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Abstract. We derive several explicit formulae for finding infinitely many
solutions of the equation AXA = XAX, when A is singular. We start
by splitting the equation into a couple of linear matrix equations and
then show how the projectors commuting with A can be used to get
families containing an infinite number of solutions. Some techniques for
determining those projectors are proposed, which use, in particular, the
properties of the Drazin inverse, spectral projectors, the matrix sign
function, and eigenvalues. We also investigate in detail how well-known
similarity transformations like Jordan and Schur decompositions can be
used to obtain new representations of the solutions. The computation of
solutions by the suggested methods using finite precision arithmetic is
also a concern. Difficulties arising in their implementation are identified
and ideas to overcome them are discussed. Numerical experiments shed
some light on the methods that may be promising for solving numerically
the matrix equation.
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1. Introduction

This paper deals with the equation

AXA = XAX, (1.1)

where A ∈ C
n×n is a given complex matrix and X ∈ C

n×n has to be de-
termined. This equation is called the Yang–Baxter-like (YB-like, for short)
matrix equation. If A is singular (nonsingular), then the equation (1.1) is said
to be the singular (nonsingular) Yang–Baxter-like matrix equation. The equa-
tion (1.1) has its origins in the classical papers by Yang [30] and Baxter [1].
Their pioneering works have led to extensive research on the various forms of
the Yang–Baxter equation arising in braid groups, knot theory and quantum
theory (see, e.g., the books [22,31]). The YB-like equation (1.1) is also known
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as the star-triangle-like equation in statistical mechanics; see, e.g.,
[20, Part III].

A possible way of solving (1.1) is to multiply out both sides, which
leads to a system of n2 quadratic equations with n2 variables. However, this
strategy may have little practical interest, unless n is very small, say n = 2
or n = 3.

Note that the YB-like matrix equation (1.1) has at least two trivial
solutions: X = 0 and X = A. Of course, the interest in solving it is in
calculating non-trivial solutions. Discovering collections of solutions of (1.1)
or characterizing its full set of solutions have attracted the interest of many
researchers in the last few years. Since a complete description of the solution
set for an arbitrary matrix A seems very challenging, many authors have
been rather successful in doing so by imposing restrictive conditions on A.
See, for instance, [5,19] for A idempotent, [7,9] for A diagonalizable, and [28]
for matrices with rank one.

Our interest in this paper is to solve the equation for a general singular
matrix A, without additional assumptions. We recall that among the pub-
lished works on the YB-like equation (1.1), few are devoted to the numerical
computation of its solutions. With this paper, we expect to give a contribu-
tion to fill in this gap. In our recent paper [16], we have proposed efficient and
stable iterative methods for spotting commuting solutions for an arbitrary
matrix A. Nevertheless, those methods are not designed for determining non-
commuting solutions and there are a few cases where it is difficult to choose
a good initial approximation (e.g., A is non-diagonalizable).

The principal contributions of this work w.r.t. the solutions of singular
YB-like equation AXA = XAX are:

(i) To establish a new connection between the YB-like equation and a set
of two linear matrix equations, whose general solution is known, this is
also valid for a nonsingular matrix A (–cf. Sect. 3);

(ii) To explain clearly the role of projectors commuting with A in the pro-
cess of deriving new families containing infinitely many solutions and to
discuss how to find such projectors (–cf. Sect. 4);

(iii) To show how the similarity transformations can be utilized for locating
more explicit representations of the solutions (–cf. Sect. 7);

(iv) To propose effective numerical methods for solving the singular YB-like
equation, alongside with a thorough discussion of their numerical be-
haviour and practical clues for implementation in MATLAB (–cf. Sects.
8 and 9).
By 0 and I, we mean respectively the zero and identity matrices of

appropriate orders. For a given matrix Y, we denote by N(Y ) and R(Y ), the
null space and the range of Y , respectively; v(λ) stands for the index of a
complex number λ with respect to a square matrix Y, that is, v(λ) is the
index of the matrix Y − λI (check the beginning of Sect. 2 for the definition
of the index of a matrix).
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2. Basics

Given an arbitrary matrix A ∈ C
n×n, consider the following conditions, where

X ∈ C
n×n is unknown:

(gi.1) AXA = A (gi.2) XAX = X (gi.3) AX = (AX)∗

(gi.4) XA = (XA)∗ (gi.5) AX = XA (gi.6) Aind(A)+1X = Aind(A),

where Y ∗ denotes the conjugate transpose of the matrix Y and ind(A) stands
for the index of a square matrix A, which is the smallest non-negative integer
� such that rank(A�) = rank(A�+1). If m(λ) is the minimal polynomial of A,
then � is the multiplicity of λ = 0 as a zero of m(λ) [2, p. 154]. Thus, � ≤ n,
where n is the order of A.

