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in weighted spaces by means of a discrete local Calderón–Zygmund
theory.
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1. Introduction

The Laguerre polynomials Lα
n are defined by means of its corresponding

Rodrigues’ type formula (see [19, Eq. 5.1.5])

xαe−xLα
n(x) =

1
Γ(n + 1)

dn

dxn

(
xα+ne−x

)
, n ∈ N = {0, 1, 2, . . .},

where the order α is restricted to α > −1 for integrability purposes. They
are orthogonal on (0,∞) with respect to the measure

dμα(x) = xαe−x dx.

Let us consider the family of functions {Lα
n(x)}n≥0 defined by

Lα
n(x) = ωα

nxα/2e−x/2Lα
n(x), x ∈ (0,∞), (1)

with ωα
n the normalization factor

ωα
n =

(
Γ(n + 1)

Γ(n + α + 1)

)1/2

.
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This family, sometimes known as Laguerre functions, is a complete orthonor-
mal system in the space L2(0,∞), the set of all measurable and square inte-
grable functions on (0,∞) with respect to the Lebesgue measure.

Let us define the discrete Fourier–Laguerre transform

Fαf(x) =
∞∑

n=0

f(n)Lα
n(x)

for each f in the space of square summable sequences �2(N). It turns out
that under this assumption Fαf is a function in L2(0,∞) and the identity
f(n) = cα

n(Fαf) holds, where

cα
n(F ) =

∫ ∞

0

F (x)Lα
n(x) dx, F ∈ L2(0,∞),

is the usual n-th Fourier–Laguerre coefficient. Furthermore, the Parseval’s
type identity

∫ ∞

0

|Fαf(x)|2 dx =
∞∑

n=0

|f(n)|2

holds, as well as
∫ ∞

0

Fαf1(x)Fαf2(x) dx =
∞∑

n=0

f1(n)f2(n), f1, f2 ∈ �2(N). (2)

Put in other words, Fα is an isometric bijection from �2(N) onto L2(0,∞)
whose inverse is given by

F−1
α F (n) = cα

n(F ),

which implies that it is possible to recover the original sequence by means of
it, that is, f = F−1

α (Fαf).
In view of the above, we define the transplantation operator

T β
α f = F−1

β (Fαf), f ∈ �2(N),

for any α, β > −1, which of course becomes the identity operator when α = β.
The mapping properties of this operator in �p(N) have been already studied
in the special case β = α + 2 by R. Askey in [3, Theorem 3]. To be precise,
he stated that the size of the coefficients cα

n and cα+2
n , measured in the power

�p(N) norm, remain equivalent.
In the aforementioned paper [3], Askey proved the same result for Jacobi

coefficients, extending a previous one regarding ultraspherical polynomials in
[4] by himself and S. Wainger. The latter was generalized in [5] by J. J. Be-
tancor et al. considering general weights with some additional restrictions.
Recently, that work, as well as Askey’s work on Jacobi coefficients, has been
improved in [2] by the authors, where fairly general weights were considered.
Finally, it is worth to mention the study [16] by K. Stempak on Fourier–Bessel
coefficients.

It turns out that the dual problem in the continuous setting has consid-
erably much more fruitful results, since the celebrated paper [11] by D. L. Guy
regarding the Hankel transform on the positive half-line. That is why we only
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give here a brief state of the art regarding Laguerre expansions, but the in-
terested reader in transplantation theorems for other expansions is urged to
consult the excellent survey [17] and the references therein. Historically, the
first transplantation result considering Laguerre expansions in terms of the
functions given in (1) is due to Y. Kanjin in [12], which was enhanced in
a weighted setting by K. Stempak and W. Trebels in [18]. The latter was
refined in a power weight setting by G. Garrigós et al. in [9], given a sharp
result for that weights. Other transplantation theorems for Laguerre expan-
sions defined in terms of different functions that (1), such as the so-called
Laguerre functions of Hermite type, could be looked up in the monograph
[20] by S. Thangavelu.

Our aim in the present work is to prove the boundedness of the trans-
plantation operator T β

α with some weights and, as a corollary, improve Askey’s
result for a natural range of the parameters.

Before formulating our results, we need some previous definitions. A
weight sequence in N will be a strictly positive sequence w = {w(n)}n≥0. We
consider the weighted space of p-summable sequences

�p(N, w) =

⎧
⎨

⎩
f = {f(n)}n≥0 : ‖f‖�p(N,w) :=

( ∞∑

n=0

|f(n)|pw(n)

) 1
p

< ∞
⎫
⎬

⎭

for 1 ≤ p < ∞. We simply write �p(N) when w(n) = 1 for all n ∈ N.
Given α, β > −1 fixed and power weights wa(m) = (m + 1)a, with

a ∈ R, for a weight sequence w, we consider the following set of conditions
when 1 < p < ∞ and 1/p + 1/q = 1:

[w]αHp
:= sup

M≥0

( ∞∑

m=M

w(m)w−p(α/2+1)(m)

)1/p (
M∑

m=0

w(m)−q/pwqα/2(m)

)1/q

< ∞,

(A1)

[w]βH∗
p

:= sup
M≥0

( ∞∑

m=M

w(m)−q/pw−q(β/2+1)(m)

)1/q (
M∑

m=0

w(m)wpβ/2(m)

)1/p

< ∞,

(A2)

[w]Aloc
p

:= sup
0≤m≤n≤2(m+1)

1

n − m + 1

(
n∑

k=m

w(k)

)1/p (
n∑

k=m

w(k)−q/p

)1/q

< ∞.

(A3)

The usual maximum interpretation could be considered in the case p =
1, but we will skip it in this paper.

The values [w]αHp
, [w]βH∗

p
, and [w]Aloc

p
are called the constants of the

weight w. First two conditions are adjoint in the sense that [w]αHp
< ∞ if

and only if [w−q/p]αH∗
q

< ∞. Moreover, note that for any non-negative value

δ ≥ 0, the inequalities [w]αHp
≥ [w]α+δ

Hp
and [w]βH∗

p
≥ [w]β+δ

H∗
p

hold. Weights
satisfying (A3) are known as local Ap(N) weights and, as usual, [w]Aloc

p
< ∞

if and only if [w−q/p]Aloc
q

< ∞. Finally, we remark that
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[wa]αHp
< ∞ ⇐⇒ a + 1

p
<

α

2
+ 1 (3)

and

[wa]βH∗
p

< ∞ ⇐⇒ −β

2
<

a + 1
p

. (4)

Moreover, [wa]Aloc
p

< ∞ for any a ∈ R.
Throughout the paper, we will use a � b to denote that two positive

quantities a and b fulfil the relation a ≤ Cb for a constant C independent
of significative quantities. On its behalf, we will use a 	 b if there are two
constants C1 and C2 independent of significative quantities such that C1b ≤
a ≤ C2b.

The main theorem of this paper is the following one.

Theorem 1.1. Let α, β > −1 with α 
= β, 1 < p < ∞, and w be a weight
sequence that satisfies: w(m) 	 w(m + 1) and condition (A1) if β = α + 2k
for some k ∈ N; w(m) 	 w(m + 1) and condition (A2) if α = β + 2k for
some k ∈ N; and conditions (A1), (A2), and (A3) if |β − α| 
= 2k for every
k ∈ N. Then,

‖T β
α f‖�p(N,w) � ‖f‖�p(N,w), f ∈ �2(N) ∩ �p(N, w). (5)

Consequently, the operator T β
α extends uniquely to a bounded linear operator

from �p(N, w) into itself.

The reason to split in three different cases the hypotheses of the theorem
according to α = β + 2k, β = α + 2k and |β − α| 
= 2k is because in the
first and second cases the transplantation operator is essentially equivalent to
the discrete Hardy operator and its adjoint. This phenomenon is not strange
and, for example, it is the same as the one occurring in [13] for the Hankel
transform. On its behalf, in the last case |β − α| 
= 2k, the transplantation
operator is bounded again by the discrete Hardy operator and its adjoint in
the global part, whereas it is bounded by a Calderón–Zygmund operator in
the local part (see next section for details).

We have to observe that the condition w(m) 	 w(m + 1), that we
consider in the cases in which |β − α| = 2k only, is required to have the
boundedness in Theorem 1.1 because an extra factor appears when we write
the transplantation operator in terms of the Hardy operator and its adjoint.
When |β −α| 
= 2k the condition (A3) is required for the weight w to deduce
(5) and, proceeding as in [2, Lemma 2.2], it is possible to prove that (A3)
implies w(m) 	 w(m + 1), then this condition does not appear explicitly in
this case.

An immediate consequence of Theorem 1.1 is the following result.

Corollary 1.2. Let α, β > −1 with α 
= β, 1 < p < ∞, and w be a weight
sequence that satisfies conditions (A1), (A2), and (A3). Then, there exists a
positive constant C independent of f such that

1
C

‖f‖�p(N,w) ≤ ‖T β
α f‖�p(N,w) ≤ C‖f‖�p(N,w), f ∈ �2(N) ∩ �p(N, w).
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Next theorem also follows from the main theorem when power weights
wa are considered.

Theorem 1.3. Let α, β > −1 with α 
= β, γ = min{α, β}, 1 < p < ∞, and
wa be a power weight sequence with a ∈ R. Then,

‖T β
α f‖�p(N,wa) � ‖f‖�p(N,wa), f ∈ �2(N) ∩ �p(N, wa),

provided

−γ

2
<

a + 1
p

<
γ

2
+ 1.

Previous theorem is the discrete counterpart of the sufficiency part of
[9, Theorem 1.4]. The necessity of the condition −γ/2 < (a + 1)/p < γ/2 + 1
is conjectured to be true for all possible values of the parameters α and
β, but unfortunately we are not in position to prove it. However, there are
two special situations in which the characterization is obtained. Indeed, for
α, β > −1 and k ∈ N \ {0},

‖Tα+2k
α f‖�p(N,wa) � ‖f‖�p(N,wa) ⇐⇒ a + 1

p
<

α

2
+ 1 (6)

and

‖T β
β+2kf‖�p(N,wa) � ‖f‖�p(N,wa) ⇐⇒ −β

2
<

a + 1
p

. (7)

Theorem 1.3 is, in fact, a transplantation theorem with powers weights
and it extends [3, Theorem 3] for functions F ∈ L1

δ(0,∞), which is defined
as the set of measurable functions on (0,∞) such that

‖F‖L1
δ(0,∞) :=

∫ ∞

0

|F (x)|xδ dx

is finite. It is known (see [6]) that

Wα
t F (x) =

∞∑

n=0

e−t(n+ α+1
2 )cα

n(F )Lα
n(x) −−−−→

t→0+
F (x) a.e.

for functions in L1
δ(0,∞) when −α

2 ≤ δ + 1 ≤ α
2 + 1 for α 
= 0 and

0 < δ + 1 ≤ 1 for α = 0 (the upper bounds ensure that Wα
t is finite for each

function in L1
δ(0,∞) and the lower ones are necessary and sufficient to de-

duce the boundedness of the corresponding maximal operator from L1
δ(0,∞)

into L1,∞
δ (0,∞)). Then, using the procedure given in [4] in the case of the

ultraspherical expansions, from that convergence we deduce that

cβ
m(F ) = lim

t→0+

∫ ∞

0

Wα
t F (x)Lβ

m(x) dx.

In this way, using (8) as follows:

cβ
m(F ) = lim

t→0+

∞∑

n=0

e−t(n+ α+1
2 )cα

n(F )
∫ ∞

0

Lα
n(x)Lβ

m(x) dx = T β
α f(m),
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with f(n) = cα
n(F ). The previous argument proves the following corollary,

for which we will need to define the sets U and V given by

U = {(α, 0) : α ≥ 0} ∪ {(0, β) : β ≥ 0} and V = {(α, β) : α, β > −1} \ U.

They are motivated by the aforementioned conditions for the convergence of
the operator Wα

t .

Corollary 1.4. Let n ∈ N, α, β > −1 with α 
= β, γ = min{α, β}, 1 < p < ∞,
wa be a power weight sequence with a ∈ R, and δ ∈ R such that −γ

2 ≤ δ+1 ≤
γ
2 + 1 if (α, β) ∈ V and 0 < δ + 1 ≤ 1 if (α, β) ∈ U . Then, there exists a
positive constant C independent of F such that
1
C

‖cα
n(F )‖�p(N,wa) ≤ ‖cβ

n(F )‖�p(N,wa) ≤ C‖cα
n(F )‖�p(N,wa), F ∈ L1

δ(0,∞),

provided

−γ

2
<

a + 1
p

<
γ

2
+ 1.

On the other hand, it is possible to repeat the showed procedure for
functions in Lp

δ(0,∞) having in mind the corresponding modifications in the
convergence of the operator Wα

t , which are also treated in [6].
The structure of the paper is the following: in Section 2 some prelimi-

nary results related to Hardy operators and basic aspects of a discrete local
Calderón–Zygmund theory are showed. Section 3 is devoted to the proofs of
Theorems 1.1 and 1.3. In last two sections, the proofs of an auxiliary propo-
sition and several lemmas are given.

2. Preliminary Results

First, we note that the transplantation operator T β
α can be expressed for

sequences f ∈ �2(N) by the series

T β
α f(m) =

∞∑

n=0

f(n)Kβ
α(n,m), (8)

where

Kβ
α(n,m) =

∫ ∞

0

Lα
n(x)Lβ

m(x) dx

is the kernel of the operator. Note that the trivial identity Kβ
α(n,m) =

Kα
β (m,n) holds. In addition, the kernel satisfies the Markovian property

Kβ
α(n,m) =

∞∑

k=0

Kδ
α(n, k)Kβ

δ (k,m),

which is a consequence of the decomposition T β
α f(m) = T β

δ ◦ T δ
αf(m), ob-

tained directly from the definition of the operator T β
α .

To prove Theorem 1.1, we will study separately the transplantation
operator T β

α according to the three different regions 0 ≤ n < m0 := 2m/3,
m0 ≤ n ≤ m∗

0 := 3m/2, and m∗
0 < n < ∞. The operator restricted to the



MJOM Weighted Transplantation for Laguerre Coefficients Page 7 of 21 52

second region is usually known as the local part, whereas when it is restricted
to the union of the remaining ones is denominated as global part. From now
on, we will use this denomination.

In the global part, a fundamental tool to prove our results is the bound-
edness with weights of the discrete Hardy operator and its adjoint, which are
given by

Hf(m) =
1

m + 1

m∑

n=0

f(n) and H∗f(m) =
∞∑

n=m

f(n)
n + 1

,

respectively. It is well-known (cf. [14] for instance) that, for a weight sequence
w and 1 < p < ∞, condition (A1) is necessary and sufficient for the weighted
inequality

‖w−α/2H(wα/2f)‖�p(N,w) � ‖f‖�p(N,w), (9)

whereas (A2) is necessary and sufficient for

‖wβ/2H
∗(w−β/2f)‖�p(N,w) � ‖f‖�p(N,w). (10)

Therefore, for 1 < p < ∞, using (3) and (4), we have the following charac-
terization:

‖w−α/2H(wα/2f)‖�p(N,wa) � ‖f‖�p(N,wa) ⇐⇒ a + 1
p

<
α

2
+ 1 (11)

and

‖wβ/2H
∗(w−β/2f)‖�p(N,wa) � ‖f‖�p(N,wa) ⇐⇒ −β

2
<

a + 1
p

. (12)

On its behalf, in the local part the proof relies on a discrete local version
of the Calderón–Zygmund theory analogue of the one developed by A. Nowak
and K. Stempak in [13].

Let us suppose that

K : (N × N) \ Δ −→ R,

where Δ = {(n, n) : m ∈ N}, is supported in the set

D = {(n,m) : m0 ≤ n ≤ m∗
0}.

Moreover, let us suppose that the following conditions hold:

(a) the size condition

|K(n,m)| � 1
|n − m| ,

(b) the regularity properties

|K(n,m) − K(n, l)| � |m − l|
|m − n|2 , |n − m| > 2|m − l|,(b1)

|K(n,m) − K(l,m)| � |n − l|
|m − n|2 , |n − m| > 2|n − l|.(b2)
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A kernel K(n,m) satisfying conditions (a) and (b) is called a discrete local
standard kernel. By a discrete local Calderón–Zygmund operator, we mean
a linear and bounded operator T from �r(N) into �r(N) for some 1 < r < ∞,
and such that there exists a discrete local standard kernel K so that, for every
sequence f ∈ c00, the space of sequences having a finite number of non-null
terms,

Tf(m) =
∑

n∈N

m0≤n≤m∗
0

f(n)K(n,m),

for every m ∈ N such that f(m) = 0.

Theorem 2.1. Assume that T is a discrete local Calderón–Zygmund operator.
Let 1 < p < ∞ and w be a weight sequence that satisfies condition (A3).
Then, the operator T can be extended from �r(N) ∩ �p(N, w) to �p(N, w) as a
bounded operator from �p(N, w) into itself.

As usual, previous theorem can be extended to the case p = 1 with
a weak type inequality and weights satisfying a proper version of condi-
tion (A3), but as it has already been mentioned, we do not focus on this
question in this paper.

Some comments about the proof of Theorem 2.1 are in order. Following
the ideas in [13, Proposition 4.1] (see [5] for the details in the discrete case in
a more general setting), from the conditions (a) and (b) for the kernel K, it
is possible to prove some Hörmander type estimates. Indeed, if I = [a, b]∩N,
2I = [a − (b − a)/2, b + (b − a)/2] ∩N, and Wm = {j ∈ N : m0 ≤ j ≤ m∗

0}, it
is verified that

∑

n∈N\2I

χWm
(n)|K(n,m) − K(n, l)||f(n)| ≤ CM(|f |)(m), m, l ∈ I, (13)

and
∑

m∈N\2I

χWn
(m)|K(n,m) − K(s,m)||f(n)| ≤ CM(|f |)(n), n, s ∈ I, (14)

where M denotes the non-centered discrete Hardy-Littlewood maximal func-
tion. Then, using some general results for operators satisfying estimates as
(13) and (14) with f(n) = 1 in homogeneous spaces (see [10]), the result
without weights is deduced. The extension including weights in the discrete
Ap(N) follows the standard procedure. It is described in [7, Chapter 7] and
involve (13) and (14). Finally, following [13, Theorem 4.3] with appropri-
ate adjustments, it is possible to pass from weights in Ap(N) to local Ap(N)
weights satisfying (A3). This last step uses ideas coming from [1].

3. Proofs of Theorems 1.1 and 1.3

The proof of Theorem 1.1 will be based on particular cases of the transplan-
tation operator. First one is Askey’s case β = α + 2, α > −1, for which the
expression of the kernel is closed.
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Lemma 3.1. Let n,m ∈ N and α > −1. Then,

Kα+2
α (n,m) = (α + 1)

ωα+2
m

ωα
n

, for 0 ≤ n ≤ m,

Kα+2
α (m + 1,m) = −

(
m + 1

m + α + 2

)1/2

,

and Kα+2
α (n,m) = 0 for 0 ≤ m < n − 1.

Previous lemma, whose proof will be given in the last section, actually
shows how the transplantation operator Tα+2

α is decomposed in the difference

Tα+2
α f(m) = (α + 1)ωα+2

m

m∑

n=0

f(n)
ωα

n

−
(

m + 1
m + α + 2

)1/2

f(m + 1). (15)

Last identity, in conjunction with the characterization involved in (9), is the
crucial point to prove the following proposition.

Proposition 3.2. Let α > −1, k ∈ N, and 1 < p < ∞. Let w be a weight
sequence that satisfies w(m) 	 w(m + 1). Then, the weighted inequality

‖Tα+2k
α f‖�p(N,w) � ‖f‖�p(N,w), f ∈ �2(N) ∩ �p(N, w), (16)

holds for k ≥ 1 if and only if w satisfies (A1).

Proof. We start with the case k = 1. First, we note that the condition w(m) 	
w(m + 1) implies the equivalence

( ∞∑

m=0

|f(m + 1)|pw(m)

)1/p

	 ‖f‖�p(N,w).

Then, from (15) and using the equivalence ωa
n 	 (n + 1)−a/2, it is clear that

(16) with k = 1 is equivalent to

‖w−α/2H(wα/2f)‖�p(N,w) � ‖f‖�p(N,w)

and, in this way, the result follows in this case from (9) because w satisfies
(A1).

Now, to finish the proof we only have to prove that (16) holds, for all
k > 1, when w satisfies (A1). In this situation, the transplantation operator
can be written as the composition

Tα+2k
α = Tα+2k

α+2(k−1) ◦ · · · ◦ Tα+2
α .

Since condition (A1) holds by hypothesis, it also verified that the constants
[w]α+2�

Hp
, where � = 1, . . . , k−1, are finite (remind that [w]α+δ

Hp
≤ [w]αHp

for any

δ ≥ 0). Then, every operator T
α+2(�+1)
α+� , with � = 0, 1, . . . , k − 1, is bounded

with the weight sequence w. �
The transplantation operator T β

β+2 is closely related to Askey’s case.
Since Kβ

β+2(n,m) = Kβ+2
β (m,n), by Lemma 3.1, we have

T β
β+2f(m) = −

(
m

m + β + 1

)1/2

f(m − 1) +
β + 1

ωβ
m

∞∑

n=m

f(n)ωβ+2
n .
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Proposition 3.3. Let β > −1, k ∈ N, and 1 < p < ∞. Let w be a weight
sequence that satisfies w(m) 	 w(m + 1). Then, the weighted inequality

‖T β
β+2kf‖�p(N,w) � ‖f‖�p(N,w), f ∈ �2(N) ∩ �p(N, w),

holds for k ≥ 1 if and only if w satisfies (A2).

The proof is analogue to the one for Proposition 3.2 but using the char-
acterization (10), so we omit it.

Note that (6) and (7) can be deduced from the previous propositions
using (3) and (4).

Next particular case in which we will base the proof of Theorem 1.1
corresponds with the restrictions α, β > −1, α + β > 0, and α < β < α + 2.

Proposition 3.4. Let α, β > −1 such that α + β > 0 and α < β < α + 2, and
1 < p < ∞. If w is a weight sequence that satisfies (A1), (A2), and (A3),
then

‖T β
α f‖�p(N,w) � ‖f‖�p(N,w), f ∈ �2(N) ∩ �p(N, w).

This proposition is the central point to prove Theorem 1.1. Its proof is
quite technical and we postpone it to next section. However, from Proposi-
tion 3.4 we can deduce the boundedness of the transplantation operator for
β < α < β + 2.

Proposition 3.5. Let α, β > −1 such that α + β > 0 and β < α < β + 2, and
1 < p < ∞. If w is a weight sequence that satisfies (A1), (A2), and (A3),
then

‖T β
α f‖�p(N,w) � ‖f‖�p(N,w), f ∈ �2(N) ∩ �p(N, w).

Proof. This result follows from Proposition 3.4 by applying a duality argu-
ment. Indeed, by the converse Hölder’s inequality (see [8, (6.14)]),

‖T β
α f‖�p(N,w) = sup

g∈c00
‖g‖�q(N,w)=1

∣
∣
∣
∣
∣

∞∑

m=0

g(m)T β
α f(m)w(m)

∣
∣
∣
∣
∣

= sup
g∈c00

‖g‖�q(N,w)=1

∣
∣
∣
∣
∣

∞∑

m=0

Tα
β (wg)(m)f(m)

∣
∣
∣
∣
∣

≤ ‖f‖�p(N,w) sup
g∈c00

‖g‖�q(N,w)=1

‖Tα
β (wg)‖�q(N,w−q/p).

