring inducing S, which has
no nontrivial homogeneous right or left zero divisors. Moreover, let R be with
unity 1, and let S be cancellative. Then the power graph G(H∗

R) is connected
if and only if the following conditions are satisfied:

(i) S is a monoid with unity e;
(ii) The power graph G(R∗

e) of the multiplicative semigroup R∗
e = Re\{0} is

connected;
(iii) The power graph G(S) is connected.

Proof. Let the power graph G(H∗
R) be connected. Then H∗

R contains at most
one idempotent element by Proposition 3.1. Hence, by the discussion pre-
ceding this theorem, since S is cancellative, and R is with unity 1, we have
that S contains exactly one idempotent element e, and 1e = 1 is the only
idempotent element in H∗

R. Therefore, e is the unity of S. We have already
established that S is a semigroup in case R has no nontrivial homogeneous
right or left zero divisors. Hence (i) holds.

Let xe and ye be distinct elements from R∗
e .

Case a. 1 ∈ {xe, ye}. Without loss of generality, let xe = 1. Since G(H∗
R)

is connected, and 1 is the only idempotent element of H∗
R, by Lemma 3.2, we

get that 1 and ye are adjacent in G(R∗
e).

Case b. 1 /∈ {xe, ye}. Since G(H∗
R) is connected, like in the previous case,

we obtain that xe and 1 are adjacent in G(R∗
e) as well as are ye and 1. Hence,

there exists a path between xe and ye in G(R∗
e).

Therefore, the power graph G(R∗
e) is connected, that is, (ii) is satisfied.

Now we prove that the power graph G(S) is connected. Take arbitrary
distinct elements s and t from S.

Case a. e ∈ {s, t}. Let s = e, and let y ∈ Rt be a nonzero element. Since
G(H∗

R) is connected, Lemma 3.2 implies that y and 1 ∈ Re = Rs are adjacent
in G(H∗

R). Hence, there exists a positive integer n such that yn = 1. It follows
that δ(y)n = tn = e. Therefore, t and e = s are adjacent in G(S).

Case b. e /∈ {s, t}. By the previous case, sm = e and tn = e, for some
positive integers m and n. Therefore, there exists a path between s and t.

It follows that G(S) is connected, and so, (iii) holds as well.
Conversely, let us assume that conditions (i), (ii) and (iii) hold. Again,

by the discussion preceding this theorem, the hypotheses on R and S, together
with (i) imply that 1e = 1. Now, let x and y be distinct elements of H∗

R.
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Case 1. δ(x) �= δ(y) and 1 ∈ {x, y}. Let x = 1. Since G(S) is connected,
Lemma 3.2 implies that there exists a positive integer n such that δ(y)n = e.
Therefore, yn ∈ R∗

e , since R has no nontrivial homogeneous right or left zero
divisors. Since G(R∗

e) is connected by (ii), it follows, as before, that there
exists a positive integer m such that (yn)m = 1 = x. So, x and y are adjacent
in G(H∗

R).
Case 2. δ(x) �= δ(y) and 1 /∈ {x, y}. By the previous case, x is adjacent

to 1 and 1 is adjacent to y in G(H∗
R). Hence, x and y are connected by a path

in G(H∗
R).

Case 3. δ(x) = δ(y). Let δ(x) = δ(y) = s. If s = e, we are done, since
G(R∗

e) is connected by assumption. So, let us assume that s �= e. By the
connectedness of G(S), by Lemma 3.2, there exists a positive integer n such
that sn = e. Hence, xn, yn ∈ R∗

e . So, there exist xe and ye ∈ R∗
e such that

xn = xe and yn = ye. However, G(R∗
e) is connected. Hence, by Lemma 3.2,

xp
e = 1 and yq

e = 1 for some positive integers p and q. Therefore, x is adjacent
to 1 and 1 is adjacent to y. Thus, x and y are connected by a path in G(H∗

R).
Hence, the power graph G(H∗

R) is connected. �

Let S be a semigroup, R a ring, and R[S] a semigroup ring. By observing
R[S] =

⊕
s∈S Rs as an S-graded ring with the components Rs (s ∈ S), we

put HR[S] =
⋃

s∈S Rs. If e is an idempotent element of S, then the rings Re
and R are isomorphic. Therefore, the following corollary is immediate.

Corollary 3.6. Let R[S] be a semigroup ring over a domain R with unity,
where S is a cancellative semigroup. Then the power graph G(H∗

R[S]) is con-
nected if and only if the following conditions hold:

(i) S is a monoid;
(ii) The power graph G(R∗) of the multiplicative semigroup R∗ = R\{0} is

connected;
(iii) The power graph G(S) is connected.

Remark 3.7. Under the assumptions of Theorem 3.5, we note that (iii) im-
plies (i). Namely, if G(S) is connected, then, by Proposition 3.1, there exists
at most one idempotent element in S. Since S is cancellative, by the dis-
cussion preceding Theorem 3.5, we have that the set E(S) of all idempotent
elements of S is finite, and that 1 =

∑
e∈E(S) 1e, where 1e are unities of the

ring components Re. Therefore, S contains exactly one idempotent element
e ∈ S, and 1e = 1. Hence, since S is a semigroup, it is a monoid with unity
e. However, it is known that (i) does not imply (iii). For instance, by The-
orem 2.9 in [6], the power graph of the additive group Z of integers is not
connected.

If (iii) holds but (ii) does not, then, since G(R∗
e) is a subgraph of G(H∗

R),
the graph G(H∗

R) cannot be connected. Moreover, (ii) without (iii) does not
imply the connectedness of G(H∗

R). Namely, let us observe the group ring
F2[Z] as a group graded ring

⊕
n∈Z

F2n, where F2 is the field with two el-
ements. Now, the graph G(F∗

2) is connected, while G(Z) is not. Hence, (ii)
holds but (iii) does not. We may invoke Lemma 3.2 to conclude that the
power graph G(H∗

F2[Z]
) is not connected.
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A particular case of S-graded rings inducing S with no nontrivial homo-
geneous right or left zero divisors is a graded division ring, that is a graded
ring R for which H∗

R is a group (for instance, when R is a group ring over a
field). In that case, S is a group as well (see for instance [33]). Therefore, the
following corollary to Theorem 3.5 also holds.

Corollary 3.8. Let R be an S-graded ring inducing S, which is a graded di-
vision ring, and let e be the unity of S. Then the power graph G(H∗

R) is
connected if and only if the following conditions are satisfied:

(i) The power graph G(R∗
e) of the multiplicative semigroup R∗

e = Re\{0} is
connected;

(ii) The power graph G(S) is connected.

Let us now return to Theorem 3.3. It turns out we can say more in the
case of semigroup rings.

Theorem 3.9. Let R[S] be a semigroup ring. Then the following statements
are equivalent:

(i) The power graph G(HR[S]) is connected;
(ii) The power graph G(R) of the multiplicative semigroup R is connected.

Proof. (i) ⇒ (ii) Since the power graph G(HR[S]) is connected, by Theo-
rem 3.3, we have that HR[S] is a nil semigroup. In particular, for every idem-
potent element e ∈ S, it follows that Re is a nil multiplicative semigroup.
Hence, the power graph G(Re) is connected by Corollary 3.4. Since the rings
Re and R are isomorphic for every idempotent element e ∈ S, we get that
G(R) is connected too.

(ii) ⇒ (i) Corollary 3.4 tells us that the connectedness of the power
graph G(R) implies that R is a nil semigroup as a multiplicative semigroup.
It follows that HR[S] is a nil semigroup, that is, R[S] is a graded-nil ring.
Hence, according to Theorem 3.3, the power graph G(HR[S]) is connect-
ed. �

The situation in the case of S-graded rings inducing S in general is not
that nice, even if S is a cancellative semigroup. Namely, let R =

⊕
s∈S Rs be

an S-graded ring inducing S, and let the power graph G(HR) be connected.
By Theorem 3.3, HR is then a nil semigroup. In particular, for every idem-
potent element e ∈ S, the multiplicative semigroup Re is nil. Therefore, by
Corollary 3.4, the power graph G(Re) is connected. However, the converse
statement does not hold in general. For instance, let A be a ring which is
not nil, and let x be an indeterminate. Then the ring R = A[x] of polynomi-
als without nonzero constant terms is a Z-graded ring with the components
Rk = {0} if k ≤ 0 and Rk = Axk if k > 0. The power graph G(HR) is not
connected, yet G(R0), as a graph consisting of a single vertex, is connected.

It is, therefore, natural to search for conditions which would guarantee
the connectedness of the power graph G(HR), provided that the power graphs
G(Re) are connected for all idempotent elements e ∈ S. We omit the trivial
case of S being finite. So, from now on, we assume that the grading set is
infinite.
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Before we give desired conditions, we recall a few more notions and facts
on S-graded rings inducing S. Throughout, J(A) stands for the Jacobson
radical of a ring A, that is, the intersection of all maximal modular right
ideals of A.

The notion of an S-graded ring inducing S is equivalent to that of a
graded ring studied in [9,10,33]. Let R =

⊕
s∈S Rs be an S-graded ring

inducing S. A homogeneous right ideal I of R is said to be a graded modular
right ideal [9] if there exists a homogeneous element u ∈ R, called a left unity
modulo I, such that ux−x ∈ I for every homogeneous element x ∈ R. If S is
cancellative, and I a proper graded modular right ideal of R, then all of the
left unities modulo I are of the same degree, which is an idempotent element
of S, called the degree of I. If S is cancellative, then the graded Jacobson
radical [9], denoted by Jg(R), is equal to the intersection of all maximal
graded modular right ideals of R. For the study of other radicals of S-graded
rings inducing S, and related concepts, we refer the reader to [11–19,21,25]
and references therein.

If R =
⊕

s∈S Rs is an S-graded ring inducing S and R′ =
⊕

s′∈S′ Rs′

an S′-graded ring inducing S′, then a mapping φ : R → R′ is called a ho-
mogeneous homomorphism [9,10,33] if it is a ring homomorphism such that
φ(HR) ⊆ HR′ , and if δ(φ(x)) = δ(φ(y)) �= 0′ implies that δ(x) = δ(y) for all
x, y ∈ HR.

Theorem 3.10 [9,10]. Let R =
⊕

s∈S Rs be an S-graded ring inducing S. If
S is cancellative, then:

(i) The mapping I �→ I ∩ Re defines a one-to-one correspondence between
the set of all maximal graded modular right ideals of R of degree e and
the set of all maximal modular right ideals of the ring Re. In particular,
Jg(R) ∩ Re = J(Re) for every idempotent element e ∈ S;

(ii) The largest homogeneous ideal Jg
l (R) of R, contained in J(R), is con-

tained in Jg(R). If x ∈ Jg
l (R) is a homogeneous element, then there

exists an idempotent element e ∈ S and an integer n such that xn ∈ Re.

Theorem 3.11. Let R =
⊕

s∈S Rs be an S-graded ring inducing S, and let S
be cancellative. Moreover, let us assume that R has a unique maximal right
ideal, and that RsRt = 0 whenever s and t are nonidempotent elements whose
product st is an idempotent element of S. Then, the power graph G(HR) is
connected if and only if the power graph G(Re) of the multiplicative semigroup
Re is connected for every idempotent element e ∈ S.

Proof. If the power graph G(HR) is connected, we have already established
that the power graphs G(Re) are connected, where e runs through the set of
all idempotent elements of S.

Now, let e be an idempotent element of S, and let the power graph
G(Re) be connected. Then, it follows from Corollary 3.4 that Re is nil. We
claim that then R is graded-nil under the given hypotheses. Let M be a
unique maximal right ideal of R. Since S is cancellative and since Re is nil
for every idempotent element e ∈ S, it is clear that the ring R is without a
unity (see for instance [19]).
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Case 1. M is not a modular right ideal of R. Then there are no maximal
modular right ideals of R. Hence, R = J(R), and by Theorem 3.10, we then
have that Jg

l (R) = Jg(R) = J(R) = R. Take an arbitrary homogeneous
element x ∈ R. By Theorem 3.10, there exists an idempotent element e ∈ S
and an integer n such that xn ∈ Re. Since Re is nil, x is nilpotent. Therefore,
R is graded-nil.

Case 2. M is a modular right ideal of R. Then the Jacobson radical
J(R) = M is a unique maximal modular right ideal of R. Let I be a maximal
graded modular right ideal of R. If it is maximal as a right ideal of R, then
I = J(R). Otherwise, the maximal ideal of R which contains I is also a
modular right ideal of R, and hence, coincides with J(R). Therefore, in any
case, I ⊆ J(R). It follows that all of the maximal graded modular right ideals
of R are contained in J(R). Hence, Jg(R) ⊆ J(R). In particular, since the
largest homogeneous ideal Jg

l (R) of R, contained in J(R), is contained in
Jg(R) by Theorem 3.10(ii), it follows that Jg(R) = Jg

l (R). Therefore, Jg(R)
is a maximal homogeneous ideal of R, and a unique maximal graded modular
right ideal of R of degree, say e ∈ S.

Now, having in mind that (R/Jg(R))e = Re/J(Re), let φ : R/Jg(R) →
Re/J(Re) be the projection mapping, that is, the mapping defined by φ(x) =
x + J(Re) if x ∈ Re, and φ(x) = 0 + J(Re) if x /∈ Re (x ∈ HR/Jg(R)). This
mapping is well defined. Moreover, φ is a surjective homogeneous homomor-
phism due to our assumption that RsRt = 0 whenever s and t are nonidem-
potent elements whose product st is an idempotent element of S (cf. the
proof of Theorem 3.2 in [14]). Since Jg(R) is a maximal homogeneous ideal
of R, the ring R/Jg(R) has no nontrivial homogeneous ideals. It follows that
either kerφ = 0 or ker φ = R/Jg(R). If ker φ = R/Jg(R), then Re = J(Re).
However, this is impossible by Theorem 3.10(i), since Jg(R) �= R. Namely,
Re = J(Re) implies that a left unity modulo Jg(R) belongs to Jg(R), that
is, Jg(R) = R. Hence, ker φ = 0, and so, φ is a homogeneous homomorphism
which is both injective and surjective. Therefore, every homogeneous element
from R/Jg(R) can be identified with a unique element from Re/J(Re), and
vice-versa. Thus, if s ∈ S is a nonidempotent element of S, and x ∈ Rs, it fol-
lows that x ∈ Jg(R). However, Jg(R) = Jg

l (R), and so, by Theorem 3.10(ii)
there exists an integer n such that xn ∈ Rf for some idempotent element
f ∈ S. Since Rf is nil, we have that x is a nilpotent element of R. Hence, R
is graded-nil.

Thus, in both cases, R is graded-nil, and so, Theorem 3.3 tells us that
the power graph G(HR) is indeed connected. �

Remark 3.12. Let us note that if R is an S-graded ring inducing S, where S
is cancellative, the assumption that RsRt = 0 whenever s and t are nonidem-
potent elements whose product st is an idempotent element of S, is equivalent
to assuming that R is an S′-graded ring inducing S′, where S′ is cancella-
tive, and such that the product of nonidempotent elements of S′ cannot be
a nonzero idempotent element of S′. One example of such a groupoid is the
multiplicative semigroup of nonnegative integers.
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Also, one cannot remove the assumption of R =
⊕

s∈S Rs having a
unique maximal right ideal as it can be seen from the already given polyno-
mial ring example.

Corollary 3.13. Let G be a group with unity e, and let R =
⊕

g∈G Rg be a
G-graded ring. Moreover, let us assume that R has a maximal right ideal,
and that RgRg−1 = 0 for every g ∈ G\{e}. Then, the power graph G(HR) is
connected if and only if the power graph G(Re) of the multiplicative semigroup
Re is connected.

Proof. This follows immediately from the previous theorem since R is a con-
tracted G0-graded ring. �

The final result of this article shows that the cancellativity of the grading
set is not necessary to have the equivalence in terms of connectedness between
the power graph of the semigroup of homogeneous elements and the power
graphs of the semigroups of the ring components.

Recall that an epigroup is a semigroup in which some power of any
element is contained in a subgroup of the given semigroup (see for instance
[22]).

Theorem 3.14. Let S be an epigroup with a finite number of idempotent
elements, and let R =

⊕
s∈S Rs be an S-graded ring. Moreover, let us assume

that for every nontrivial subgroup G of S, a nonzero ring RG =
⊕

s∈G Rs has
a unique maximal right ideal, and that RsRs−1 = 0 whenever s ∈ G\{e},
where e is the unity of G. Then the power graph G(HR) is connected if and
only if the power graph G(Re) of the multiplicative semigroup Re is connected
for every idempotent element e ∈ S.

Proof. If G(HR) is connected, then we already know that G(Re) is connected
for every idempotent element e ∈ S.

Let us assume that G(Re) is connected for every idempotent element
e ∈ S. Then the ring Re is nil for every idempotent element e ∈ S. According
to Theorem 3.3, it is enough to prove that R is graded-nil, under the given
hypotheses. As we know, since S is an epigroup with a finite number of
idempotent elements, S0 has a finite ideal chain

S0 = S1 ⊇ S2 ⊇ · · · ⊇ Sm ⊇ Sm+1 = {0},

such that for each i, we have that Si/Si+1 is a completely 0-simple semi-
group (with a finite sandwich matrix) or a nil semigroup, see for instance
Theorem 1.9 in [22]. Let us observe R as a contracted S0-graded ring. For
every i we know that RSi+1 is an ideal of RSi

and that RSi
/RSi+1 is a con-

tracted Si/Si+1-graded ring. Moreover, the ring components of RSi
/RSi+1 are

the ring components of R corresponding to idempotent elements of Si\Si+1.
Generally, a homogeneous subring of RSi

/RSi+1 which corresponds to a sub-
group G of Si/Si+1 is the homogeneous subring RG of R. In case Si/Si+1

is a nil semigroup, we have that RSi
/RSi+1 is graded-nil as a contracted

Si/Si+1-graded ring. In case Si/Si+1 is a completely 0-simple semigroup, it
is isomorphic to a Rees matrix semigroup M0(G0; I,Λ;P ). We claim that
RSi

/RSi+1 is graded-nil as a contracted Si/Si+1-graded ring in this case too.
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Case I. G0 is a trivial group with zero, that is, M0(G0; I,Λ;P ) is an
elementary Rees matrix semigroup. Then, RSi

/RSi+1 may be observed as a
ring graded by the rectangular band I×Λ. Hence, all of its components are the
ring components. Therefore, by the above discussion, and by our assumption
on the rings Re, where e runs through the set of idempotent elements of S,
we have that RSi

/RSi+1 is a graded-nil ring.
Case II. G0 is not a trivial group with zero. Then, we may observe

RSi
/RSi+1 as an elementary Rees matrix semigroup graded ring all of whose

components are G-graded rings, as explained in the preliminaries. Denote
this elementary Rees matrix semigroup by Mi. Hence, by the hypothesis,
each component of an Mi-graded ring RSi

/RSi+1 , if distinct from the zero
ring, has a unique maximal right ideal, and the product of its non-ring com-
ponents that correspond to mutually inverse elements of G is zero. Now,
Corollary 3.13 implies that each nonzero component of an Mi-graded ring
RSi

/RSi+1 is graded-nil. Of course, each zero ring component of an Mi-graded
ring RSi

/RSi+1 is graded-nil too. So, it follows that RSi
/RSi+1 is graded-nil

as a contracted Si/Si+1-graded ring.
Hence, indeed, if Si/Si+1 is a completely 0-simple semigroup, RSi

/RSi+1

is graded-nil as a contracted Si/Si+1-graded ring.
Now, let s ∈ S be a nonidempotent element, and let x ∈ Rs. We claim

that x is nilpotent. So, we may assume that x �= 0. Now, x+RS2 ∈ RS1/RS2 .
It may be that x ∈ RS2 (if s ∈ S2). Suppose x /∈ RS2 . If S1/S2 is a nil
semigroup, then xn′

1 ∈ RS2 for some integer n′
1. Otherwise, S1/S2 is a Rees

matrix semigroup, and, as we concluded above for an arbitrary i, we have
that RS1/RS2 is graded-nil as a contracted S1/S2-graded ring. Therefore,
xn′′

1 ∈ RS2 for some integer n′′
1 . Hence, in all cases, xn1 ∈ RS2 for some integer

n1. If xn1 = 0, we are done. Otherwise, we may assume that xn1 + RS3 is
either a homogeneous element of the ring RS2/RS3 of a nonidempotent degree
or xn1 ∈ RS3 . Namely, if sn1 were an idempotent element of S, then x would
be a nilpotent element, and we would be done. Suppose xn1 /∈ RS3 . Now,
S2/S3 is either a nil semigroup or a Rees matrix semigroup. By repeating
the process, we obtain that (xn1)n2 ∈ RS3 for some integer n2, and so on.
Eventually we arrive at xn ∈ RSm+1 , for some integer n, that is, xn = 0.
Hence, R is graded-nil as an S-graded ring, which completes the proof. �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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