A complex matrix X ∈ C
n×n satisfying the condition (gi.2) is called

a generalized outer inverse or a {2}-inverse of A, while the unique matrix
X verifying the conditions (gi.1) to (gi.4) is the well-known Moore–Penrose
inverse of A, which is denoted by A† [23]; the unique matrix X obeying the
conditions (gi.2), (gi.5) and (gi.6) is the Drazin inverse, which is denoted by
AD and is given by

AD = A�(A2�+1)†A�, (2.1)

where � ≥ ind(A). Other instances of generalized inverses may be defined [2],
but are not used in this paper. We refer the reader to [2], [17, Chapter 4],
and [18, Sect. 3.6] for the theory of generalized inverses. For both theory and
computation, see [29].

In the following, we revisit two important matrix decompositions, the
Jordan and the Schur decompositions, whose proofs can be found in many
Linear Algebra and Matrix Theory textbooks (see, for instance, [14]). Both
decompositions will be used later in Sect. 7 to detect explicit solutions of the
singular matrix equation AXA = XAX. In addition, due to the numerical
stability of the Schur decomposition, it is the basis of the algorithm that will
be displayed in Fig. 1.

Lemma 2.1 (Jordan Canonical Form). Let A ∈ C
n×n and let J := diag

(Jn1(λ1), . . . , Jns
(λs)), (n1 + · · · + ns = n), where λ1, . . . , λs are the eigen-

values of A, not necessarily distinct, and Jk(λ) ∈ C
k×k denotes a Jordan

block of order k. Then there exists a nonsingular matrix S ∈ C
n×n such that

A = SJS−1. The Jordan matrix J is unique up to the ordering of the blocks
Jk, but the transforming matrix S is not.

For a singular matrix A of order n with rank(A) = r < n, it is possible
to reorder the Jordan blocks in a way that those blocks associated with the
eigenvalue 0 appear in the bottom-right of J with decreasing size, that is,
J := diag

(
Jn1(λ1), . . . , Jnp

(λp), Jnp+1(0), . . . , Jns
(0)

)
, with np+1 ≥ . . . ≥ ns

(0 ≤ p ≤ s). So A can be decomposed in the form

A = SJS−1 = S

[
J1 0
0 J0

]
S−1, (2.2)

where J1 = diag
(
Jn1(λ1), . . . , Jnp

(λp)
)

is nonsingular and J0 = diag(
Jnp+1(0), . . . , Jns

(0)
)

is nilpotent.



85 Page 4 of 19 A. Kumar et al. MJOM

Lemma 2.2 (Schur Decomposition). For a given matrix A ∈ C
n×n, there

exists a unitary matrix U and an upper triangular T such that A = UTU∗,
where U∗ stands for the conjugate transpose of U. The matrices U and T are
not unique.

If A is singular, then by reordering the eigenvalues in the diagonal of T,
where the zero eigenvalues appear in the bottom-right, the Schur decompo-
sition of A can be written in the form

A = UTU∗ = U

[
B1 B2

0 0

]
U∗, (2.3)

where B1 is s × s and B2 is s × (n − s), with r = rank(A) ≤ s ≤ n − 1. Note
that B2 is not, in general, the zero matrix.

Now we recall a lemma that provides an explicit solution for a well-
known pair of linear matrix equations.

Lemma 2.3 ([4,24]). Let A,B,C,D ∈ C
n×n. The pair of matrix equations

AX = B, XC = D is consistent if and only if

AD = BC, AA†B = B, DC†C = D,

and its general solution is given by

X = A†B + (I − A†A)DC† + (I − A†A)Y (I − CC†), (2.4)

where Y is an arbitrary n × n complex matrix.

Necessary and sufficient conditions for the equations AX = B, XC = D
to have a common solution are attributed to Cecioni [4] and the expression
(2.4) for a general common solution to Rao and Mitra [24, p. 25]. See also [2,
p. 54] and [23].

3. Splitting the YB-Like Matrix Equation

In the next lemma, we split a general YB-like matrix equation into a system
of matrix equations similar to the one in Lemma 2.3. Such a result will be
useful in the next section.

Lemma 3.1. Let A ∈ C
n×n be given and let B ∈ C

n×n be such that the set of
matrix equations

AX = B, XB = BA (3.1)

has at least a solution X0. Then X0 is a solution of (1.1). Conversely, if X0

is a solution of (1.1), then there exists a matrix B such that

AX0 = B, X0B = BA.

Proof. If X0 is a solution of the simultaneous equations in (3.1), then AX0 =
B and X0B = BA. Therefore AX0A = BA = X0B = X0AX0. Conversely,
suppose that X0 is a solution of AXA = XAX, i.e. AX0A = X0AX0. Letting
B := AX0, we have BA = X0B, which implies that X0 is a solution of
(3.1). �
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Note that Lemma 3.1 is also valid for the nonsingular YB-like matrix
equation. Using Lemmas 2.3 and 3.1, we must look for a matrix B that makes
(3.1) consistent, that is,

ABA = B2, AA†B = B, BAB†B = BA. (3.2)

For a given singular matrix A and any of B satisfying (3.2), the matrices of
the form

X = A†B + (I − A†A)BAB† + (I − A†A)Y
(
I − BB†), (3.3)

constitute an infinite family of solutions to (1.1), where Y ∈ C
n×n is

arbitrary.

4. Commuting Projectors-Based Solutions

Discovering all the matrices B in (3.2) may be a very hard task, apparently so
difficult as solving the YB-like matrix equation. However, if A is singular and
B is taken as in the following lemma, we have the guarantee that B satisfies
the conditions in (3.2). Thus, many collections containing infinite solutions
to the singular YB-like matrix equation can be obtained, as shown below.

Lemma 4.1. Let A ∈ C
n×n be singular and P be any idempotent matrix com-

muting with A, that is, P 2 = P and PA = AP. Then, for B ∈ {
A2P, A2

(I − P )}, any matrix X obtained as in (3.3) is a solution of the singular
YB-like matrix equation (1.1).

Proof. If B = A2P , then the equality PA = AP implies that B commutes
with A. Using the equalities P 2 = P and BB†B = B, it is not difficult to
show that the conditions in (3.2) hold for the matrix B and hence the result
follows. Similar arguments apply to B = A2(I − P ). �

By Lemma 4.1, we must look for matrices P that are idempotent and
commute with a given singular matrix A, to define B. Below, several cases
with examples of matrices B satisfying the conditions of Lemma 4.1 will be
presented when A is a singular matrix.

Case 1. B ∈ {
0, A2

}
.

This case arises, for instance, when P is a trivial commuting projector,
that is, P = 0 or P = I. Let us assume first that B = 0. Now the system
(3.1) reduces to the matrix equation AX = 0 which is clearly solvable. From
(3.3), its general set of solutions can be determined through the formula

X = (I − A†A)Y. (4.1)

Geometrically speaking, the set of matrices constructed by (4.1) is a
vector subspace of Cn×n, and hence the sum of solutions of the YB-like ma-
trix equation or a scalar multiplication yield new solutions. Since rank(A) =
rank(A†A) and rank(I −A†A) = n− rank(A), such a subspace has dimension
equal to n(n − rank(A)).
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Now, if we assume that B = A2, by (3.3),

X = A†A2 + (I − A†A)A3
(
A2

)†
+ (I − A†A)Y

(
I − A2

(
A2

)† )
, (4.2)

where Y ∈ C
n×n is arbitrary, gives another family of solutions to (1.1).

In the following result, we identify the solutions defined by (4.1) and
(4.2) that commute with A.

Proposition 4.2. Let A ∈ C
n×n be singular. For arbitrary matrices Y1, Y2 ∈

C
n×n, the following formulae generate solutions of the equation (1.1) that

commute with A:

X1 = (I − A†A)Y1(I − AA†); (4.3)

X2 = A†A2 + (I − A†A)A2A† + (I − A†A)Y2(I − AA†). (4.4)

Proof. Every solution X1 of AX = 0, XA = 0 belongs to the solution space
defined by AX = 0, whose general solution is determined by (4.1). Let X1 be
a common solution of the equations AX = 0, XA = 0. Then X1 commutes
with A and satisfies AXA = XAX. By Lemma 2.3, X1 is of the form (4.3).

Clearly, the set of matrix equations AX = A2, XA = A2 is consistent
and its solution set agrees with that of AX = A2, XA2 = A3, which is
delivered by (4.2). Hence, AXA = XAX. If X2 is a solution of the coupled
matrix equations AX = A2, XA = A2, then it is a commuting solution of
(1.1) and, again by Lemma 2.3, X2 is given by (4.4). �

The following lemma gives theoretical support for Case 2.

Lemma 4.3. Let A ∈ C
n×n be a given singular matrix and let M ∈ C

n×n

be any matrix such that AM = MA. Then PM = MMD is an idempotent
matrix commuting with A.

Proof. Using the properties of the Drazin inverse, in particular, MDMMD =
MD, it is easily proven that PM is an idempotent matrix. It follows from
Theorem 7 in [2, Chapter 4] that MD is a polynomial in M and hence MDA =
AMD, because AM = MA. This shows that PM commutes with A. �

Case 2. B ∈ {
A2PM , A2 (I − PM )

}
.

It should be mentioned that the matrix M in Lemma 4.3 must be sin-
gular to avoid trivial cases. Examples of such matrices M can be taken from
the infinite collection

Mλi
= {f(A) − f(λi)I : f(x) is any polynomial over C},

for each λi ∈ σ(A), where σ(A) is the spectrum of A. A trivial example is to
take M = A yielding PM = AAD.

The next case (Case 3) involves the matrix sign function. Before pro-
ceeding, let us recall its definition [13, Chapter 5]. Let the n×n matrix A have

the Jordan canonical form A = ZJZ−1 so that J =
[

J (1) 0
0 J (2)

]
, where the

eigenvalues of J (1) ∈ C
p×p lie in open left half-plane and those of J (2) ∈ C

q×q

lie in open right half-plane. Then S := sign(A) = Z

[−Ip×p 0
0 Iq×q

]
Z−1 is
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named as the matrix sign function of A. If A has any eigenvalue on the imag-
inary axis, then sign(A) is undefined. Here S2 = I and AS = SA. Note
also that P = (I + S)/2 and Q = (I − S)/2 are projectors onto the invari-
ant subspaces associated with the eigenvalues in the right half-plane and left
half-plane, respectively. For more properties and approximation of the matrix
sign function, see [13].

Since in this work A is assumed to be singular, we cannot use directly
sign(A) because it is undefined. To overcome this situation, authors in [25]
have shifted and scaled the eigenvalues of A so that the matrix sign of such
resulting matrices exists and commutes with A. Nevertheless, there is an
absence of a systematic and algorithmic approach to generate these newly
matrices.

Towards this aim, let us consider the matrix Aα := αI + A, where
α is a suitable complex number. Note that the scalar α must be carefully
chosen to avoid the intersection of the spectrum of Aα with the imaginary
axis. Assuming that A has at least one eigenvalue that does not lie on the
imaginary axis, a simple procedure for calculating several values of α that
leads to the acquisition of the maximal number of projectors is described as
follows:

1. Let {r1, . . . , rs} be the set constituted by the distinct real parts of the
eigenvalues of A written in ascending order, that is, r1 < r2 < · · · < rs;

2. For k = 1, . . . , s − 1, choose αk = −(rk + rk+1)/2.

This way of calculating αk guarantees that the eigenvalues of the successive
Aαk

do not intersect the imaginary axis and avoids the trivial situations.
That is to say, the spectrum of Aαk

does not lie entirely on either the open
right half-plane or on the open left-plane, in which cases sign(Aαk

) = I or
sign(Aαk

) = −I. If Sα := sign(Aα), we see that Sαk
and Aαk

commute,
because Sαk

commutes with Aαk
. Hence (I + Sαk

) /2 and (I − Sαk
) /2 are

projectors commuting with A. In the particular case when all the eigenvalues
of A are pure imaginary, we may consider Ã = −iA and then apply the above
procedure to Ã instead of A.

Case 3. B ∈ {A2
(

I+Sα

2

)
, A2

(
I−Sα

2

)}.
The upcoming case depends on the spectral projectors of A, which have

played an important role in the theory of the YB-like matrix equation, [6–8].
Yet, there is not any definite procedure to find out them in computer algebra
systems. The next proposition contributes to settle it out.

Proposition 4.4. Let λ1, . . . , λs be the distinct eigenvalues of A ∈ C
n×n and

assume that Gλi
denotes the spectral projector onto the generalized eigenspace

N((A − λiI)v(λi)) along R((A − λiI)v(λi)), associated with the eigenvalue λi.
Then, for any i = 1, . . . , s, Gλi

can be represented as Gλi
= I−(A−λiI)(A−

λiI)D, where v(λi) is the index of λi.

Proof. Let ri := rank((A − λiI)v(λi)). Since N((A − λiI)v(λi)) and R((A −
λiI)v(λi)) are complementary subspaces of C

n, the spectral projector Gλi

onto N((A − λiI)v(λi)) along R((A − λiI)v(λi)) can be written as: Gλi
=

Qi diag (0ri×ri
, I(n−ri)×(n−ri)

)
Q−1

i , with Qi = [Xi|Yi], in which the
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columns of Xi and Yi are bases for R((A − λiI)v(λi)) and N((A − λiI)v(λi)),
respectively; see, for example, [2] and [21, Chapters 5 and 7].

On the other hand, the core-nilpotent decomposition of the matrix
(A − λiI) via Qi can be written in the form Q−1

i (A − λiI)Qi = diag(Cri×ri
,

N(n−ri)×(n−ri)), where Cri×ri
is nonsingular, and N(n−ri)×(n−ri) is nilpo-

tent of index v(λi), [21, Chapter 5, p. 397]. Now we have, (A − λiI) =
Qi diag

(
Cri×ri

, N(n−ri)×(n−ri)

)
Q−1

i and hence the Drazin inverse of (A −
λiI) is given by (A − λiI)D = Qi diag

(
C−1

ri×ri
, 0(n−ri)×(n−ri)

)
Q−1

i , [21,
Chapter 5, p. 399]. This further implies that I − (A − λiI)(A − λiI)D =
Qi diag(0ri×ri

, I(n−ri)×(n−ri))Q−1
i , which coincides with Gλi

. �
Now, we revisit a well-known result, whose proof can be found in the

literature (e.g., [2,8,21]).

Lemma 4.5. Let us assume that the notations and conditions of the Proposi-
tion 4.4 are valid. Then:

(a) G2
λi

= Gλi
, AGλi

= Gλi
A, and Gλi

Gλj
= 0, for i �= j;

(b) Pλi
= I − Gλi

= (A − λiI)(A − λiI)D is the complementary
projector onto R((A − λiI)v(λi)) along N((A − λiI)v(λi)) commuting
with A. In addition, Pλi

Pλj
= Pλj

Pλi
;

(c)
∑s

i=1 Gλi
= I;

(d) The sum of any number of matrices among the Gλi
’s is also a

commuting projector with A. Thus, for any nonempty subset Γ of
{1, 2, . . . , s}, EΓ is a projector commuting with A, where EΓ :=

∑
i∈Γ Gλi

;
(e) Pλi

=
∑s

j=1
j �=i

Gλj
.

Note that the number of projectors EΓ’s is 2s − 1. Next, in Case 4,
we present a new choice of B in Lemma 4.1, using the projectors described
above.

Case 4. B ∈ {A2EΓ}.
To derive the last case (see Case 5 below), we use again the matrix sign

function. It is based on the following result.

Proposition 4.6. Let λ1, . . . , λs be the distinct eigenvalues of A ∈ C
n×n. For

any scalar α and i = 1, . . . , s, the eigenvalues of the matrix Âλi
= A + (α −

λi)Gλi
, consist of those of A, except that one eigenvalue λi of A is replaced

by α. Moreover, if sign(Âλi
) exists, then it commutes with A.

Proof. Let A = P diag
(
J̃1, . . . , J̃i, . . . , J̃s

)
P−1 be the Jordan decomposition

of A, where J̃i is the Jordan segment corresponding to λi and P is nonsin-
gular. Here A − λiI = P diag

(
J̃1 − λiĨ1, . . . , J̃i − λiĨi, . . . , J̃s − λiĨs

)
P−1,

where Ĩi is the identity matrix of the same order as J̃i. From [2, Chap-
ter 4, Theorem 8], it follows that (A − λiI)D = P diag

(
(J̃1 − λiĨ1)−1, . . . ,

0, . . . , (J̃s − λiĨs)−1
)

P−1 and we get Gλi
= I − (A − λiI)(A − λiI)D =

P diag
(
0, . . . , Ĩi, . . . ,0) P−1. Thus,
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Âλi
= A + (α − λi)Gλi

= P diag
(
J̃1, . . . , J̃i + (α − λi)Ĩi, . . . , J̃s

)
P−1

= P diag
(
J̃1, . . . , J̃i(α), . . . , J̃s

)
P−1, (4.5)

where J̃i(α) is the matrix J̃i with α in the place of λi. This shows that the
eigenvalues of the matrix Âλi

coincide with those of A with the exception
that λi is replaced by α in Âλi

. This proves our first claim in the proposition.
It is clear that no eigenvalue of Âλi

lies on the imaginary axis, since we are
assuming that sign(Âλi

) exists. Let Ŝλi
= sign(Âλi

) = P diag
(
sign(J̃1), . . . ,

sign(J̃i(α)), . . . , sign(J̃s)
)

P−1. Then a simple calculation shows that Ŝλi

commutes with A because sign(J̃i) = ±Ĩi. This proves our second claim. �

Case 5. B ∈ {A2
(

I+Ŝλi

2

)
, A2

(
I−Ŝλi

2

)
}.

We stop here and do not pursue to attain more possibilities for B. This
could be considered for future works.

5. Connections Between the Projectors and B

For a given singular matrix A, the five cases presented in the previous section
aimed at finding a commuting projector P (i.e., AP = PA and P 2 = P )
to obtain a matrix B that will be inserted in (3.3) to produce a family of
solutions to the YB-like equation (1.1).

One issue arising in this approach for spotting B is that distinct pro-
jectors may correspond to the same B. That is to say, if P1 and P2 are two
distinct commuting projectors then we may have B = A2P1 = A2P2, which
means that A2(P1 − P2) = 0, that is, R(P1 − P2) ⊆ N(A2). To get more
insight into this connection between the projectors and B, we will present
two simple examples.

Example 1. Let A =

⎡

⎣
1 1 1
0 1 0
1 1 1

⎤

⎦ , which is a diagonalizable singular matrix

with spectrum σ(A) = {0, 1, 2}. Solving directly the equations AP = PA and
P 2 = P , we achieve a total of eight distinct commuting projectors:

P1 = 0, P2 = 1
2

⎡

⎣
1 1 1
0 2 0
1 −1 1

⎤

⎦ , P3 = 1
2

⎡

⎣
1 1 1
0 0 0
1 1 1

⎤

⎦ , P4 =

⎡

⎣
0 0 0
0 1 0
0 −1 0

⎤

⎦ ,

P5 = I, P6 = I − P2, P7 = I − P3, P8 = I − P4.

However, there are just four distinct Bi = A2Pi (i = 1, . . . , 8):

B1 = A2P1 = 0, B2 = A2P2 = A2, B3 = A2P3, B4 = A2P4,

because B5 = B2, B6 = B1, B7 = B4 and B8 = B3. The same four
distinct Bi’s can be obtained by means of the sign function (Case 3) for



85 Page 10 of 19 A. Kumar et al. MJOM

α ∈ {−5/2,−3/2,−1/2, 1/2}. However, Case 3 gives only six distinct projec-
tors: P1, P2, P3, P5, P6, P7, instead of eight projectors. Note that the matrix
sign function of Aα just depends on the sign of its eigenvalues, so choosing
other values for α would not change the results. We have found those values
of α by the method described in the previous section for Case 3. If we now
find the six spectral projectors Pλi

’s and Gλi
’s, for all λi ∈ σ(A) (see Propo-

sition 4.4 and Lemma 4.5), we obtain all the commuting projectors, except
the trivial ones P1 and P5. Those six spectral projectors suffice to collect the
four distinct matrices, Bi’s.

Note that, for this matrix A, we can use (3.3) to achieve four families
of infinite solutions to the equation AXA = XAX.

Example 2. Let A =

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦, which is a diagonalizable singular matrix:

A = S diag(3, 0, 0)S−1, where S =

⎡

⎣
1 1 1
1 −1 1
1 0 −2

⎤

⎦ . It can be proven that all

the distinct commuting projectors P are given by

P = S

[
μ 0
0 P̃

]
S−1,

where μ ∈ {0, 1} and P̃ is any idempotent matrix of order 2. Since for any of
those projectors B = A2P = 0 if μ = 0, and B = A2P = A2 if μ = 1, there
are just two distinct matrices: B = 0 and B = A2. The same result is given
independently by Cases 3 and 4, leading to two families of infinite solutions
to the equation AXA = XAX given by (3.3).

6. More Families of Explicit Solutions

In this section, we provide more explicit representations for solutions to the
singular YB-like equation, but now with the help of the index of A.

Proposition 6.1. Assume that A ∈ C
n×n is a given singular matrix such that

ind(A) = �.

(i) If
Y =

(
A�+1

)†
A�(I − AZ) + Z, (6.1)

where Z ∈ C
n×n is an arbitrary matrix, then, for any V ∈ C

n×n,

X = A�−1 (AY − I)V (6.2)

is a solution of the YB-like matrix equation AXA = XAX.
(ii) If

Y = (I − ZA)A�
(
A�+1

)†
+ Z, (6.3)

where Z ∈ C
n×n is an arbitrary matrix, then, for any V ∈ C

n×n,

X = V (Y A − I) A�−1 (6.4)

is a solution of the YB-like matrix equation AXA = XAX.
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Proof. It is well known that any square matrix has a Drazin inverse, which
implies in particular that the matrix equation (gi.6) is solvable. From [17,
Theorem 6.3], it follows that A�+1

(
A�+1

)†
A� = A�. Now, a simple calculation

shows that the matrix Y given in (6.1) is a solution of the matrix equation
(gi.6), that is, A�+1Y = A�, while Y in (6.3) satisfies Y A�+1 = A�. Moreover,
any solution of the matrix equation A�+1X = A� is of the form given in (6.1),
and any solution of XA�+1 = A� can be calculated from (6.3). The proof that
both X in (6.2) and X in (6.4) satisfy the singular YB-like matrix equation
(1.1), follows from a few matrix calculations. �

7. Solutions Based on Similarity Transformations

Lemma 7.1. Let A,B ∈ C
n×n be similar matrices, that is, A = SBS−1, for

some nonsingular complex matrix S. If Y is a solution of the YB-like matrix
equation BY B = Y BY, then X = SY S−1 is a solution of the YB-like matrix
equation AXA = XAX. Reciprocally, if X satisfies AXA = XAX then there
exists Y verifying BY B = Y BY such that X = SY S−1.

The previous result, whose proof is easy, can be utilized in particular
with similarity transformations like the Jordan canonical form or the Schur
decomposition (–cf. Sect. 2).

Let us assume that A = SJS−1 = S

[
J1 0
0 J0

]
S−1 is the Jordan de-

composition of A, where S, J0 and J1 are as in (2.2). If Y =
[

Y1 Y2

Y3 Y4

]
is a

solution of Y JY = JY J, conformally partitioned as J, then
{

Y1J1Y1 + Y2J0Y3 = J1Y1J1, Y1J1Y2 + Y2J0Y4 = J1Y2J0,

Y3J1Y1 + Y4J0Y3 = J0Y3J1, Y3J1Y2 + Y4J0Y4 = J0Y4J0.
(7.1)

Hence, one can determine all the solutions of equation (1.1) by solving
(7.1) for the matrices Yi (i = 1, 2, 3, 4). It turns out that building up its
complete set of solutions seems to be unattainable. However, if we consider
the special case for Y in which Y2 = 0 and Y3 = 0, then (7.1) reduces to

{
Y1J1Y1 = J1Y1J1,

Y4J0Y4 = J0Y4J0,
(7.2)

consisting of two independent nonsingular and singular YB-like matrix equa-
tions for J1 and J0, respectively. Now, we arrive at the following proposition
with the help of Lemma 7.1.

Proposition 7.2. Let A ∈ C
n×n be a singular matrix and consider the no-

tations used in (2.2). Then, X = S

[
Y1 0
0 Y4

]
S−1 is a solution of equation

(1.1), where Y1 and Y4 satisfy their corresponding YB-like equations in (7.2).

Now an important issue arises: how to solve (7.2)? A possible way is
to take Y1 = J1 or Y1 = 0, which satisfies the first equation in (7.2), and
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then finding Y4 by any of the suggested representations discussed in Sects.
4 and 6. Hence, a family of solutions to (1.1) resulting from Proposition
7.2 is commuting or non-commuting according to Y4 is commuting or non-
commuting, respectively.

If Z =
[

Z1 Z2

Z3 Z4

]
, which is assumed to be conformally partitioned as T

in the matrix decomposition (2.3), is a solution of ZTZ = TZT , then we
come down with the next set of four equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z1B1Z1 + Z1B2Z3 = B1Z1B1 + B2Z3B1,

Z1B1Z2 + Z1B2Z4 = B1Z1B2 + B2Z3B2,

Z3B1Z1 + Z3B2Z3 = 0,

Z3B1Z2 + Z3B2Z4 = 0.

(7.3)

Solving (7.3) is again a challenging task, therefore, we restrict this task
to the particular situation when Z3 = 0. Now (7.3) becomes

{
Z1B1Z1 = B1Z1B1,

Z1B1Z2 + Z1B2Z4 = B1Z1B2,
(7.4)

which leads us to the following proposition:

Proposition 7.3. Let A ∈ C
n×n be a singular matrix of the form (2.3). Then,

X = U

[
Z1 Z2

0 Z4

]
U∗, where Z1, Z2, and Z4 satisfy simultaneously the equa-

tions (7.4), is a solution of the equation (1.1).

Some examples of solutions to (7.4) are:
(i) Z1 = 0, Z2 and Z4 arbitrary;
(ii) Z1 = B1, Z2 = B2, and Z4 = 0;
(iii) Any commuting solution of Z1B1Z1 = B1Z1B1, along with Z2 = B2

and Z4 = 0;
(iv) Z1 = B2

1BD
1 , Z2 = B1B

D
1 B2, Z4 = 0, for the case when B1 is singular.

Other solutions to (7.4) may be determined by finding Z1 in the first
equation Z1B1Z1 = B1Z1B1, which is a YB-like equation, and then determine
the unknowns Z2 and Z4 at a time by solving the multiple linear system

[Z1B1 Z1B2]s×n

[
Z2

Z4

]

n×(n−s)

= B1Z1B2, (7.5)

provided it is consistent. For instance, if we fix Z1 = B1, we know that (7.5)
is consistent, because Z2 = B2 and Z4 = 0 satisfy it. Moreover, since B1 is
s × s, B2 is s × (n − s), with r = rank(A) ≤ s ≤ n − 1, and s < n, it has
infinitely many solutions.

8. Numerical Issues

We shall now consider the problem of solving the singular YB-like matrix
equation in finite precision environments.
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Most of the explicit formulae derived in Sect. 4 involve the computation
of generalized inverses. We recall that the Moore–Penrose inverse is available
in MATLAB through the function pinv, which is based on the singular value
decomposition of A. Many other methods and scripts are available in the
literature. For instance, some iterative methods of Schulz-type (e.g., hyper-
power methods) have received much attention in the last few years; see [26]
and the references therein. See also [27], and [29] for the Drazin and other in-
verses. Formula (3.3) with B given in Cases 3 and 5 requires the computation
of the matrix sign function, which is available through many methods (check
[13, Chapter 5]). In Sect. 9, a Schur decomposition-based algorithm available
in [12] is used to calculate the matrix sign function. Here, the accuracy of the
attained solution to the singular equation (1.1) depends on the difficulties
arising in the intermediate estimation of those functions, viz: Moore–Penrose
inverses, sign functions, or Drazin inverses which influence the relative error
affecting the detected solutions to the singular YB-like equation.

Although the Jordan canonical decomposition is a very important tool
in the theory of matrices, we must recall that its determination using finite
precision arithmetic is a very ill-conditioning problem [10,15]. Excepting a
few particular cases, the numerical calculation of solutions of the YB-like
matrix equation by means of the Jordan decomposition must be avoided.
Instead, we shall resort to the Schur decomposition, whose stability properties
make it well-suited for approximations. Hence, we shall focus on designing
an algorithm based on (2.3).

Even this approach is not free of risks when applied to matrices with
multiple eigenvalues. We recall that the computation of repeated eigenvalues
may be very sensitive to small perturbations. There are also the problems
of knowing when it is reasonable to interpret a small quantity as being zero
and how to correctly order the eigenvalues in the diagonal of the triangular
matrix to get the form (2.3).

To illustrate this, let us consider the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎣

−2 −7 −8 −19

0 −6 −6 −12
0 3 2 7
1 2 3 6

⎤

⎥
⎥
⎥
⎥
⎦

,

which is nilpotent. All of its eigenvalues are zero and its Jordan canonical
form is J4(0), that is, it just involves a Jordan block of order 4. Hence,
rank(A) = 3. However, if we calculate the eigenvalues of A in MATLAB,
which has unit roundoff u ≈ 2−53, by the function eig, we get

2.2968e-04 + 2.2974e-04i
2.2968e-04 - 2.2974e-04i

-2.2968e-04 + 2.2963e-04i
-2.2968e-04 - 2.2963e-04i

,

instead of values with magnitudes more close to u. This is quite expected and
cannot be viewed as a failure of the algorithm used by MATLAB, because
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Figure 1. MATLAB script for finding solutions of the sin-
gular YB-like matrix equation by Schur decomposition com-
bined with the solution of (7.5), with s = r

the condition number (evaluated through the function condeig) of the single
eigenvalue of A is about 4.7934e+11. This example illustrates the shortcom-
ings that may arise in the numerical calculation of solutions of the YB-like
matrix equation by Schur decomposition when A has badly conditioned eigen-
values.

Despite such type of examples, the Schur decomposition performs very
well for general singular matrices, as will be shown in Sect. 9.

In Fig. 1, we provide a MATLAB script based on (7.5) for obtaining
solutions of the singular YB-like matrix equation. It involves the Schur de-
composition, A = UTU∗, which is reordered to move all the elements in
the diagonal of T smaller than or equal to a certain quantity epsilon to
the bottom-right. The tolerance epsilon determines what elements in the
diagonal of T are viewed as corresponding to the zero eigenvalue. To iden-
tify a suitable epsilon, we sort the eigenvalues of T by increasing order of
magnitude and assume that epsilon is the (n − r)-th eigenvalue in the or-
dered vector, where r = rank(A). Then a solution for the rank deficient linear
system (7.5) is attained by appropriate solvers.

If all of the eigenvalues of A are well conditioned or if A is diagonaliz-
able, epsilon is in general small; otherwise, it can be large (say, 10−4) (–cf.
Sect. 9).

9. Numerical Experiments

We have considered several YB-like matrix equations corresponding to 15
singular matrices with sizes ranging from 3 × 3 to 20 × 20. The first three
matrices (labelled with numbers from 1 to 3) are randomized and the next
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five matrices (from 4 to 8) were taken from the function matrix in the Ma-
trix Computation Toolbox [11]; matrices labelled with 9 to 15 are academic
examples, most of which are non-diagonalizable. We have selected the fol-
lowing four methods to get solutions of those 15 YB-like matrix equations in
MATLAB:

• alg-Case1: script based on Case 1, with B = A2, and subsequent use
of (4.2), with Y being a randomized matrix;

• alg-sign: script based on finding a B as in Case 3, with α = −(rs−1 +
rs)/2, and subsequent insertion in (3.3), with Y being a randomized
matrix; here {r1, . . . , rs} is the set constituted by the distinct real parts
of the eigenvalues of A written in ascending order; for all the matrices
in the experiments we have s > 1;

• alg-spectral: script based on Case 4, with B = A2Pλs
, where λs is

the n-th component of the vector eig(A) obtained in MATLAB, and
subsequent use of (3.3), with Y being a randomized matrix;

• alg-schur: script provided in Fig. 1.

Experiments related to other suggested formulae are not shown here.
alg-Case1, alg-sign, and alg-spectral involve the computation of the
Moore–Penrose inverse, which has been carried out by the function pinv of
MATLAB. The computation of the Drazin inverse in alg-spectral has been
based on (2.1). To estimate the quality of the approximation X̃ to a solution
X of equation (1.1), we use the expression provided in [16, Equation (15)]
for estimating the relative error, which is recalled here for convenience:

estrel(X̃) =
‖R(X̃)‖

‖M(X̃)‖ ‖X̃‖ , (9.1)

where ‖.‖ stands for the Frobenius norm, R(X) := AXA−XAX and M(X) :=
AT ⊗A−I⊗(XA)−(AX)T ⊗I ∈ C

n2×n2
(⊗ denotes the Kronecker product).

At the top of Fig. 2, we observe alg-Case1 performs very well for all the
test matrices, with the exception of matrices 7 and 8, where the computation
of the Moore–Penrose inverse causes some difficulties. Fortunately, in these
two cases, alg-schur gives good results. So they seem to complement very
well, in the sense that when one method gives poor results, the other one has
a good performance. Matrices 7 and 8 have, respectively, sizes 19 × 19 and
20 × 20, and ranks 12 and 13. In the case of alg-schur, relative errors are
larger for matrices 6, 9, 11, and 15, which are non-diagonalizable and have
ill-conditioned eigenvalues as well. It is interesting to note that a comparison
between both graphics shows a synchronization of the relative errors with
the values of epsilon. alg-sign and alg-spectral give quite poor results
for some matrices, in which large errors arise mainly in the calculation of
Moore-Penrose or Drazin inverses. In the case of alg-sign, the choice of
α may also influence the accuracy of the computed solutions. It is worth
pointing out that arbitrary matrices Y with a large norm in (3.3) may also
cause difficulties.
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Figure 2. Top: relative error estimates for the solutions of
(1.1) obtained by alg-Case1, alg-sign, alg-spectral, and
alg-schur. Bottom: values of epsilon defined in the script
of Fig. 1. The value of epsilon missing for matrix no. 10 is
exactly zero

10. Conclusion

At this point, it is worth highlighting the excellent features of the proposed
techniques for computing solutions of singular YB-like matrix equation:

• They are valid for any singular matrix;
• They generate infinitely many solutions;
• They perform well in finite precision environments;

and also our main theoretical contributions:

• We have provided a novel connection between the YB-like matrix equa-
tion and a well-known system of linear matrix equations, and

• We have investigated the role of commuting projectors in the process
of designing explicit formulae and have been able to find a large set of
examples of those projectors.

We have also overcome the main difficulties arising in the implementa-
tion of the Schur decomposition-based formula of Proposition 7.3 combined
with (7.5), by designing an effective algorithm. We recall that many ideas of
the paper (for instance, the splitting of the YB-like equation) can be extended
to the nonsingular case.
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