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Evolution Maps and Admissibility

Luis Barreira and Claudia Valls

Abstract. We show that the admissibility properties for a sequence of
linear operators and the corresponding evolution maps are equivalent
on various Banach spaces. We then use this information to obtain new
descriptions for the hyperbolicity of a sequence of linear operators and
the corresponding evolution maps.
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1. Introduction

Our main objective is to establish the equivalence of the admissibility prop-
erties for a sequence of linear operators on a Banach space and the corre-
sponding evolution maps on various Banach spaces. This includes spaces of
bounded sequences, of sequence vanishing at infinity, and �p spaces. We also
consider the relation to hyperbolicity and, as an application, we use the cor-
respondence of the admissibility properties to give new descriptions for the
hyperbolicity of a sequence of linear operators.

The notion of admissibility goes back to Perron in [9]. A simple mod-
ification of his work for continuous time gives the following statement. Let
(Am)m∈Z be a (two-sided) sequence of n × n matrices. If for each bounded
sequence (ym)m∈Z in R

n there exists x0 ∈ R
n such that the sequence

xm+1 = Amxm + ym+1 (1)

is bounded for m ∈ N, then any bounded sequence Am · · · A1x tends to zero
when m → ∞. Related results for discrete time were first obtained by Li in
[6]. For some early contributions we refer the reader to the books [5,7].

A general notion of admissibility can be introduced as follows. We
say that a pair of Banach spaces (C,D) is admissible if for every sequence
(ym)m∈Z in C there exists a unique sequence (xm)m∈Z in D satisfying (1).
We consider this notion for various Banach spaces of sequences with values
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in a given Banach space X as well as their corresponding evolution maps.
Namely, given a Banach space Y ⊂ XZ, we define a map S : XZ → XZ by

(Su)n = An−1un−1 for n ∈ Z and u = (um)m∈Z ∈ XZ.

Provided that S(Y ) ⊂ Y , the map S is called the evolution map of the
sequence (Am)m∈Z on the Banach space Y .

As noted above, our main objective is to establish a faithful correspon-
dence between the admissibility properties for some pairs of Banach spaces
at the levels of sequences of linear operators and evolution maps, also on
various Banach spaces. Evolution maps transfer the dynamics at the level of
a sequence of linear maps to a dynamics on much larger space, although this
new dynamics is autonomous, which often makes the approach much simpler.
Furthermore, the properties of the dynamics are also transferred to those of
the evolution map, and this often leads to much simpler proofs. In addition,
the transference of properties is quite helpful in finding appropriate nonau-
tonomous notions when they are not yet available in the nonautonomous case.
An important example of such a correspondence is the study of hyperbolicity
and its various variations that goes back to Mather in [8]. The theory of semi-
groups is nowadays an important tool in the theory of differential equations
(see for example [10]).

To illustrate our results, we formulate a particular case of Theorem 3.
Let �∞

0 (X) be the set of all sequences in X vanishing at infinity and define
D0(X) = �∞

0 (�∞
0 (X)).

Theorem 1. Let A = (Am)m∈Z be a bounded sequence of linear maps. Then
the following properties are equivalent:

1. for each (ym)m∈Z ∈ �∞
0 (X) there exists a unique (xm)m∈Z ∈ �∞(X)

satisfying

xm+1 = Amxm + ym+1 for m ∈ Z;

2. for each (vm)m∈Z ∈ D0(X) there exists a unique (um)m∈Z ∈ D0(X)
satisfying

um+1 = Sum + vm+1 for m ∈ Z.

Using the notion of admissibility, Theorem 1 can be reformulated as
follows: for a bounded sequence A the following properties are equivalent:

1. the pair formed by the spaces �∞
0 (X) and �∞(X) is admissible;

2. the pair formed by the spaces D0(X) and D0(X) is admissible.

Further pairs of spaces are considered in the paper. These include in particular
spaces of sequences with bounded exponential growth and �p spaces.

More generally, we consider families of norms ‖·‖m, for m ∈ Z. These
norms play an essential role for example in smooth ergodic theory in the
presence of nonuniform exponential behavior. Moreover, we use our results on
the equivalence of admissibility properties for sequence of linear operators and
evolution maps to give new descriptions for the hyperbolicity of a sequence
of linear operators (see Sect. 6).
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2. Evolution Maps

Let X = (X, ‖·‖) be a Banach space. Given a sequence A = (Am)m∈Z of
continuous maps on X, we define

U(m,n) =

{
Am−1 · · · An if m > n,

Id if m = n

for each m,n ∈ Z with m ≥ n. We shall only consider sequences A that
are exponentially bounded with respect to a sequence of norms. Namely, let
‖·‖m, for m ∈ Z, be a sequence of norms on X such that

‖x‖ ≤ ‖x‖m ≤ Rm‖x‖ for m ∈ Z and x ∈ X

and some sequence (Rm)m∈Z in R
+. We say that the sequence A is expo-

nentially bounded with respect to the norms ‖·‖m if there exist α, κ > 0 such
that

‖U(m,n)x‖m ≤ κeα(m−n)‖xn‖n for m ≥ n and x ∈ X.

To each sequence A = (Am)m∈Z of continuous maps on X, we associate
maps S = S|Y on certain Banach spaces Y ⊂ XZ. Namely, we define the
evolution map of A on a space Y by

(Su)n = An−1un−1 for n ∈ Z and u = (um)m∈Z ∈ Y, (2)

whenever S(Y ) ⊂ Y .
We also introduce a family of maps that will be used in the study of

admissibility. Let A = (Am)m∈Z be a sequence of linear maps on X. Given a
sequence y = (yn)n∈Z in X, we define a map Ty : XZ → XZ by

(Tyu)n = An−1un−1 + yn for n ∈ Z and u = (um)m∈Z ∈ XZ.

3. Admissibility for Bounded Sequences

In this section we consider a certain admissibility property on a space of
bounded sequences for evolution maps.

3.1. Evolution Maps

Let �∞(X) be the set of all sequences x = (xm)m∈Z with values in X such
that

‖x‖∞ := sup
m∈Z

‖xm‖m < ∞.

We note that �∞(X) is a Banach space when equipped with the norm ‖·‖∞.
We also consider the closed subspace �∞

0 (X) ⊂ �∞(X) of those x ∈ �∞(X)
such that

lim
|m|→∞

‖xm‖m = 0.

Proposition 1. Let A = (Am)m∈Z be a sequence of linear maps on X that
is exponentially bounded with respect to the norms ‖·‖m. Then the following
properties hold:
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1. for each y ∈ �∞(X) we have

Ty(�∞(X)) ⊂ �∞(X);

2. for each y ∈ �∞
0 (X) we have

Ty(�∞
0 (X)) ⊂ �∞

0 (X).

Proof. Take y, u ∈ �∞(X). Then

‖Tyu‖∞ = sup
n∈Z

‖An−1un−1 + yn‖n

≤ κeα sup
n∈Z

‖un−1‖n−1 + sup
n∈Z

‖yn‖n

≤ κeα‖u‖∞ + ‖y‖∞ < ∞
and so Tyu ∈ �∞(X). On the other hand, for y, u ∈ �∞

0 (X) we have

‖(Tyu)n‖n = ‖An−1un−1 + yn‖n

≤ κeα‖un−1‖n−1 + ‖yn‖n → 0

when |n| → ∞ and so Tyu ∈ �∞
0 (X). �

3.2. Admissibility Properties

We continue to consider a sequence of maps A = (Am)m∈Z that is exponen-
tially bounded with respect to some norms ‖·‖m. Taking y = 0 in Proposi-
tion 1 we find that A generates the evolution map S = T0 on �∞(X) given
by

(Su)n = An−1un−1 for n ∈ Z and u = (um)m∈Z ∈ �∞(X).

Moreover, let D(X) be the set of all sequences v = (vm)m∈Z with values in
�∞(X) such that

‖v‖D := sup
m∈Z

‖vm‖∞ < ∞.

We note that D(X) is a Banach space when equipped with the norm ‖·‖D.
We also consider the closed subspace D0(X) ⊂ D(X) of all sequences v with
values in �∞

0 (X) such that

lim
|m|→∞

‖vm‖∞ = 0.

The following theorem is our main result.

Theorem 2. Let A = (Am)m∈Z be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ‖·‖m. Then the following
properties are equivalent:

1. for each y ∈ �∞
0 (X) there exists a unique x ∈ �∞(X) such that

xm+1 = Amxm + ym+1 for m ∈ Z; (3)

2. for each v ∈ D0(X) there exists a unique u ∈ D(X) such that

um+1 = Sum + vm+1 for m ∈ Z. (4)

Proof. We first prove an auxiliary result. For each u = (um)m∈Z ