Mediterr. J. Math. (2022) 19:59 https://doi.org/10.1007/s00009-022-01978-8 1660-5446/22/020001-23 *published online* February 18, 2022 -c The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Mediterranean Journal of Mathematics

Generating the Mapping Class Group by Two Torsion Elements

Oğuz Yıldız

Abstract. We prove that the mapping class group of a closed connected orientable surface of genus $q \geq 6$ is generated by two elements of order *g*. Moreover, for $g \geq 7$, we obtain a generating set of two elements, of order *g* and *g'*, where *g'* is the least divisor of *g* greater than 2. We
also prove that the mapping class group is generated by two elements also prove that the mapping class group is generated by two elements of order $g/gcd(g, k)$ for $g \geq 3k^2 + 4k + 1$ and any positive integer k.

Mathematics Subject Classification. 20F65.

1. Introduction

The mapping class group $Mod(\Sigma_g)$ of a closed, connected orientable surface Σ_g is the group of orientation-preserving diffeomorphisms of $\Sigma_g \to \Sigma_g$ up to isotopy. Dehn [\[3](#page-21-0)] showed that $Mod(\Sigma_g)$ is generated by $2g(g-1)$ many Dehn twists. Afterwards, Lickorish [\[12](#page-21-1)] decreased this number to $3g-1$. Humphries $[6]$ $[6]$ introduced a generating set consisting of $2g + 1$ many Dehn twists and proved that this is the least such number.

Note that, the above-generating sets contain only elements of infinite order. Maclachlan [\[15\]](#page-21-3) proved that $Mod(\Sigma_g)$ can also be generated by only using torsions. Wajnryb [\[20\]](#page-22-0) proved that $Mod(\Sigma_q)$ can be generated by two elements; one of order $4g+2$ and the other a product of opposite Dehn twists. In this paper, we study the problem of generating $Mod(\Sigma_q)$ by two torsion elements of small orders. Korkmaz [\[8](#page-21-4)] found a generating set for $Mod(\Sigma_q)$ consisting of two torsion elements of order $4g + 2$. He also posed the following problem [\[10](#page-21-5)]: for which $k < 4g+2$, $Mod(\Sigma_g)$ can be generated by two elements of order k (A similar question is also asked by Margalit $[16]$)? In particular, what is the smallest such k ?

We first prove that $Mod(\Sigma_q)$ is generated by two elements of order g if $g \geq 6$.

Theorem 1. *The mapping class group* $Mod(\Sigma_q)$ *is generated by two elements of order g for* $g \geq 6$ *.*

We also obtain generating sets consisting of the elements of smaller orders.

Theorem 2. *For* $q > 7$ *the mapping class group* $Mod(\Sigma_q)$ *is generated by two elements of order* g *and order* g- *where* g- *is the least divisor of* g *such that* $g' > 2.$

Theorem 3. For $g \geq 3k^2 + 4k + 1$ and any positive integer k, the mapping *class group* $\text{Mod}(\Sigma_q)$ *is generated by two elements of order* $g/\text{gcd}(g, k)$ *.*

Since there is a surjective homomorphism from $Mod(\Sigma_g)$ onto the symplectic group $Sp(2g, \mathbb{Z})$, we have the following immediate result:

Corollary 4. *The symplectic group* Sp(2g,Z) *is generated by two elements of order g for* $q \geq 6$ *.*

See $\left[2,7,15,17\right]$ $\left[2,7,15,17\right]$ $\left[2,7,15,17\right]$ $\left[2,7,15,17\right]$ $\left[2,7,15,17\right]$ $\left[2,7,15,17\right]$ or $\left[14\right]$ $\left[14\right]$ $\left[14\right]$ for generating sets consisting of involutions, $\left[11,$ $\left[11,$ [13](#page-21-12)[,18](#page-22-2)] or [\[4\]](#page-21-13) for generating sets consisting of torsions and [\[19\]](#page-22-3) or [\[1\]](#page-21-14) for other generating sets for the mapping class groups.

2. Preliminaries

Throughout the paper, we always consider Σ_q , where all genera are depicted as in Fig. [1.](#page-2-0) Note that the rotation by $2\pi/g$ degrees about z-axis, denoted by R, is a well-defined self-diffeomorphism of Σ_q . Following the notation in $[21]$ $[21]$, we denote simple closed curves by lowercase letters a_i , b_i , c_i and corresponding positive Dehn twists by uppercase letters A_i , B_i , C_i or with the usual notation t_a, t_b, t_c , respectively. All indices should be considered modulo g. For the composition of diffeomorphisms, f_1f_2 means that f_2 is first and then f_1 comes second as usual.

Commutativity, braid relation and the following basic facts on the mapping class group are used throughout the paper for many times: For any simple closed curves c_1 and c_2 on Σ_g and diffeomorphism $f : \Sigma_g \to \Sigma_g$, $ft_{c_1}f^{-1} = t_{f(c_1)}$; c_1 is isotopic to c_2 if and only if $t_{c_1} = t_{c_2}$ in $Mod(\Sigma_q)$; and if c_1 and c_2 are disjoint, then $t_{c_1}(c_2) = c_2$. We always refer to [\[5\]](#page-21-15) for all the remaining properties of the mapping class groups.

Now, let us present Humphries minimal generating set for $Mod(\Sigma_q)$:

Theorem 5. (Dehn–Lickorish–Humphries) *The mapping class group* $Mod(\Sigma_q)$ *is generated by the set* $\{A_1, A_2, B_1, B_2, \ldots, B_g, C_1, C_2, \ldots, C_{g-1}\}.$

It is easy to see that the rotation R satisfies that $R(a_k) = a_{k+1}, R(b_k) =$ b_{k+1} and $R(c_k) = c_{k+1}$. Deducing from Theorem [5,](#page-1-0) Korkmaz [\[9](#page-21-16)] showed that the mapping class group is generated by four elements. Note that his first element is the rotation R and others are products of one positive and one negative Dehn twists.

Theorem 6. *If* $g \geq 3$ *, then the mapping class group* $Mod(\Sigma_q)$ *is generated by the four elements* $R, A_1A_2^{-1}, B_1B_2^{-1}, C_1C_2^{-1}$.

The next result easily follows from Theorem [6.](#page-1-1)

Figure 1. The curves a_i, b_i, c_i and the rotation R on the surface Σ*g*

Corollary 7. *If* $g \geq 3$ *, then the mapping class group* $Mod(\Sigma_q)$ *is generated by the four elements* $R, A_1 B_1^{-1}, B_1 C_1^{-1}, C_1 B_2^{-1}.$

Proof. Let H be the subgroup of $Mod(\Sigma_q)$ generated by the set ${R, A_1B_1^{-1}, B_1C_1^{-1}, C_1B_2^{-1}}.$

It is enough to show that H contains the elements $A_1A_2^{-1}$, $B_1B_2^{-1}$ and $C_1C_2^{-1}$ by Theorem [6.](#page-1-1)

It is easy to see that $B_2A_2^{-1} \in H$ since $B_2A_2^{-1} = R(B_1A_1^{-1})R^{-1} \in H$ and $B_2C_2^{-1} = R(B_1C_1^{-1})R^{-1} \in H$.

One can also show that $B_1 B_2^{-1} = (B_1 C_1^{-1})(C_1 B_2^{-1}) \in H$. Similarly, we have that $C_1 C_2^{-1} = (C_1 B_2^{-1})(B_2 C_2^{-1}) \in H$ and we also have that $A_1A_2^{-1} = (A_1B_1^{-1})(B_1B_2^{-1})(B_2A_2^{-1}) \in H.$

It follows from Theorem [6](#page-1-1) that $H = Mod(\Sigma_g)$, completing the proof of orollary. the corollary.

3. Twelve New Generating Sets for $Mod(\Sigma_q)$

In this section, we introduce twelve new generating sets consisting of two elements of small orders for the mapping class group. Following the ideas in [\[9](#page-21-16)], we construct generating sets consisting of R, an element of order q, and another element which can be expressed as a product of Dehn twists.

The corollaries in this section are mainly the corollaries of Theorem [6.](#page-1-1) We use the first four corollaries to create generating sets of elements of order g. We use Corollaries [12,](#page-8-0) [13,](#page-10-0) [14,](#page-11-0) [15,](#page-12-0) [16](#page-12-1) and [20](#page-16-0) to create generating sets of elements of order g and g' , where g' is the least divisor of g greater than 2. In the following, we give four new generating sets to prove Theorem [1.](#page-0-0)

Corollary 8. *If* $g = 6$ *, then the mapping class group* $Mod(\Sigma_q)$ *is generated by the two elements* R and $C_1B_4A_6A_1^{-1}B_5^{-1}C_2^{-1}$.

Proof. Let $F_1 = C_1 B_4 A_6 A_1^{-1} B_5^{-1} C_2^{-1}$. Let us denote by H the subgroup of Mod(Σ_6) generated by the set $\{R, F_1\}$.

If H contains the elements $A_1A_2^{-1}$, $B_1B_2^{-1}$ and $C_1C_2^{-1}$, then we are done by Theorem [6](#page-1-1) (Fig. [2\)](#page-3-0).