Here, c00 denotes the space of all sequences which have only finitely many
nonzero elements and, again, q is the conjugate of p. Then, using the identities
[w−q/p]βHq

= [w]βH∗
p
, [w−q/p]αH∗

q
= [w]αHp

, and [w−q/p]Aloc
q

= [w]Aloc
p

, and the
conditions (A1), (A2), and (A3), by Proposition 3.4, we have

‖Tα
β (wg)‖�q(N,w−q/p) � ‖wg‖�q(N,w−q/p) = ‖g‖�q(N,w)

and the proof is finished. �

Let us give now the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let us prove the cases not covered by Propositions 3.2,
3.3, 3.4, and 3.5.

(i) Case α > −1 and α + 2k < β < α + 2(k + 1) for k ∈ {1, 2, . . .}. This
time the transplantation operator can be written as the composition

T β
α = T β

α+2k ◦ Tα+2k
α .

Then, in this case, the result follows from Propositions 3.4 and 3.2.
(ii) Case β > −1 and β + 2k < α < β + 2(k + 1) for k ∈ {1, 2, . . .}. This

case can be deduced from (i) by a duality argument as we did to prove
Proposition 3.5 from Proposition 3.4, so we omit the details.

(iii) Case −1 < α ≤ 0, −1 < β ≤ 1, α + β ≤ 0, and α < β. Here, we put the
transplantation operator as the composition

T β
α = T β

α+2 ◦ Tα+2
α .

The operators involved in this case can be controlled applying Proposi-
tions 3.5 and 3.2.

(iv) Case −1 < α ≤ 1, −1 < β ≤ 0, α + β ≤ 0, and β < α. In this last case,
we can use duality and again we omit the details. �

Let us prove now Theorem 1.3 to finish the present section. Before that,
we note that clearly wa(m) 	 wa(m + 1) for any a ∈ R.

Proof of Theorem 1.3. Under the hypothesis −γ/2 < (a + 1)/p < γ/2 + 1,
the weight wa satisfies the conditions (A1), (A2), and (A3). Then, the bound-
edness of the transplantation operator with the weight wa is an immediate
consequence of Theorem 1.1. �

4. Proof of Proposition 3.4

The proofs of Lemmas 4.1, 4.2, and 4.4 that we will use in the proof of
Proposition 3.4 are quite technical and they are postponed to the last section.

From now on, we will profusely use the notation νa
j = 4j + 2a + 2 and

Kβ
α(n,m) =

∫ ∞

0

Lα
n(x)Lβ

m(x)
dx

x
.

Note that the last integral is convergent if α + β > 0 and positive at least
under the extra assumption α < β < α + 2 (see Eq. (26) in next section).

In the following result, we deduce a proper expression for the kernel of
the transplantation operator.

Lemma 4.1. Let α, β > −1 such that α + β > 0 and |β − α| 
= 2k for every
k ∈ N, and n,m ∈ N. Then,

Kβ
α(n,m) =

β2 − α2

νβ
m − να

n

Kβ
α(n,m).
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From this lemma, it is clear that

T β
α f(m) = (β2 − α2)

∞∑

n=0
n	=m

f(n)

νβ
m − να

n

Kβ
α(n,m) + f(m)Kβ

α(m,m).

Splitting the transplantation operator into four different operators according
to the aforementioned regions, we obtain

T β
α f(m) = Oβ

αf(m) + Qβ
αf(m) + (O∗)β

αf(m) + P β
α f(m),

where last operators are given explicitly by

Oβ
αf(m) = (β2 − α2)

∑

n∈N
n<m0

f(n)

νβ
m − να

n

Kβ
α(n,m),

(O∗)β
αf(m) = (β2 − α2)

∑

n∈N

n>m∗
0

f(n)

νβ
m − να

n

Kβ
α(n,m),

Qβ
αf(m) = (β2 − α2)

∑

n∈N,n 	=m
m0≤n≤m∗

0

f(n)

νβ
m − να

n

Kβ
α(n,m),

and

P β
α f(m) = f(m)Kβ

α(m,m).

By applying Cauchy–Schwarz’s inequality, it is immediate that
|Kβ

α(m,m)| ≤ 1 and then

‖P β
α f‖�p(N,w) � ‖f‖�p(N,w). (17)

To estimate the remaining operators in the decomposition of T β
α , we

will use frequently, without an explicit mention to it, the equivalence

|νβ
m − να

n | 	

⎧
⎪⎨

⎪⎩

m + 1, 0 ≤ n < m0,

|m − n|, m0 ≤ n ≤ m∗
0, n 
= m,

n + 1, m∗
0 < n.

It holds for α, β > −1 such that α < β < α + 2 and its proof is elementary.
Now, let us focus on Oβ

α and (O∗)β
α, which are defined in the global part.

Following estimation will play a key role.

Lemma 4.2. Let n,m ∈ N and α, β > −1 such that α + β > 0 and α < β <
α + 2. Then,

Kβ
α(n,m) �

(
n + 1
m + 1

)α/2

, 0 ≤ n ≤ m, (18)

and

Kβ
α(n,m) �

(
m + 1
n + 1

)β/2

, m ≤ n < ∞. (19)

Moreover,

Kβ
α(n,m) � 1, m0 ≤ n ≤ m∗

0. (20)
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Now, regarding the operator Oβ
α, by (18), it is clear the estimate

|Oβ
αf(m)| � w−(α/2+1)(m)

∑

n∈N
n<m0

wα/2(n)|f(n)| � w−α/2(m)H(wα/2|f |)(m).

Therefore, Oβ
α is bounded by a Hardy operator and then, for 1 < p < ∞, the

weighted norm inequality

‖Oβ
αf‖�p(N,w) � ‖f‖�p(N,w) (21)

holds provided (A1). On its behalf, the treatment of the operator (O∗)β
α is

analogous. Indeed, using now (19), we have

|(O∗)β
αf(m)| � wβ/2(m)H∗(w−β/2|f |)(m).

Then, (O∗)β
α is bounded by the adjoint of the Hardy operator and, for 1 <

p < ∞, the weighted norm inequality

‖(O∗)β
αf‖�p(N,w) � ‖f‖�p(N,w) (22)

holds provided condition (A2).
To study the local part Qβ

α, we use Theorem 2.1. First, we have to
prove that the kernel Kβ

α(n,m) satisfies properties (a) and (b), so it is a local
standard kernel and we can apply the local Calderón–Zygmund theory. The
size condition (a) for the kernel is contained in the next proposition.

Proposition 4.3. Let α, β > −1 such that α + β > 0 and α < β < α + 2. Let
n,m ∈ N such that n 
= m and m0 ≤ n ≤ m∗

0. Then,

|Kβ
α(n,m)| � 1

|n − m| .

Proof. The proof is immediate by means of Lemma 4.1 and the estimate (20)
given in Lemma 4.2. �

To deduce the regularity properties (b), we will need an extra lemma.

Lemma 4.4. Let n,m ∈ N, and α, β > −1 such that α + β > 0 and α < β <
α + 2. Then,

∫ ∞

0

Lα+1
n (x)Lβ

m(x)
dx

x1/2
� (n + 1)1/2

m + 1 − n

(
n + 1
m + 1

)α/2

, 0 ≤ n ≤ m,

and
∫ ∞

0

Lα+1
n (x)Lβ

m(x)
dx

x1/2
� (n + 1)1/2

n + 1 − m

(
m + 1
n + 1

)β/2

, 0 ≤ m ≤ n.

With the help of this lemma, we can prove the following result.

Proposition 4.5. Let α, β > −1 such that α + β > 0 and α < β < α + 2. Let
n,m ∈ N so that n 
= m and m0 ≤ n ≤ m∗

0. Then,

|Kβ
α(n,m) − Kβ

α(n + 1,m)| � 1
|m − n|2 (23)

and

|Kβ
α(n,m) − Kβ

α(n,m + 1)| � 1
|m − n|2 . (24)
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Note that the estimates (23) and (24) ensure the regularity properties
(b2) and (b1) for the kernel Kβ

α(n,m). Let us see for instance that (23) implies
(b2) (the proof for (24) implies (b1) is analogous). Let us suppose that n < l.
By the triangle inequality

|Kβ
α(n,m) − Kβ

α(l,m)| �
l−n−1∑

j=0

|Kβ
α(n + j,m) − Kβ

α(n + 1 + j,m)|.

If n > m, we apply (23) to get the desired estimate. When n < m, we apply
again (23) and then use the fact |n − m| > 2|n − l|, so the result follows. The
case n > l is similar and we omit the details.

Proof of Proposition 4.5. We focus on the proof for the bound (23). The one
corresponding to (24) can be deduced in a similar way.

The key point in the proof is an appropriate decomposition of the dif-
ference of the involved kernels. By Lemma 4.1, we rewrite that difference by
the expression

|Kβ
α(n,m)−Kβ

α(n + 1,m)|= β2 − α2

|νβ
m − να

n ||νβ
m−να

n+1|
∣
∣
∣Sα,β

1 (n,m)+Sα,β
2 (n,m)

∣
∣
∣ ,

where we have denote

Sα,β
1 (n,m) = (να

n − να
n+1)Kβ

α(n,m)

and

Sα,β
2 (n,m) = (νβ

m − να
n )

∫ ∞

0

(Lα
n(x) − Lα

n+1(x)
) Lβ

m(x)
dx

x
.

Since |νβ
m − να

n | 	 |νβ
m − να

n+1| 	 |m − n|, provided n 
= m and n 
= m − 1, we
have to check the uniform bound∣

∣
∣Sα,β

1 (n,m) + Sα,β
2 (n,m)

∣
∣
∣ � 1 (25)

for m0 ≤ n ≤ m − 2 with m ≥ 6, and m + 1 ≤ n ≤ m∗
0 with m ≥ 2.

In the special case n = m − 1, we can obtain (23) by showing that

|Kβ
α(n, n + 1) − Kβ

α(n + 1, n + 1)| � 1,

but this is immediate by Cauchy-Schwarz’s inequality and the orthonormality
of the Laguerre functions.

Let us prove (25). On the one hand, it is easy to obtain the uniform
bound

|Sα,β
1 (n,m)| � Kβ

α(n,m) � 1

using the estimate (20). However, Sα,β
2 (n,m) is more difficult to deal with

and we have to split it in two parts, namely

Sα,β
2 (n,m) = Iα,β

1 (n,m) + Iα,β
2 (n,m),

with

Iα,β
1 (n,m) = (νβ

m − να
n )wα+1

n

√
n + α + 1

×
∫ ∞

0

(
Lα

n(x) − Lα
n+1(x)

) Lβ
m(x)xα/2−1e−x/2 dx
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and

Iα,β
2 (n,m) =

νβ
m − να

n√
n + 1

(
√

n + α + 1 − √
n + 1)Kβ

α(n,m)

=
α(νβ

m − να
n )√

n + 1(
√

n + α + 1 +
√

n + 1)
Kβ

α(n,m).

Last expression can be bounded using the estimates in Lemma 4.2. Indeed,

|Iα,β
2 (n,m)| � |m − n|

n + 1
� 1.

Regarding Iα,β
1 (n,m), we use the identity [15, Eq. 18.9.14]

Lα
n(x) − Lα

n+1(x) =
x

n + 1
Lα+1

n (x) − α

n + 1
Lα

n(x).

By means of it, we obtain the decomposition

|Iα,β
1 (n,m)| = |Iα,β

1,1 (n,m) − Iα,β
1,2 (n,m)|,

where

Iα,β
1,1 (n,m) = (νβ

m − να
n )

√
n + α + 1
n + 1

∫ ∞

0

Lα+1
n (x)Lβ

m(x)
dx

x1/2

and

Iα,β
1,2 (n,m) = (νβ

m − να
n )

α

n + 1
Kβ

α(n,m).

One more time, by (20), we obtain |Iα,β
1,2 (n,m)| � 1.

Finally, by Lemma 4.4, it is easy to obtain

|Iα,β
1,1 (n,m)| �

⎧
⎪⎪⎨

⎪⎪⎩

m − n

m + 1 − n

(
n + 1

m + 1

)α/2

, m0 ≤ n ≤ m − 2,

begineqnarray∗10pt]
n − m

n + 1 − m

(
m + 1

n + 1

)β/2

, m + 1 ≤ n ≤ m∗
0,

so |Iα,β
1,1 (n,m)| � 1, which concludes the proof. �

On the other hand, by taking p = 2 and w(n) = 1 for all n ∈ N in the
inequalities (17), (21), and (22), it follows that P β

α and both global operators
Oβ

α and (O∗)β
α are bounded in �2(N). Since

Qβ
αf(m) = T β

α f(m) − Oβ
αf(m) − (O∗)β

αf(m) − P β
α f(m),

then the operator Qβ
α is also bounded on �2(N). (Note that T β

α is obviously
a bounded operator from �2(N) into itself.)

Therefore, under the assumptions of Proposition 3.4, Kβ
α(n,m) is a local

standard kernel and the operator Qβ
α is a local Calderón–Zygmund operator.

Therefore, by Theorem 2.1, for 1 < p < ∞ the weighted norm inequality

‖Qβ
αf‖�p(N,w) � ‖f‖�p(N,w)

holds provided w satisfies (A3). This fact finishes the proof of Proposition 3.4.
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5. Proofs of Auxiliary Results

Most proofs showed in the present section are based on the connection formula
for Laguerre polynomials [15, Eq. 18.18.18] given by

Lα
n(x) =

n∑

j=0

(α − β)n−j

(n − j)!
Lβ

j (x),

which allow us to express a Laguerre polynomial of degree n and order α as
a linear combination of other Laguerre polynomials of order β and degrees
less or equal than n. Here, (z)� denotes the usual Pochhammer symbol [15,
section 5.2(iii)] defined by

(z)� =

{
1, if � = 0,

z(z + 1) · · · (z + � − 1), if � > 0.

Proof of Lemma 3.1. For the case β = α + 2, the kernel is given by

Kα+2
α (n,m) = ωα

nωα+2
m

∫ ∞

0

Lα
n(x)Lα+2

m (x)xα+1e−x dx.

Note that in these particular cases, we have the well-known identities

Lα
n(x) = Lα+1

n (x) − Lα+1
n−1(x), n ≥ 1,

and

Lα+2
m (x) =

m∑

j=0

Lα+1
j (x),

which can be deduced easily from the connection formula. Therefore, due to
the orthogonality, the kernel is given by

Kα+2
α (n,m) = ωα

nωα+2
m

m∑

j=0

(
δj,n

(
ωα+1

j

)−2 − δj,n−1

(
ωα+1

j

)−2
)

, n ≥ 1,

and, using that Lα
0 (x) = Lα+1

0 (x) = 1,

Kα+2
α (0,m) = (α + 1)

ωα+2
m

ωα
0

.

From these identities, the statement of the lemma is obtained in a straight-
forward way by checking the cases m + 1 < n, n = m + 1, and 1 ≤ n
≤ m. �

Proof of Lemma 4.1. The proof relies on the direct application of the inte-
gration by parts formula over the kernel Kβ

α(n,m), but it is more straightfor-
ward if the Laguerre functions of Hermite type ϕα

n(x) =
√

xLα
n(x2)/ωα

n are
considered. By means of them, the kernel can be rewritten as

Kβ
α(n,m) = 2ωα

nωβ
m

∫ ∞

0

ϕα
n(x)ϕβ

m(x) dx.

The functions ϕα
n are eigenfunctions of a second order differential operator

Lαϕα
n(x) = −να

nϕα
n(x), Lα =

d2

dx2
+

1/4 − α2

x2
− x2,
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with its respective eigenvalue να
n = 4n + 2α + 2. Then, since |β − α| 
= 2k

for every k ∈ N implies νβ
m 
= να

n , the statement is obtained directly from the
identity

∫ ∞

0

Lαϕα
n(x)ϕβ

m(x) dx =
∫ ∞

0

ϕα
n(x)Lβϕβ

m(x) dx

+(β2 − α2)
∫ ∞

0

ϕα
n(x)ϕβ

m(x)
dx

x2
.

Note that the assumption α + β > 0 is crucial to get previous iden-
tity by means of the integration by parts formula since the integrated term
is xα+βe−x2

times a polynomial expression. Then, the mentioned condition
ensures that this term vanishes at the origin (whereas it vanishes at infinity
due to the exponential function). �

Proof of Lemma 4.2. In the spirit of the proof of Lemma 3.1, we use the
connection formula to obtain

Lα
n(x) =

n∑

j=0

(α/2 − β/2 + 1)n−j

(n − j)!
L

α/2+β/2−1
j (x)

and, similarly,

Lβ
m(x) =

m∑

k=0

(β/2 − α/2 + 1)m−k

(m − k)!
L

α/2+β/2−1
k (x).

Therefore, due to the orthogonality,

Kβ
α(n,m) =

min{n,m}∑

j=0

(α/2 − β/2 + 1)n−j

(n − j)!
(β/2 − α/2 + 1)m−j

(m − j)!

ωα
nωβ

m

(ωα/2+β/2−1
j )2

. (26)

Then, we have to estimate previous sum. We can put the Pochhammer sym-
bols in terms of the Gamma function and by [15, Eq. 5.11.12], we get the
estimate
(α/2 − β/2 + 1)n−j

(n − j)!
=

Γ(n − j + α/2 − β/2 + 1)
Γ(n − j + 1)Γ(α/2 − β/2 + 1)

	 (n + 1 − j)α/2−β/2

and the analogous for

(β/2−α/2+1)m−j

(m − j)!
=

Γ(m − j+β/2 − α/2 + 1)
Γ(m − j + 1)Γ(β/2 − α/2 + 1)

	 (m + 1 − j)β/2−α/2.

Therefore, having in mind the equivalence ωα
n 	 (n + 1)−α/2 we obtain that

Kβ
α(n,m) � (n + 1)−α/2(m + 1)−β/2Rβ

α(n,m), (27)

with

Rβ
α(n,m) =

min{n,m}∑

j=0

(n + 1 − j)α/2−β/2(m + 1 − j)β/2−α/2(j + 1)α/2+β/2−1.
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For 0 ≤ n ≤ m, we have

Rβ
α(n,m) � (m + 1)β/2−α/2

n∑

j=0

(n + 1 − j)α/2−β/2(j + 1)α/2+β/2−1

	 (m + 1)β/2−α/2(n + 1)α.

Then, by (27),

Kβ
α(n,m) �

(
n + 1
m + 1

)α/2

, 0 ≤ n ≤ m,

and the proof of (18) is completed.
To prove (19), we estimate Rβ

α(n,m) distinguishing the cases m ≤ n ≤
m∗

0 and m∗
0 < n. When m ≤ n ≤ m∗

0, we have

Rβ
α(n,m) � (m + 1)β/2−α/2(n + 1)α/2−β/2

[m/2]∑

j=0

(j + 1)α/2+β/2−1

+ (m + 1)β−1
m∑

j=[m/2]+1

(n + 1 − j)α/2−β/2

� (m + 1)β(n + 1)α/2−β/2 + (m + 1)β−1
n∑

j=0

(n + 1 − j)α/2−β/2

� (m + 1)β(n + 1)α/2−β/2 + (m + 1)β−1(n + 1)α/2−β/2+1

� (m + 1)β(n + 1)α/2−β/2,

where in the last step, we have used that n 	 m in this case. Now, for m∗
0 < n,

we have

Rβ
α(n,m) � (m + 1)β/2−α/2(n + 1 − m)α/2−β/2

m∑

j=0

(j + 1)α/2+β/2−1

� (m + 1)β(n + 1)α/2−β/2.

Then, using (27),

Kβ
α(n,m) �

(
m + 1
n + 1

)β/2

and we finish the proof of (19).
Obviously, (20) is an immediate consequence of (18), (19) and the re-

striction m0 ≤ n ≤ m∗
0. �

Proof of Lemma 4.4. Let us denote

Jβ
α(n,m) := ωα+1

n ωβ
m

∫ ∞

0

Lα+1
n (x)Lβ

m(x)xα/2+β/2e−x dx.

By means of the connection formula, we have

Lα+1
n (x) =

n∑

j=0

(α/2 − β/2 + 1)n−j

(n − j)!
L

α/2+β/2
j (x)
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and

Lβ
m(x) =

m∑

j=0

(β/2 − α/2)m−j

(m − j)!
L

α/2+β/2
j (x).

Therefore, proceeding in the same way as in the proof of Lemma 4.2, we
obtain the estimate

Jβ
α(n,m) 	 (n + 1)−α/2−1/2(m + 1)−β/2Sβ

α(n,m),

where

Sβ
α(n,m) =

min{n,m}∑

j=0

(n + 1 − j)α/2−β/2(m + 1 − j)β/2−α/2−1(j + 1)α/2+β/2.

In case that n ≤ m, we have (see proof of Lemma 4.2)

Sβ
α(n,m) � n + 1

m + 1 − n

n∑

j=0

(n + 1 − j)α/2−β/2(m + 1 − j)β/2−α/2(j + 1)α/2+β/2−1

� (n + 1)α+1(m + 1)β/2−α/2

m + 1 − n
,

whereas, if m ≤ n,

Sβ
α(n,m) � (n + 1 − m)α/2−β/2

m∑

j=0

(m + 1 − j)β/2−α/2−1(j + 1)α/2+β/2

� (n + 1 − m)α/2−β/2(m + 1)α/2+β/2
m∑

j=0

(m + 1 − j)β/2−α/2−1

� (n + 1 − m)α/2−β/2(m + 1)β � (n + 1)α/2−β/2+1(m + 1)β

n + 1 − m
.

From these two estimates, the lemma follows immediately. �
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monic analysis associated with ultraspherical expansions. Potential Anal. 53,
523–563 (2020)

[6] ChiccoRuiz, A., Harboure, E.: Weighted norm inequalities for heat-diffusion
Laguerre’s semigroups. Math. Z. 257, 329–354 (2007)

[7] Duoandikoetxea, J.: Fourier analysis, Graduate Studies in Mathematics, 29.
American Mathematical Society, Providence, RI (2001)

[8] Folland, G.B.: Real analysis, Pure and Applied Mathematics. Wiley, New York
(1984)

[9] Garrigós, G., Harboure, E., Signes, T., Torrea, J.L., Viviani, B.: A sharp
weighted transplantation theorem for Laguerre function expansions. J. Funct.
Anal. 244, 247–276 (2007)

[10] Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal
functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)

[11] Guy, D.L.: Hankel multiplier transformations and weighted p-norms. Trans.
Amer. Math. Soc. 95, 137–189 (1960)

[12] Kanjin, Y.: A transplantation theorem for Laguerre series. Tohoku Math. J.
43, 537–555 (1991)

[13] Nowak, A., Stempak, K.: Weighted estimates for the Hankel transform trans-
plantation operator. Tohoku Math. J. 58, 277–301 (2006)

[14] Okpoti, C. A., Persson, L.-E., Wedestig, A.: Weight characterizations for the
discrete Hardy inequality with kernel, J. Inequal. Appl. (2006), Art. ID 18030,
14pp

[15] Olver, F. W. J.: (editor-in-chief), NIST Handbook of Mathematical Functions,
Cambridge University Press, New York, 2010

[16] Stempak, K.: A transplantation theorem for Fourier-Bessel coefficients. Anal.
Math. 24, 311–318 (1998)

[17] Stempak, K.: Transplantation theorems - A survey. J. Fourier Anal. Appl. 17,
408–430 (2011)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


MJOM Weighted Transplantation for Laguerre Coefficients Page 21 of 21 52

[18] Stempak, K., Trebels, W.: On weighted transplantation and multipliers for
Laguerre expansions. Math. Ann. 300, 203–219 (1994)
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