Figure 2. Proof of Corollary [8](#page-2-1)

Let

$$
F_2 = RF_1R^{-1}
$$

= $R(C_1B_4A_6A_1^{-1}B_5^{-1}C_2^{-1})R^{-1}$
= $RC_1R^{-1}RB_4R^{-1}RA_6R^{-1}RA_1^{-1}R^{-1}RB_5^{-1}R^{-1}RC_2^{-1}R^{-1}$
= $Rt_{c_1}R^{-1}Rt_{b_4}R^{-1}Rt_{a_6}R^{-1}Rt_{a_1}^{-1}R^{-1}Rt_{b_5}^{-1}R^{-1}Rt_{c_2}^{-1}R^{-1}$
= $t_{R(c_1)}t_{R(b_4)}t_{R(a_6)}t_{R(a_1)}^{-1}t_{R(b_5)}^{-1}t_{R(c_2)}^{-1}$
= $t_{c_2}t_{b_5}t_{a_1}t_{a_2}^{-1}t_{b_6}^{-1}t_{c_3}^{-1}$
= $C_2B_5A_1A_2^{-1}B_6^{-1}C_3^{-1}$

$$
F_3 = F_2^{-1} = C_3 B_6 A_2 A_1^{-1} B_5^{-1} C_2^{-1}.
$$

We have $F_3F_1(c_3, b_6, a_2, a_1, b_5, c_2)=(b_4, a_6, a_2, a_1, b_5, c_2)$ so that $F_4 = B_4 A_6 A_2 A_1^{-1} B_5^{-1} C_2^{-1} \in H$. Note that $F_3 F_1(c_3) = b_4$ since

$$
t_{F_3F_1(c_3)} = (F_3F_1)t_{c_3}(F_3F_1)^{-1}
$$

= $F_3F_1C_3F_1^{-1}F_3^{-1}$
= $C_3B_4C_3B_4^{-1}C_3^{-1}$
= $(t_{c_3}t_{b_4})t_{c_3}(t_{c_3}t_{b_4})^{-1}$
= $t_{t_{c_3}t_{b_4}(c_3)}$
= t_{b_4} .

We get $F_1F_4^{-1} = C_1A_2^{-1} \in H$. Hence, by conjugating $C_1A_2^{-1}$ with R iteratively, we get $C_i A_{i+1}^{-1} \in H$ for all *i*.
Let

Let

$$
F_5 = F_4(C_2A_3^{-1}) = B_4A_6A_2A_1^{-1}B_5^{-1}A_3^{-1},
$$

$$
F_6 = RF_5R^{-1} = B_5A_1A_3A_2^{-1}B_6^{-1}A_4^{-1}
$$

and

$$
F_7 = F_5 F_6 = B_4 A_6 B_6^{-1} A_4^{-1}.
$$

Hence, $(C_4A_5^{-1})F_7(c_4, a_5) = (b_4, a_5)$ so that $B_4A_5^{-1} \in H$. We then get $B_i A_{i+1}^{-1} \in H$ for all i and $B_i C_i^{-1} = (B_i A_{i+1}^{-1})(A_{i+1} C_i^{-1}) \in H$ for all i.

Similarly, we see that $(A_4B_3^{-1})F_7(a_4, b_3) = (b_4, b_3)$ so that $B_4B_3^{-1} \in H$ implying that $B_{i+1}B_i^{-1}$ ∈ *H* for all *i*. In particular, we get $B_1B_2^{-1}$ ∈ *H*.
Finally we have $C_1C^{-1} = (C_1B^{-1})(B_1B^{-1})(B_2C^{-1})$ ∈ *H* and

Finally, we have $C_1 C_1^{-1} = (C_1 B_1^{-1})(B_1 B_2^{-1})(B_2 C_2^{-1}) \in H$ and $A_1A_2^{-1} = (A_1B_6^{-1})(B_6B_1^{-1})(B_1A_2^{-1}) \in H.$

It follows from Theorem [6](#page-1-1) that $H = Mod(\Sigma_6)$, completing the proof of the corollary. \Box

Corollary 9. *If* $g = 7$ *, then the mapping class group* $Mod(\Sigma_g)$ *is generated by the two elements* R *and* $C_1B_4A_6A_7^{-1}B_5^{-1}C_2^{-1}$ *Fig.* [3.](#page-5-0)

Proof. Let $F_1 = C_1 B_4 A_6 A_7^{-1} B_5^{-1} C_2^{-1}$. Let H denote the subgroup of Mod(Σ_7) generated by the set $\{R, F_1\}$.

Let

$$
F_2 = RF_1R^{-1} = C_2B_5A_7A_1^{-1}B_6^{-1}C_3^{-1}
$$

and

$$
F_3 = F_2^{-1} = C_3 B_6 A_1 A_7^{-1} B_5^{-1} C_2^{-1}.
$$

We have $F_3F_1(c_3, b_6, a_1, a_7, b_5, c_2)=(b_4, a_6, a_1, a_7, b_5, c_2)$ so that $F_4 = B_4 A_6 A_1 A_7^{-1} B_5^{-1} C_2^{-1} \in H.$ Let

$$
F_5 = R F_4 R^{-1} = B_5 A_7 A_2 A_1^{-1} B_6^{-1} C_3^{-1}
$$

$$
F_6 = F_5^{-1} = C_3 B_6 A_1 A_2^{-1} A_7^{-1} B_5^{-1}.
$$

Figure 3. Proof of Corollary [9](#page-4-0)

We get $F_6F_4(c_3, b_6, a_1, a_2, a_7, b_5)=(b_4, a_6, a_1, a_2, a_7, b_5)$ so that $F_7 = B_4 A_6 A_1 A_2^{-1} A_7^{-1} B_5^{-1} \in H.$ Let

$$
F_8 = R F_7 R^{-1} = B_5 A_7 A_2 A_3^{-1} A_1^{-1} B_6^{-1}
$$

and

$$
F_9 = F_8^{-1} = B_6 A_1 A_3 A_2^{-1} A_7^{-1} B_5^{-1}.
$$

Hence, we have $F_9F_7(b_6, a_1, a_3, a_2, a_7, b_5)=(a_6, a_1, a_3, a_2, a_7, b_5)$ so that $F_{10} = A_6 A_1 A_3 A_2^{-1} A_7^{-1} B_5^{-1} \in H$.

We then see that $F_{10}F_8 = A_6B_6^{-1} \in H$ and by conjugating $A_6B_6^{-1}$ with R iteratively, we get $A_i B_i^{-1} \in H$ for all *i*.

Let

$$
F_{11} = (B_6A_6^{-1})F_4 = B_4B_6A_1A_7^{-1}B_5^{-1}C_2^{-1}
$$

and

$$
F_{12} = R^{-1}F_{11}R = B_3B_5A_7A_6^{-1}B_4^{-1}C_1^{-1}.
$$

We also have $F_{12}F_1 = B_3C_2^{-1} \in H$ and then $B_{i+1}C_i^{-1} \in H$ for all *i*.

Let

$$
F_{13} = (B_6A_6^{-1})F_1(A_7B_7^{-1}) = C_1B_4B_6B_7^{-1}B_5^{-1}C_2^{-1}
$$

and

i.

$$
F_{14} = RF_{13}R^{-1} = C_2B_5B_7B_1^{-1}B_6^{-1}C_3^{-1}.
$$

Finally, $F_{13}F_{14}(C_3B_4^{-1}) = C_1B_1^{-1} \in H$ which gives $C_iB_i^{-1} \in H$ for all

It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_7)$, which finishes the proof. \Box

Corollary 10. *If* $g = 8$ *, then the mapping class group* $Mod(\Sigma_g)$ *is generated by the two elements* R *and* $B_1C_4A_7A_8^{-1}C_5^{-1}B_2^{-1}$ *Fig.* [4.](#page-7-0)

Proof. Let $F_1 = B_1 C_4 A_7 A_8^{-1} C_5^{-1} B_2^{-1}$ and let H be the subgroup of $Mod(\Sigma_8)$ generated by the set $\{R, F_1\}.$

Let us consider the elements

$$
F_2 = RF_1R^{-1} = B_2C_5A_8A_1^{-1}C_6^{-1}B_3^{-1}
$$

and

$$
F_3 = F_2^{-1} = B_3 C_6 A_1 A_8^{-1} C_5^{-1} B_2^{-1}.
$$

We have $F_3F_1(b_3, c_6, a_1, a_8, c_5, b_2)=(b_3, c_6, b_1, a_8, c_5, b_2)$ so that $F_4 = B_3 C_6 B_1 A_8^{-1} C_5^{-1} B_2^{-1} \in H.$

We get that $F_4F_3^{-1} = B_1A_1^{-1} \in H$ and then by conjugating $B_1A_1^{-1}$ with R iteratively, we get $B_i A_i^{-1} \in H$ for all *i*.

Let

$$
F_5 = R^2 F_1 R^{-2} = B_3 C_6 A_1 A_2^{-1} C_7^{-1} B_4^{-1},
$$

$$
F_6 = F_5^{-1} = B_4 C_7 A_2 A_1^{-1} C_6^{-1} B_3^{-1}
$$

$$
F_7 = (B_2 A_2^{-1}) F_6 (A_1 B_1^{-1}) = B_4 C_7 B_2 B_1^{-1} C_6^{-1} B_3^{-1}.
$$

Figure 4. Proof of Corollary [10](#page-6-0)

We also have $F_7F_1(b_4, c_7, b_2, b_1, c_6, b_3)=(c_4, c_7, b_2, b_1, c_6, b_3)$ so that $F_8 = C_4 C_7 B_2 B_1^{-1} C_6^{-1} B_3^{-1} \in H$. It is easy to check that $F_8 F_7^{-1} = C_4 B_4^{-1} \in H$ and then we get $C_i B_i^{-1} \in H$ for all *i*.

Let

$$
F_9 = RF_7 R^{-1} = B_5 C_8 B_3 B_2^{-1} C_7^{-1} B_4^{-1}
$$

$$
F_{10} = (C_4 B_4^{-1}) F_9^{-1} (B_5 C_5^{-1}) = C_4 C_7 B_2 B_3^{-1} C_8^{-1} C_5^{-1}.
$$

Similarly, we see that $F_{10}F_8(c_4, c_7, b_2, b_3, c_8, c_5)=(c_4, c_7, b_2, b_3, b_1, c_5)$ so that $F_{11} = C_4 C_7 B_2 B_3^{-1} B_1^{-1} C_5^{-1} \in H$. Thus, $F_{10}^{-1} F_{11} = C_8 B_1^{-1} \in H$ and then we get $C_i B_{i+1}^{-1} \in H$ for all *i*.
It follows from Corollary 7 t

It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_8)$, completing the proof of the corollary. \Box

Corollary 11. *If* $g \geq 9$ *, then the mapping class group* $Mod(\Sigma_g)$ *is generated by the two elements* R *and* $C_1B_4A_7A_8^{-1}B_5^{-1}C_2^{-1}$ (Fig. [5\)](#page-9-0).

Proof. Let $F_1 = C_1 B_4 A_7 A_8^{-1} B_5^{-1} C_2^{-1}$. Let us denote by H the subgroup of $Mod(\Sigma_g)$ generated by the set $\{R, F_1\}.$

Let

$$
F_2 = RF_1R^{-1} = C_2B_5A_8A_9^{-1}B_6^{-1}C_3^{-1}
$$

and

$$
F_3 = F_2^{-1} = C_3 B_6 A_9 A_8^{-1} B_5^{-1} C_2^{-1}.
$$

We have $F_3F_1(c_3, b_6, a_9, a_8, b_5, c_2)=(b_4, b_6, a_9, a_8, b_5, c_2)$ so that $F_4 = B_4 B_6 A_9 A_8^{-1} B_5^{-1} C_2^{-1} \in H.$

Hence, we see that $F_4F_3^{-1} = B_4C_3^{-1} \in H$ and then by conjugating $B_4C_3^{-1}$ with R iteratively, we get $B_{i+1}C_i^{-1} \in H$ for all *i*.

Let

$$
F_5 = F_4(C_2B_3^{-1}) = B_4B_6A_9A_8^{-1}B_5^{-1}B_3^{-1},
$$

$$
F_6 = R^{-2}F_5R^2 = B_2B_4A_7A_6^{-1}B_3^{-1}B_1^{-1}
$$

and

$$
F_7 = F_6^{-1} = B_1 B_3 A_6 A_7^{-1} B_4^{-1} B_2^{-1}.
$$

We get $F_7F_5(b_1, b_3, a_6, a_7, b_4, b_2)=(b_1, b_3, b_6, a_7, b_4, b_2)$ so that $F_8 = B_1 B_3 B_6 A_7^{-1} B_4^{-1} B_2^{-1} \in H.$

We also have $F_8 F_7^{-1} = B_6 A_6^{-1} \in H$ and then $B_i A_i^{-1} \in H$ for all *i*. Let

$$
F_9 = F_5(A_8B_8^{-1})(B_8C_7^{-1}) = B_4B_6A_9C_7^{-1}B_5^{-1}B_3^{-1},
$$

$$
F_{10} = R^{-1}F_9R = B_3B_5A_8C_6^{-1}B_4^{-1}B_2^{-1}
$$

and

$$
F_{11} = F_{10}^{-1} = B_2 B_4 C_6 A_8^{-1} B_5^{-1} B_3^{-1}.
$$

Hence, we have $F_{11}F_9(b_2, b_4, c_6, a_8, b_5, b_3)=(b_2, b_4, b_6, a_8, b_5, b_3)$ so that $F_{12} = B_2 B_4 B_6 A_8^{-1} B_5^{-1} B_3^{-1} \in H.$

Finally, we see that $F_{12}F_{11}^{-1} = B_6C_6^{-1} \in H$ and then $B_iC_i^{-1} \in H$ for all *i*.
It follows from Corollary 7 that $H = \text{Mod}(\Sigma)$, completing the proof of It follows from Corollary $\overline{7}$ $\overline{7}$ $\overline{7}$ that $H = Mod(\Sigma_g)$, completing the proof of orollary the corollary.

We introduce six new generating sets in Corollaries [12,](#page-8-0) [13,](#page-10-0) [14,](#page-11-0) [15,](#page-12-0) [16](#page-12-1) and [20](#page-16-0) to prove Theorem [2.](#page-1-3)

Corollary 12. *If* $g = 8$ *, then the mapping class group* $Mod(\Sigma_g)$ *is generated by the two elements* R and $B_1A_5C_5C_7^{-1}A_7^{-1}B_3^{-1}$.

Figure 5. Proof of Corollary [11](#page-8-1)

Proof. Let $F_1 = B_1 A_5 C_5 C_7^{-1} A_7^{-1} B_3^{-1}$. Let us denote by H the subgroup of $Mod(\Sigma_g)$ generated by the set $\{R, F_1\}.$

Let

$$
F_2 = RF_1R^{-1} = B_2A_6C_6C_8^{-1}A_8^{-1}B_4^{-1}
$$

$$
F_3 = F_2^{-1} = B_4 A_8 C_8 C_6^{-1} A_6^{-1} B_2^{-1}.
$$

We have $F_3F_1(b_4, a_8, c_8, c_6, a_6, b_2)=(b_4, a_8, b_1, c_6, a_6, b_2)$ so that $F_4 = B_4 A_8 B_1 C_6^{-1} A_6^{-1} B_2^{-1} \in H.$

We get $F_4F_3^{-1} = B_1C_8^{-1} \in H$ and then by conjugating $B_1C_8^{-1}$ with R iteratively, we get $B_{i+1}C_i^{-1} \in H$ for all *i*.

Let

$$
F_5 = RF_4R^{-1} = B_5A_1B_2C_7^{-1}A_7^{-1}B_3^{-1}.
$$

We also have $F_5F_4(b_5, a_1, b_2, c_7, a_7, b_3)=(b_5, b_1, b_2, c_7, a_7, b_3)$ so that $F_6 = B_5 B_1 B_2 C_7^{-1} A_7^{-1} B_3^{-1} \in H.$

Hence, we get $F_6F_5^{-1} = B_1A_1^{-1} \in H$ and then $B_iA_i^{-1} \in H$ for all *i*. Let

$$
F_7 = (C_4 B_5^{-1}) F_6 (C_7 B_8^{-1}) (A_7 B_7^{-1}) = C_4 B_1 B_2 B_3^{-1} B_8^{-1} B_7^{-1},
$$

\n
$$
F_8 = R F_7 R^{-1} = C_5 B_2 B_3 B_4^{-1} B_1^{-1} B_8^{-1}
$$

and

$$
F_9 = F_8^{-1} = B_8 B_1 B_4 B_3^{-1} B_2^{-1} C_5^{-1}.
$$

Similarly, check that $F_9F_7(b_8, b_1, b_4, b_3, b_2, c_5)=(b_8, b_1, c_4, b_3, b_2, c_5)$ so that $F_{10} = B_8 B_1 C_4 B_3^{-1} B_2^{-1} C_5^{-1} \in H$.

Finally, we see that $F_{10}F_9^{-1} = C_4B_4^{-1} \in H$ and then $C_iB_i^{-1} \in H$ for all i.

It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_8)$, completing the proof of the corollary. \Box

Corollary 13. *If* $g = 9$ *, then the mapping class group* $Mod(\Sigma_g)$ *is generated by the two elements* R and $B_1A_3C_5C_8^{-1}A_6^{-1}B_4^{-1}$.

Proof. Let $F_1 = B_1 A_3 C_5 C_8^{-1} A_6^{-1} B_4^{-1}$. Let us denote by H the subgroup of Mod(Σ_9) generated by the set $\{R, F_1\}$.

Let

$$
F_2 = RF_1R^{-1} = B_2A_4C_6C_9^{-1}A_7^{-1}B_5^{-1}
$$

and

$$
F_3 = F_2^{-1} = B_5 A_7 C_9 C_6^{-1} A_4^{-1} B_2^{-1}.
$$

We have that $F_3F_1(b_5, a_7, c_9, c_6, a_4, b_2)=(c_5, a_7, b_1, c_6, b_4, b_2)$ so that $F_4 = C_5 A_7 B_1 C_6^{-1} B_4^{-1} B_2^{-1} \in H.$

Let

$$
F_5 = R F_4 R^{-1} = C_6 A_8 B_2 C_7^{-1} B_5^{-1} B_3^{-1}
$$

and

$$
F_6 = F_5^{-1} = B_3 B_5 C_7 B_2^{-1} A_8^{-1} C_6^{-1}.
$$

We get $F_6F_4(b_3, b_5, c_7, b_2, a_8, c_6)=(b_3, c_5, c_7, b_2, a_8, c_6)$ so that $F_7 = B_3 C_5 C_7 B_2^{-1} A_8^{-1} C_6^{-1} \in H.$

We see that $F_7F_6^{-1} = C_5B_5^{-1} \in H$ and then by conjugating $C_5B_5^{-1}$ with R iteratively, we get $C_i B_i^{-1} \in H$ for all *i*.

Let

$$
F_8 = (B_7 C_7^{-1}) F_6 (C_6 B_6^{-1}) = B_3 B_5 B_7 B_2^{-1} A_8^{-1} B_6^{-1},
$$

\n
$$
F_9 = R F_8 R^{-1} = B_4 B_6 B_8 B_3^{-1} A_9^{-1} B_7^{-1}
$$

and

$$
F_{10} = F_9^{-1} = B_7 A_9 B_3 B_8^{-1} B_6^{-1} B_4^{-1}.
$$

We also have $F_{10}F_8(b_7, a_9, b_3, b_8, b_6, b_4)=(b_7, a_9, b_3, a_8, b_6, b_4)$ so that $F_{11} = B_7 A_9 B_3 A_8^{-1} B_6^{-1} B_4^{-1} \in H.$

Finally, we have $F_{11}^{-1}F_{10} = A_8B_8^{-1} ∈ H$ and then $A_iB_i^{-1} ∈ H$ for all *i*.
Check $F_4(B_4A_4^{-1})F_2(B_5C_5^{-1}) = B_1C_9^{-1} ∈ H$ and then $B_{i+1}C_i^{-1} ∈ H$ for all *i* i.

It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_9)$, completing the proof of the corollary. \Box

Corollary 14. *If* $g = 10$ *, then the mapping class group* $Mod(\Sigma_q)$ *is generated by the two elements* R and $A_1C_1B_3B_7^{-1}C_5^{-1}A_5^{-1}$.

Proof. Let $F_1 = A_1 C_1 B_3 B_7^{-1} C_5^{-1} A_5^{-1}$. Let us denote by H the subgroup of $Mod(\Sigma_{10})$ generated by the set $\{R, F_1\}.$

Let

$$
F_2 = RF_1R^{-1} = A_2C_2B_4B_8^{-1}C_6^{-1}A_6^{-1}.
$$

We have $F_2F_1(a_2, c_2, b_4, b_8, c_6, a_6)=(a_2, b_3, b_4, b_8, b_7, a_6)$ so that $F_3 = A_2 B_3 B_4 B_8^{-1} B_7^{-1} A_6^{-1} \in H.$

Let

$$
F_4 = R^4 F_3 R^{-4} = A_6 B_7 B_8 B_2^{-1} B_1^{-1} A_{10}^{-1}
$$

and

$$
F_5 = F_4^{-1} = A_{10} B_1 B_2 B_8^{-1} B_7^{-1} A_6^{-1}.
$$

We get $F_5F_3(a_{10}, b_1, b_2, b_8, b_7, a_6)=(a_{10}, b_1, a_2, b_8, b_7, a_6)$ so that $F_6 = A_{10}B_1A_2B_8^{-1}B_7^{-1}A_6^{-1} \in H.$

We see that $F_6 F_5^{-1} = A_2 B_2^{-1} \in H$ and then by conjugating $A_2 B_2^{-1}$ with R iteratively, we get $A_i B_i^{-1} \in H$ for all *i*.

Let

$$
F_7 = (B_2 A_2^{-1})(A_3 B_3^{-1})F_3(B_7 A_7^{-1})(A_6 B_6^{-1}) = B_2 A_3 B_4 B_8^{-1} A_7^{-1} B_6^{-1},
$$

\n
$$
F_8 = R F_2 F_3^{-1} R^{-1} F_7 = B_2 A_3 C_3 C_7^{-1} A_7^{-1} B_6^{-1},
$$

\n
$$
F_9 = F_8^{-1} = B_6 A_7 C_7 C_3^{-1} A_3^{-1} B_2^{-1}
$$

and

$$
F_{10} = R^4 F_9 R^{-4} = B_{10} A_1 C_1 C_7^{-1} A_7^{-1} B_6^{-1}.
$$

We also have $F_{10}F_8(b_{10}, a_1, c_1, c_7, a_7, b_6)=(b_{10}, a_1, b_2, c_7, a_7, b_6)$ so that $F_{11} = B_{10}A_1B_2C_7^{-1}A_7^{-1}B_6^{-1} \in H.$

We then get $F_{11}F_{10}^{-1} = B_2C_1^{-1} \in H$ and then $B_{i+1}C_i^{-1} \in H$ for all *i*.

Let

 $F_{12} = (B_2 A_2^{-1}) F_3 (A_6 B_6^{-1}) (B_6 C_5^{-1}) (B_7 A_7^{-1}) (B_8 A_8^{-1}) = B_2 B_3 B_4 A_8^{-1} A_7^{-1} C_5^{-1},$ $F_{13} = F_{12}^{-1} = C_5 A_7 A_8 B_4^{-1} B_3^{-1} B_2^{-1}$

and

$$
F_{14} = RF_{13}R^{-1} = C_6A_8A_9B_5^{-1}B_4^{-1}B_3^{-1}.
$$

Hence, we have $F_{14}F_{12}(c_6, a_8, a_9, b_5, b_4, b_3)=(c_6, a_8, a_9, c_5, b_4, b_3)$ so that $F_{15} = C_6 A_8 A_9 C_5^{-1} B_4^{-1} B_3^{-1} \in H$.

Finally, we see that $F_{15}^{-1}F_{14} = C_5B_5^{-1} \in H$ and then $C_iB_i^{-1} \in H$ for all *i*.
It follows from Corollary 7 that $H = \text{Mod}(\Sigma_{12})$ completing the proof It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_{10})$, completing the proof of the corollary. \Box

Corollary 15. *If* $g \geq 13$ *, then the mapping class group* $Mod(\Sigma_g)$ *is generated by the two elements* R and $A_1B_4C_8C_{10}^{-1}B_6^{-1}A_3^{-1}$.

Proof. Let $F_1 = A_1 B_4 C_8 C_{10}^{-1} B_6^{-1} A_3^{-1}$. Let us denote by H the subgroup of $Mod(\Sigma_q)$ generated by the set $\{R, F_1\}.$

Let

$$
F_2 = RF_1R^{-1} = A_2B_5C_9C_{11}^{-1}B_7^{-1}A_4^{-1}
$$

and

$$
F_3 = F_2^{-1} = A_4 B_7 C_{11} C_9^{-1} B_5^{-1} A_2^{-1}.
$$

We have $F_3F_1(a_4, b_7, c_{11}, c_9, b_5, a_2)=(b_4, b_7, c_{11}, c_9, b_5, a_2)$ so that $F_4 = B_4 B_7 C_{11} C_9^{-1} B_5^{-1} A_2^{-1} \in H.$

We see that $F_4F_3^{-1} = B_4A_4^{-1} \in H$ and then by conjugating $B_4A_4^{-1}$ with R iteratively, we get $B_i A_i^{-1} \in H$ for all *i*.

Let

$$
F_5 = R^2 F_1 R^{-2} = A_3 B_6 C_{10} C_{12}^{-1} B_8^{-1} A_5^{-1}
$$

and

$$
F_6 = F_5^{-1} = A_5 B_8 C_{12} C_{10}^{-1} B_6^{-1} A_3^{-1}.
$$

We also have $F_6F_1(a_5, b_8, c_{12}, c_{10}, b_6, a_3)=(a_5, c_8, c_{12}, c_{10}, b_6, a_3)$ so that $F_7 = A_5 C_8 C_{12} C_{10}^{-1} B_6^{-1} A_3^{-1} \in H.$

We get $F_7F_6^{-1} = C_8B_8^{-1} \in H$ and then $C_iB_i^{-1} \in H$ for all *i*.
Let Let

$$
F_8 = (A_4 B_4^{-1}) F_1 (A_3 B_3^{-1}) = A_1 A_4 C_8 C_{10}^{-1} B_6^{-1} B_3^{-1},
$$

\n
$$
F_9 = R^3 F_8 R^{-3} = A_4 A_7 C_{11} C_{13}^{-1} B_9^{-1} B_6^{-1}
$$

and

$$
F_{10} = F_9^{-1} = B_6 B_9 C_{13} C_{11}^{-1} A_7^{-1} A_4^{-1}.
$$

Hence, check that $F_{10}F_8(b_6, b_9, c_{13}, c_{11}, a_7, a_4)=(b_6, c_8, c_{13}, c_{11}, a_7, a_4)$ so that $F_{11} = B_6C_8C_{13}C_{11}^{-1}A_7^{-1}A_4^{-1} \in H$.

Finally, we have $F_{11}F_{10}^{-1} = C_8B_9^{-1} \in H$ and then $C_iB_{i+1}^{-1} \in H$ for all *i*.
It follows from Corollary 7 that $H = \text{Mod}(\Sigma)$, completing the proof of

It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_g)$, completing the proof of orollary. the corollary.

Corollary 16. *If* $g \geq 12$ *, then the mapping class group* $Mod(\Sigma_q)$ *is generated by the two elements* R and $B_1A_3C_6C_{10}^{-1}A_7^{-1}B_5^{-1}$.

Proof. Let $F_1 = B_1 A_3 C_6 C_{10}^{-1} A_7^{-1} B_5^{-1}$. Let us denote by H the subgroup of $Mod(\Sigma_g)$ generated by the set $\{R, F_1\}.$

Let

$$
F_2 = RF_1R^{-1} = B_2A_4C_7C_{11}^{-1}A_8^{-1}B_6^{-1}
$$

and

$$
F_3 = F_2^{-1} = B_6 A_8 C_{11} C_7^{-1} A_4^{-1} B_2^{-1}.
$$

We have $F_3F_1(b_6, a_8, c_{11}, c_7, a_4, b_2)=(c_6, a_8, c_{11}, c_7, a_4, b_2)$ so that $F_4 = C_6 A_8 C_{11} C_7^{-1} A_4^{-1} B_2^{-1} \in H.$

We get $F_4F_3^{-1} = C_6B_6^{-1} \in H$ and then by conjugating $C_6B_6^{-1}$ with R iteratively, we get $C_i B_i^{-1} \in H$ for all *i*.
Let

Let

$$
F_5 = F_1(C_{10}B_{10}^{-1})(B_5C_5^{-1}) = B_1A_3C_6B_{10}^{-1}A_7^{-1}C_5^{-1}
$$

and

$$
F_6 = R^2 F_5 R^{-2} = B_3 A_5 C_8 B_{12}^{-1} A_9^{-1} C_7^{-1}.
$$

We also have $F_6F_5(b_3, a_5, c_8, b_{12}, a_9, c_7)=(a_3, a_5, c_8, b_{12}, a_9, c_7)$ so that $F_7 = A_3 A_5 C_8 B_{12}^{-1} A_9^{-1} C_7^{-1} \in H.$

We get $F_7 F_6^{-1} = A_3 B_3^{-1} \in H$ and then $A_i B_i^{-1} \in H$ for all *i*. Let

$$
F_8 = (C_1 B_1^{-1})(B_3 A_3^{-1}) F_1 (B_5 C_5^{-1}) = C_1 B_3 C_6 C_{10}^{-1} A_7^{-1} C_5^{-1}
$$

and

$$
F_9 = RF_8R^{-1} = C_2B_4C_7C_{11}^{-1}A_8^{-1}C_6^{-1}.
$$

Then check that $F_9F_8(c_2, b_4, c_7, c_{11}, a_8, c_6)=(b_3, b_4, c_7, c_{11}, a_8, c_6)$ so that $F_{10} = B_3 B_4 C_7 C_{11}^{-1} A_8^{-1} C_6^{-1} \in H$.

Finally, we have $F_{10}F_9^{-1} = B_3C_2^{-1} \in H$ and then $B_{i+1}C_i^{-1} \in H$ for all i.

It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_g)$, completing the proof of orollary the corollary.

Lemma 17. *If* $g \geq 11$ *, then the mapping class group* $Mod(\Sigma_g)$ *is generated by the two elements* R and $A_1B_2C_4C_{g-1}^{-1}B_{g-3}^{-1}A_{g-4}^{-1}$.

Proof. Let $F_1 = A_1 B_2 C_4 C_{g-1}^{-1} B_{g-3}^{-1} A_{g-4}^{-1}$. Let us denote by H the subgroup of $Mod(\Sigma_q)$ generated by the set $\{R, F_1\}.$

Let

$$
F_2 = RF_1R^{-1} = A_2B_3C_5C_g^{-1}B_{g-2}^{-1}A_{g-3}^{-1}.
$$

We have $F_2F_1(a_2, b_3, c_5, c_g, b_{g-2}, a_{g-3}) = (b_2, b_3, c_5, c_g, b_{g-2}, b_{g-3})$ so that $F_3 = B_2 B_3 C_5 C_g^{-1} B_{g-2}^{-1} B_{g-3}^{-1} \in H$.

Let

$$
F_4 = R^{-1}F_3R = B_1B_2C_4C_{g-1}^{-1}B_{g-3}^{-1}B_{g-4}^{-1}
$$

and

$$
F_5 = F_3^{-1} = B_{g-3}B_{g-2}C_gC_5^{-1}B_3^{-1}B_2^{-1}.
$$

We also have $F_5F_4(b_{g-3}, b_{g-2}, c_g, c_5, b_3, b_2)=(b_{g-3}, b_{g-2}, b_1, c_5, b_3, b_2)$
of $F_5 = P_2 = P_3 = P_4 = P_1 = P_2 = P_3$ so that $F_6 = B_{g-3}B_{g-2}B_1C_5^{-1}B_3^{-1}B_2^{-1} \in H$.
We see that $F F^{-1}$, $B C^{-1} \in H$ and

We see that $F_6F_5^{-1} = B_1C_9^{-1} \in H$ and then by conjugating $B_1C_9^{-1}$ with R iteratively, we get $B_{i+1}C_i^{-1} \in H$ for all *i*.

Let

$$
F_7 = (C_{g-3}B_{g-2}^{-1})(C_{g-4}B_{g-3}^{-1})F_6 = C_{g-3}C_{g-4}B_1C_5^{-1}B_3^{-1}B_2^{-1}
$$

and

$$
F_8 = R^2 F_7 R^{-2} = C_{g-1} C_{g-2} B_3 C_7^{-1} B_5^{-1} B_4^{-1}.
$$

We have $F_8F_7(c_{q-1}, c_{q-2}, b_3, c_7, b_5, b_4)=(c_{q-1}, c_{q-2}, b_3, c_7, c_5, b_4)$ so that $F_9 = C_{g-1}C_{g-2}B_3C_7^{-1}C_5^{-1}B_4^{-1} \in H$.

We then get $F_9F_8^{-1} = C_5B_5^{-1} \in H$ and then $C_iB_i^{-1} \in H$ for all *i*.
Let Let

$$
F_{10} = F_1(B_{g-3}C_{g-3}^{-1}) = A_1B_2C_4C_{g-1}^{-1}C_{g-3}^{-1}A_{g-4}^{-1}
$$

and

$$
F_{11} = RF_{10}R^{-1} = A_2B_3C_5C_g^{-1}C_{g-2}^{-1}A_{g-3}^{-1}.
$$

Hence, we see $F_{11}F_{10}(a_2, b_3, c_5, c_g, c_{g-2}, a_{g-3})=(b_2, b_3, c_5, c_g, c_{g-2}, a_{g-3})$

so that $F_{12} = B_2 B_3 C_5 C_g^{-1} C_{g-2}^{-1} A_{g-3}^{-1} \in H$.
Finally, we have $F_{12} F_{11}^{-1} = B_2 A_2^{-1} \in H$ and then $B_i A_i^{-1} \in H$ for all *i*.
It follows from Corollary 7 that $H = \text{Mod}(\Sigma)$, completing the proof o

It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_g)$, completing the proof of the lemma. the lemma. \Box

Lemma 18. *If* $g \geq 13$ *, then the mapping class group* $Mod(\Sigma_q)$ *is generated by the two elements* R *and* $A_1B_2C_4C_{g-2}^{-1}B_{g-4}^{-1}A_{g-5}^{-1}$.

Proof. Let $F_1 = A_1 B_2 C_4 C_{g-2}^{-1} B_{g-4}^{-1} A_{g-5}^{-1}$. Let us denote by H the subgroup of $Mod(\Sigma_q)$ generated by the set $\{R, F_1\}.$

Let

$$
F_2 = RF_1R^{-1} = A_2B_3C_5C_{g-1}^{-1}B_{g-3}^{-1}A_{g-4}^{-1}.
$$

We have $F_2F_1(a_2, b_3, c_5, c_{g-1}, b_{g-3}, a_{g-4})=(b_2, b_3, c_5, c_{g-1}, b_{g-3}, b_{g-4})$ so that $F_3 = B_2 B_3 C_5 C_{g-1}^{-1} B_{g-3}^{-1} B_{g-4}^{-1} \in H$.

Let

$$
F_4 = F_2 F_3^{-1} = A_2 B_2^{-1} A_{g-4}^{-1} B_{g-4},
$$

\n
$$
F_5 = R F_4 R^{-1} = A_3 B_3^{-1} A_{g-3}^{-1} B_{g-3},
$$

\n
$$
F_6 = F_5 F_3 = B_2 A_3 C_5 C_{g-1}^{-1} A_{g-3}^{-1} B_{g-4}^{-1},
$$

\n
$$
F_7 = R^{-2} F_6 R^2 = B_g A_1 C_3 C_{g-3}^{-1} A_{g-5}^{-1} B_{g-6}^{-1}
$$

$$
F_8 = F_7^{-1} = B_{g-6}A_{g-5}C_{g-3}C_3^{-1}A_1^{-1}B_g^{-1}.
$$

We see that $F_9F_8^{-1} = C_{g-1}B_g^{-1} \in H$ and then by conjugating $C_{g-1}B_g^{-1}$
B iteratively m and G B^{-1} $\in H$ for all i with R iteratively, we get $C_i B_{i+1}^{-1} \in H$ for all *i*.

Let

$$
F_{10} = F_3(C_{g-1}B_g^{-1}) = B_2B_3C_5B_g^{-1}B_{g-3}^{-1}B_{g-4}^{-1}
$$

and

$$
F_{11} = R^2 F_{10} R^{-2} = B_4 B_5 C_7 B_2^{-1} B_{g-1}^{-1} B_{g-2}^{-1}.
$$

We also have ^F11F10(b4, b5, c7, b2, b*g*−¹, b*g*−²)=(b4, c5, c7, b2, b*g*−¹, b*g*−²)

so that $F_{12} = B_4 C_5 C_7 B_2^{-1} B_{g-1}^{-1} B_{g-2}^{-1} \in H$.
We then get $F_{12} F_{11}^{-1} = C_5 B_5^{-1} \in H$ and then $C_i B_i^{-1} \in H$ for all *i*.
Let Let

$$
F_{13} = F_1(B_{g-4}C_{g-4}^{-1}) = A_1B_2C_4C_{g-2}^{-1}C_{g-4}^{-1}A_{g-5}^{-1}
$$

and

$$
F_{14} = RF_{13}R^{-1} = A_2B_3C_5C_{g-1}^{-1}C_{g-3}^{-1}A_{g-4}^{-1}.
$$

Hence, $F_{14}F_{13}(a_2, b_3, c_5, c_{g-1}, c_{g-3}, a_{g-4})=(b_2, b_3, c_5, c_{g-1}, c_{g-3}, a_{g-4})$ so that $F_{15} = B_2 B_3 C_5 C_{g-1}^{-1} C_{g-3}^{-1} A_{g-4}^{-1} \in H$.
Finally, we have $F_{15} F_{14}^{-1} = B_2 A_2^{-1} \in H$ and then $B_i A_i^{-1} \in H$ for all *i*.
It follows from Corollary 7 that $H = \text{Mod}(\Sigma)$, completing the proof o

It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_g)$, completing the proof of orollary. the corollary.

Lemma 19. *If* $k \ge 7$ *and* $g \ge 2k + 1$ *, then the mapping class group* $Mod(\Sigma_q)$ *is generated by elements* R *and* $A_1B_2C_4C_{g-k+4}^{-1}B_{g-k+2}^{-1}A_{g-k+1}^{-1}$.

Proof. Let $F_1 = A_1 B_2 C_4 C_{g-k+4}^{-1} B_{g-k+2}^{-1} A_{g-k+1}^{-1}$. Let us denote by H the subgroup of $Mod(\Sigma)$ concerted by the set $\{B, E\}$ subgroup of $Mod(\Sigma_g)$ generated by the set $\{R, F_1\}.$

Let

$$
F_2 = R^{k-3} F_1 R^{3-k} = A_{k-2} B_{k-1} C_{k+1} C_1^{-1} B_{g-1}^{-1} A_{g-2}^{-1}
$$

and

 $F_3 = F_2^{-1} = A_{g-2}B_{g-1}C_1C_{k+1}^{-1}B_{k-1}^{-1}A_{k-2}^{-1}.$

 $F_3F_1(a_{q-2}, b_{q-1}, c_1, c_{k+1}, b_{k-1}, a_{k-2}) = (a_{q-2}, b_{q-1}, b_2, c_{k+1}, b_{k-1}, a_{k-2})$

so that $F_4 = A_{g-2}B_{g-1}B_2C_{k+1}^{-1}B_{k-1}^{-1}A_{k-2}^{-1} \in H$.
We get $F_4F_3^{-1} = B_2C_1^{-1} \in H$ and then by conjugating $B_2C_1^{-1}$ with R iteratively, we get $B_{i+1}C_i^{-1} \in H$ for all *i*.

Let

$$
F_5 = F_1(B_{g-k+2}C_{g-k+1}^{-1}) = A_1B_2C_4C_{g-k+4}^{-1}C_{g-k+1}^{-1}A_{g-k+1}^{-1}
$$

and

$$
F_6 = RF_5R^{-1} = A_2B_3C_5C_{g-k+5}^{-1}C_{g-k+2}^{-1}A_{g-k+2}^{-1}.
$$

 $F_6F_5(a_2, b_3, c_5, c_{g-k+5}, c_{g-k+2}, a_{g-k+2})$ = $(b_2, b_3, c_5, c_{g-k+5}, c_{g-k+2},$ a_{g-k+2}

so that $F_7 = B_2 B_3 C_5 C_{g-k+5}^{-1} C_{g-k+2}^{-1} A_{g-k+2}^{-1} \in H$.
We then get $F_7 F_6^{-1} = B_2 A_2^{-1} \in H$ and then $B_i A_i^{-1} \in H$ for all *i*.
Let Let

$$
F_8 = R^{k-2} F_6 R^{2-k} = A_k B_{k+1} C_{k+3} C_3^{-1} C_3^{-1} A_3^{-1}
$$

and

$$
F_9 = F_8^{-1} = A_g C_g C_3 C_{k-3}^{-1} B_{k+1}^{-1} A_k^{-1}.
$$

We have $F_9F_6(a_g, c_g, c_3, c_{k+3}, b_{k+1}, a_k) = (a_g, c_g, b_3, c_{k+3}, b_{k+1}, a_k)$

so that $F_{10} = A_g C_g B_3 C_{k-3}^{-1} B_{k+1}^{-1} A_k^{-1} \in H$.
Finally, we see that $F_{10} F_9^{-1} = B_3 C_3^{-1} \in H$ and then $B_i C_i^{-1} \in H$ for all *i* all i.

It follows from Corollary [7](#page-1-2) that $H = Mod(\Sigma_g)$, completing the proof of promthe lemma.

Corollary 20. *If* $k \geq 5$ *and* $g \geq 2k+1$ *, then the mapping class group* $Mod(\Sigma_g)$ *is generated by elements* R *and* $A_1B_2C_4C_{g-k+4}^{-1}B_{g-k+2}^{-1}A_{g-k+1}^{-1}$.

Proof. It directly follows from Lemmas [17,](#page-13-0) [18](#page-14-0) and [19.](#page-15-0) \Box

4. Main Results

In this section, we prove the main results of this paper. The following Lemma is useful to decide the order of an element.

Lemma 21. *If* R *is an element of order k in a group* G *and if* x *and* y *are elements in* G *satisfying* $RxR^{-1} = y$ *, then the order of* Rxy^{-1} *is also k.*

Proof. $(Rxy^{-1})^k = (yRy^{-1})^k = yR^ky^{-1} = 1$. On the other hand, if $(Rxy^{-1})^l = 1$ then $(Rxy^{-1})^l = (yRy^{-1})^l = yR^l y^{-1} = 1$ i.e. $R^l = 1$ and hence $k \mid l$.

Now, we are ready to prove Theorem [2.](#page-1-3)

Proof. For $g = 10$, we let H_{10} be the subgroup of $Mod(\Sigma_{10})$ generated by the set $\{R, R^4A_1C_1B_3B_7^{-1}C_5^{-1}A_5^{-1}\}\.$ We get $H_{10} = \text{Mod}(\Sigma_{10})$ by Corollary [14.](#page-11-0) Then we are done by Lemma [21](#page-16-1) since $R^4(A_1C_1B_3)R^{-4}$ = $A_5C_5B_7$. Note that, order of R^4 is clearly 5 and hence order of the element $R^4(A_1C_1B_3)(A_5C_5B_7)^{-1}$ is also 5 by Lemma [21](#page-16-1) since $R^4(a_1) = a_5$, $R^4(c_1) = c_5$ and $R^4(b_3) = b_7$ implies $R^4(A_1C_1B_3)R^{-4} = A_5C_5B_7$.

For $g = 9$, we let H_9 be the subgroup of $Mod(\Sigma_9)$ generated by the set $\{R, R^3B_1A_3C_5C_8^{-1}A_6^{-1}B_4^{-1}\}$. We have $H_9 = \text{Mod}(\Sigma_9)$ by Corollary [13.](#page-10-0) Then we are done by Lemma [21](#page-16-1) since $R^3(B_1A_3C_5)R^{-3} = B_4A_6C_8$.

For $g = 8$, we let H_8 be the subgroup of $Mod(\Sigma_8)$ generated by the set ${R, R^2B_1A_5C_5C_7^{-1}A_7^{-1}B_3^{-1}}$. Hence, $H_8 = Mod(\Sigma_8)$ by Corollary [12.](#page-8-0) Then we are done by Lemma [21](#page-16-1) since $R^2(B_1A_5C_5)R^{-2} = B_3A_7C_7$.

For $g = 7$, we let H_7 be the subgroup of $Mod(\Sigma_7)$ generated by the set ${R, RC_1B_4A_6A_7^{-1}B_5^{-1}C_2^{-1}}$. We have $H_7 = Mod(\Sigma_7)$ by Corollary [9.](#page-4-0) Then we are done by Lemma [21](#page-16-1) since $R(C_1B_4A_6)R^{-1} = C_2B_5A_7$.

The remaining part of the proof is the case of $g \geq 11$. Let $k = g/g'$ so that k is the greatest divisor of g such that k is strictly less than $g/2$. Clearly, the number k can be any positive integer but three.

If $k = 2$, let K_2 be the subgroup of $Mod(\Sigma_q)$ generated by the set ${R, R^2A_1B_4C_8C_1^{-1}B_6^{-1}A_3^{-1}}$. We get $K_2 = \text{Mod}(\Sigma_g)$ by Corollary [15.](#page-12-0) Then we are done by Lemma [21](#page-16-1) since $R^2(A_1B_4C_8)R^{-2} = A_3B_6C_{10}$.

If $k = 4$, let K_4 be the subgroup of $Mod(\Sigma_g)$ generated by the set ${R, R^4B_1A_3C_6C_1^{-1}A_7^{-1}B_5^{-1}}$. We get $K_4 = \text{Mod}(\Sigma_g)$ by Corollary [16.](#page-12-1) Then we are done by Lemma [21](#page-16-1) since $R^4(B_1A_3C_6)R^{-4} = B_5A_7C_{10}$.

If $k = 1$ or $k = 5$, let K_5 be the subgroup of $Mod(\Sigma_g)$ generated by the set $\{R, R^{-5}A_1B_2C_4C_{g-1}^{-1}B_{g-3}^{-1}A_{g-4}^{-1}\}\.$ We get $K_5 = \text{Mod}(\Sigma_g)$ by Corollary [20.](#page-16-0) Then we are done by Lemma [21](#page-16-1) since $R^{-5}(A_1B_2C_4)R^5 = A_{q-4}B_{q-3}C_{q-1}$.

If $k = 6$, let K_6 be the subgroup of $Mod(\Sigma_q)$ generated by the set ${R, R^{-6}A_1B_2C_4C_{g-1}^{-1}B_{g-4}^{-1}A_{g-5}^{-1}}.$ We get $K_6 = \text{Mod}(\Sigma_g)$ by Corollary [20.](#page-16-0) Then we are done by Lemma [21](#page-16-1) since $R^{-6}(A_1B_2C_4)R^6 = A_{q-5}B_{q-4}C_{q-2}$.

If $k \geq 7$, let K be the subgroup of $Mod(\Sigma_q)$ generated by the set $\{R, R^{-k}A_1B_2C_4C_{g-k+4}^{-1}B_{g-k+2}^{-1}A_{g-k+1}^{-1}\}$. We get $K = \text{Mod}(\Sigma_g)$ by Corollary [20.](#page-16-0) Then we are done by Lemma [21](#page-16-1) since $R^{-k}(A_1B_2C_4)R^k =$ $A_{q-k+1}B_{q-k+2}C_{q-k+4}.$

Finally, we prove Theorem [1.](#page-0-0)

Proof. If $g = 6$, let H_6 be the subgroup of $Mod(\Sigma_6)$ generated by the set ${R, RC_1B_4A_6A_1^{-1}B_5^{-1}C_2^{-1}}$. We get $H_6 = \text{Mod}(\Sigma_6)$ by Corollary [8.](#page-2-1) Then we are done by Lemma [21](#page-16-1) since $R(C_1B_4A_6)R^{-1} = C_2B_5A_1$. Note that, since $R(c_1) = c_2, R(b_4) = b_5$ and $R(a_6) = a_1$, we have $R(C_1B_4A_6)R^{-1} = C_2B_5A_1$ which implies order of the element $R(C_1B_4A_6)(C_2B_5A_1)^{-1}$ is g.

If $g = 7$, let H_7 be the subgroup of $Mod(\Sigma_7)$ generated by the set ${R, RC_1B_4A_6A_7^{-1}B_5^{-1}C_2^{-1}}$. We get $H_7 = Mod(\Sigma_7)$ by Corollary [9.](#page-4-0) Then we are done by Lemma [21](#page-16-1) since $R(C_1B_4A_6)R^{-1} = C_2B_5A_7$.

If $g = 8$, let H_8 be the subgroup of $Mod(\Sigma_8)$ generated by the set ${R, RB_1C_4A_7A_8^{-1}C_5^{-1}B_2^{-1}}$. We get $H_8 = \text{Mod}(\Sigma_8)$ by Corollary [10.](#page-6-0) Then we are done by Lemma [21](#page-16-1) since $R(B_1C_4A_7)R^{-1} = B_2C_5A_8$.

If $g \geq 9$, let H₉ be the subgroup of $Mod(\Sigma_g)$ generated by the set ${R, RC_1B_4A_7A_8^{-1}B_5^{-1}C_2^{-1}}$. We get $H_9 = \text{Mod}(\Sigma_g)$ by Corollary [11.](#page-8-1) Then we are done by Lemma [21](#page-16-1) since $R(C_1B_4A_7)R^{-1} = C_2B_5A_8$. \Box

5. Further Results

In this section, we prove Theorem [3](#page-1-4) which states as: for $g \geq 3k^2 + 4k + 1$ and any positive integer k, the mapping class group $Mod(\Sigma_q)$ is generated by two elements of order $g/gcd(g, k)$.

Korkmaz showed the following result in the proof of Theorem [6.](#page-1-1)

Theorem 22. *If* $g \geq 3$ *, then the mapping class group* $Mod(\Sigma_g)$ *is generated by the elements* $A_i A_j^{-1}, B_i B_j^{-1}, C_i C_j^{-1}$ *for all i, j.*

Sketch of the proof is as follows: $A_1 A_2^{-1} B_1 B_2^{-1} (a_1, a_3) = (b_1, a_3)$. $B_1 A_3^{-1} C_1 C_2^{-1} (b_1, a_3) = (c_1, a_3)$. Korkmaz then showed that A_3 can be generated by these elements using lantern relation. Hence, $A_i = (A_i A_3^{-1})A_3$,
 $B = (B B^{-1})(B A^{-1})A$, and $C = (C C^{-1})(C A^{-1})A$, are generated by $B_i = (B_i B_1^{-1})(B_1 A_3^{-1})A_3$ and $C_i = (C_i C_1^{-1})(C_1 A_3^{-1})A_3$ are generated by given elements. This finishes the proof given elements. This finishes the proof.

Now, we prove the next statement as a corollary to Theorem [22.](#page-17-0)

Corollary 23. *If* $g \geq 3$ *, then the mapping class group* $Mod(\Sigma_q)$ *is generated by the elements* $A_i B_i^{-1}, C_i B_i^{-1}, C_i B_{i+1}^{-1}$ *for all i.*

Proof. Let us denote by H the subgroup generated by the elements $A_i B_i^{-1}, C_i B_i^{-1}, C_i B_{i+1}^{-1}$ for all *i*.
We have $B_i B_i^{-1} - (B_i C_i^{-1})$

We have $B_i B_j^{-1} = (B_i C_i^{-1})(C_i B_{i+1}^{-1}) \cdots (B_{j-1} C_{j-1}^{-1})(C_{j-1} B_j^{-1}) \in H$ for \hat{B}_j and \hat{B}_j are close house $C C_1^{-1}$ (*C* $B_1^{-1}(B_1 B_1^{-1}) (B_2 C_1^{-1}) \in H$ for all *i*, *i* and all *i*, *j*, we also have $C_i C_j^{-1} = (C_i B_i^{-1})(B_i B_j^{-1})(B_j C_j^{-1}) \in H$ for all *i*, *j* and
 A A^{-1} (*A* B^{-1})(*B* B^{-1})(*B* A^{-1}) ∈ *H* for all *i*, *i* $A_i A_j^{-1} = (A_i B_i^{-1})(B_i B_j^{-1})(B_j A_j^{-1}) \in H$ for all *i*, *j*.
 I^{*t*} follows from Theorem 22 that $H = \text{Mod}(\Sigma)$

It follows from Theorem [22](#page-17-0) that $H = Mod(\Sigma_g)$, completing the proof of the lemma.

Theorem 24. *If* $g \geq 21$ *, then the mapping class group* $Mod(\Sigma_q)$ *is generated by the elements* R^2 , $B_1B_2A_5A_8C_{11}C_{14}C_{16}^{-1}C_{13}^{-1}A_{10}^{-1}A_7^{-1}B_4^{-1}B_3^{-1}$.

Proof. Let $F_1 = B_1 B_2 A_5 A_8 C_{11} C_{14} C_{16}^{-1} C_{13}^{-1} A_{10}^{-1} A_7^{-1} B_4^{-1} B_3^{-1}$. Let us denote by H the subgroup of $Mod(\Sigma_q)$ generated by the set $\{R^2, F_1\}.$

Let

$$
F_2 = R^2 F_1 R^{-2} = B_3 B_4 A_7 A_{10} C_{13} C_{16} C_{18}^{-1} C_{15}^{-1} A_{12}^{-1} A_9^{-1} B_6^{-1} B_5^{-1}
$$

and

$$
F_3 = F_2^{-1} = B_5 B_6 A_9 A_{12} C_{15} C_{18} C_{16}^{-1} C_{13}^{-1} A_{10}^{-1} A_7^{-1} B_4^{-1} B_3^{-1}.
$$

We have $F_3F_1(b_5, b_6,...,b_3)=(a_5, b_6,...,b_3)$ so that $F_4 = A_5 B_6 A_9 A_{12} C_{15} C_{18} C_{16}^{-1} C_{13}^{-1} A_{10}^{-1} A_7^{-1} B_4^{-1} B_3^{-1} \in H.$

Note that ... refers to the elements remaining fixed under the given maps.

We also have $F_4 F_3^{-1} = A_5 B_5^{-1} \in H$ and then by conjugating $A_5 B_5^{-1}$ with R^2 iteratively, we get $A_{2i+1} B_{2i+1}^{-1} \in H$ for all *i*.

Let

$$
F_5 = R^4 F_1 R^{-4} = B_5 B_6 A_9 A_{12} C_{15} C_{18} C_{20}^{-1} C_{17}^{-1} A_{14}^{-1} A_{11}^{-1} B_8^{-1} B_7^{-1}
$$

and

$$
F_6 = (A_7 B_7^{-1}) F_5^{-1} (B_5 A_5^{-1})
$$

= $A_7 B_8 A_{11} A_{14} C_{17} C_{20} C_{18}^{-1} C_{15}^{-1} A_{12}^{-1} A_9^{-1} B_6^{-1} A_5^{-1}.$

We then have $F_6F_1(a_7, b_8, a_{11},...,b_6, a_5)=(a_7, a_8, a_{11},...,b_6, a_5)$ so that $F_7 = A_7A_8A_{11}A_{14}C_{17}C_{20}C_{18}^{-1}C_{15}^{-1}A_{12}^{-1}A_9^{-1}B_6^{-1}A_5^{-1} \in H.$

 $F_7F_6^{-1} = A_8B_8^{-1} \in H$ and then by conjugating $A_8B_8^{-1}$ with R^2 iteratively, we get $A_{2i}B_{2i}^{-1} \in H$ for all *i*.
Hence we get $A_{i}B^{-1} \subset H$ for

Hence, we get $A_i B_i^{-1} \in H$ for all *i*.

Let

$$
F_8 = (B_{12}A_{12}^{-1})F_4 = A_5B_6A_9B_{12}C_{15}C_{18}C_{16}^{-1}C_{13}^{-1}A_{10}^{-1}A_7^{-1}B_4^{-1}B_3^{-1}.
$$

We then get $F_8F_1(\ldots, b_{12}, \ldots) = (\ldots, c_{11}, \ldots)$ so that

$$
F_9 = A_5B_6A_9C_{11}C_{15}C_{18}C_{16}^{-1}C_{13}^{-1}A_{10}^{-1}A_7^{-1}B_4^{-1}B_3^{-1} \in H.
$$

We have $F_9F_8^{-1} = C_{11}B_{12}^{-1} \in H$ and then by conjugating $C_{11}B_{12}^{-1}$ with R^2 iteratively, we get $C_{2i+1}B_{2i+2}^{-1} \in H$ for all *i*.

Let

$$
F_{10} = (B_{11}A_{11}^{-1})F_7 = A_7A_8B_{11}A_{14}C_{17}C_{20}C_{18}^{-1}C_{15}^{-1}A_{12}^{-1}A_9^{-1}B_6^{-1}A_5^{-1}.
$$

Similarly, we have $F_{10}F_1(\ldots,b_{11},\ldots)=(\ldots,c_{11},\ldots)$ so that $F_{11} = A_7 A_8 C_{11} A_{14} C_{17} C_{20} C_{18}^{-1} C_{15}^{-1} A_{12}^{-1} A_9^{-1} B_6^{-1} A_5^{-1} \in H.$

Hence, we get $F_{11}F_{10}^{-1} = C_{11}B_{11}^{-1} \in H$ and we get $C_{2i+1}B_{2i+1}^{-1} \in H$ for all i.

Let

$$
F_{12} = (B_{15}C_{15}^{-1})F_4 = A_5B_6A_9A_{12}B_{15}C_{18}C_{16}^{-1}C_{13}^{-1}A_{10}^{-1}A_7^{-1}B_4^{-1}B_3^{-1}.
$$

We also have $F_{12}F_1(\ldots, b_{15}, \ldots) = (\ldots, c_{14}, \ldots)$ so that

 $F_{13} = A_5 B_6 A_9 A_{12} C_{14} C_{18} C_{16}^{-1} C_{13}^{-1} A_{10}^{-1} A_7^{-1} B_4^{-1} B_3^{-1} \in H.$ Check that $F_{13}F_{12}^{-1} = C_{14}B_{15}^{-1} \in H$ and then we get $C_{2i}B_{2i+1}^{-1} \in H$ for Hence we have $C P^{-1} \subset H$ for all *i*

all *i*. Hence, we have $C_i B_{i+1}^{-1} \in H$ for all *i*. Let

$$
F_{14} = F_7(C_{15}B_{16}^{-1}) = A_7A_8A_{11}A_{14}C_{17}C_{20}C_{18}^{-1}B_{16}^{-1}A_{12}^{-1}A_9^{-1}B_6^{-1}A_5^{-1}.
$$

We then get $F_{14}F_1(\ldots,b_{16},\ldots)=(\ldots,c_{16},\ldots)$ so that $F_{15} = A_7A_8A_{11}A_{14}C_{17}C_{20}C_{18}^{-1}C_{16}^{-1}A_{12}^{-1}A_9^{-1}B_6^{-1}A_5^{-1} \in H.$

Hence, we see that $F_{15}^{-1}F_{14} = C_{16}B_{16}^{-1} \in H$ and then we get $C_{2i}B_{2i}^{-1} \in H$

1*i* Einally, we have $C_1B^{-1} \in H$ for all *i* for all *i*. Finally, we have $C_i B_i^{-1} \in H$ for all *i*.

It follows from Corollary 23 that $H = M$

It follows from Corollary [23](#page-18-0) that $H = Mod(\Sigma_g)$, completing the proof extraording the proof of the theorem.

Corollary 25. *If g is even and g* \geq 22*, then the mapping class group* $\text{Mod}(\Sigma_q)$ *is generated by two elements of order* g/2*.*

Proof. Let H be the subgroup of $Mod(\Sigma_q)$ generated by the set ${R^2, R^2B_1B_2A_5A_8C_{11}C_{14}C_{16}^{-1}C_{13}^{-1}A_{10}^{-1}A_7^{-1}B_4^{-1}B_3^{-1}}.$ We get $H = \text{Mod}(\Sigma_g)$ by Theorem [24.](#page-18-1) Then we are done by Lemma [21](#page-16-1) since $R^2(B_1B_2A_5A_8C_{11}C_{14})R^{-2} = B_3B_4A_7A_{10}C_{13}C_{16}$. $R^2(B_1B_2A_5A_8C_{11}C_{14})R^{-2} = B_3B_4A_7A_{10}C_{13}C_{16}.$

Generalization of Theorem [24](#page-18-1) and Corollary [25](#page-19-0) is as follows:

Theorem 26. For $k \geq 2$ and $q \geq 3k^2 + 4k + 1$, the mapping class group $Mod(\Sigma_q)$ *is generated by the elements* $R^k, R^kF(R^kF^{-1}\overline{R^{-k}})$ *where* $F =$ $B_1B_2...B_kA_{2k+1}A_{3k+2}\cdots A_{k^2+2k}C_{k^2+3k+1}C_{k^2+4k+2}\cdots C_{2k^2+3k}$ *Fig.* [6.](#page-20-0)

Proof. We define an algorithm to prove the desired result.

Let $F = B_1B_2 \cdots B_kA_{2k+1}A_{3k+2} \cdots A_{k^2+2k}C_{k^2+3k+1}C_{k^2+4k+2} \cdots C_{2k^2+3k}$ and $F_1 = F(R^k F^{-1} R^{-k})$. Let us denote by H the subgroup of $Mod(\Sigma_q)$ generated by the set $\{R^k, F_1\}.$

 \Box

Figure 6. Generator for Theorem [3](#page-1-4)

A) Use conjugation of F_1 with $R^k, R^{2k}, \ldots, R^{k^2}$ with proper multiplications to get $A_{k+1}B_{k+1}^{-1} \in H$, $A_{k+2}B_{k+2}^{-1} \in H$, ..., $A_{2k-1}B_{2k-1}^{-1} \in H$,
 A $B^{-1} \in H$ reconstitutive Hange we have $A_{2k-1}B_{2k-1}^{-1} \in H$ for all *i* $A_{2k}B_{2k}^{-1} \in H$, respectively. Hence, we have $A_iB_i^{-1} \in H$ for all i.
^{*R*} Explore the next k stops

B) Follow the next k steps.

1) Use conjugation of F_1 with R^{kl} for some positive integers l's with proper multiplications to get $C_{ik+1}B_{ik+1}^{-1} \in H$ and $C_{ik+1}B_{ik+2}^{-1} \in H$ for all i.

2) Use conjugation of F_1 with R^{kl} for some positive integers l's with proper multiplications to get $C_{ik+2}B_{ik+2}^{-1} \in H$ and $C_{ik+2}B_{ik+3}^{-1} \in H$ for all i. ...

k) Use conjugation of F_1 with R^{kl} for some positive integers l's with proper multiplications to get $C_{ik}B_{ik}^{-1} \in H$ and $C_{ik}B_{ik+1}^{-1} \in H$ for all *i*. Hence, $C_i B_i^{-1} \in H$ and $C_i B_{i+1}^{-1} \in H$ for all *i*.

It follows from Corollary [23](#page-18-0) that $H = Mod(\Sigma_q)$, completing the proof of the theorem.

See Theorem [24](#page-18-1) for an example application of the algorithm.

Now, we prove Theorem [3.](#page-1-4)

Proof. For $k \geq 2$ and $q \geq 3k^2 + 4k + 1$, let H be the subgroup of $Mod(\Sigma_q)$ generated by the set $\{R^k, R^kF(R^kF^{-1}R^{-k})\}$. Then $H = Mod(\Sigma_a)$ by Theorem [26.](#page-19-1) Hence, we are done by Lemma [21](#page-16-1) since the orders of R*^k* and $R^kF(R^kF^{-1}R^{-k})$ are q/d where d is the greatest common divisor of q and k. If $k = 1$, we are done by Theorem [1.](#page-0-0)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Baykur, I., Korkmaz, M.: Mapping class group is generated by two commutators. J. Algebra **574**, 278–291 (2021)
- [2] Brendle, T.E., Farb, B.: Every mapping class group is generated by 6 involutions. J. Algebra **278**, 187–198 (2004)
- [3] Dehn, M.: The group of mapping classes. In: Papers on Group Theory and Topology. Springer, Berlin (1987) . (**Translated from the German by J. Stillwell (Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135–206)**)
- [4] Du, X.: Generating the extended mapping class group by torsions. J. Knot Theory Ramifications **26**, 17500378 (2017)
- [5] Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton University Press, Princeton (2011)
- [6] Humphries, S.: Generators for the mapping class group. In: Topology of Low-Dimensional Manifolds, Proceedings of Second Sussex Conference, Chelwood Gate, 1977, Lecture Notes in Math., vol 722, Springer, pp. 44–47 (1979)
- [7] Kassabov, M.: Generating mapping class groups by involutions. [arXiv:math.GT/0311455,](http://arxiv.org/abs/math.GT/0311455) v1 (2003)
- [8] Korkmaz, M.: Generating the surface mapping class group by two elements. Trans. Am. Math. Soc. **357**, 3299–3310 (2005)
- [9] Korkmaz, M.: Mapping class group is generated by three involutions. Math. Res. Lett. **27**, 1095–1108 (2020)
- [10] Korkmaz, M.: Minimal generating sets for the mapping class group of a surface. Handb. Teichm¨uller Sp. Vol. II **I**, 441–463 (2012)
- [11] Lanier, J.: Generating mapping class groups with elements of fixed finite order. J. Algebra **511**, 455–470 (2018)
- [12] Lickorish, W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Philos. Soc. **60**, 769–778 (1964)
- [13] Lu, N.: On the mapping class groups of the closed orientable surfaces. Topol. Proc. **13**, 293–324 (1988)
- [14] Luo, F.: Torsion elements in the mapping class group of a surface. [arXiv:math.GT/0004048,](http://arxiv.org/abs/math.GT/0004048) v1 (2000)
- [15] Maclachlan, C.: Modulus space is simply-connected. Proc. Am. Math. Soc. **29**, 85–86 (1971)
- [16] Margalit, D.: Problems, questions, and conjectures about mapping class groups. In: Proceedings of Symposia in Pure Mathematics, Vol 102, p. 20 (2019)
- [17] McCarthy, J.D., Papadopoulos, A.: Involutions in surface mapping class groups. Enseign. Math. (2) **33**, 275–290 (1987)
- [18] Monden, N.: Generating the mapping class group by torsion elements of small order. Math. Proc. Camb. Philos. Soc. **154**, 41–62 (2013)
- [19] Stukow, M.: Small torsion generating sets for hyperelliptic mapping class groups. Topol. Appl. **145**, 83–90 (2004)
- [20] Wajnryb, B.: Mapping class group of a surface is generated by two elements. Topology **35**, 377–383 (1996)
- [21] Yildiz, O.: Generating the mapping class group by three involutions. [arXiv:200209151v1](http://arxiv.org/abs/quant-ph/200209151v1) [math.GT] (2020)

Oğuz Yıldız Department of Mathematics Middle East Technical University 06800 Ankara Turkey e-mail: oguzyildiz16@gmail.com

Received: December 13, 2020. Revised: October 1, 2021. Accepted: January 21, 2022.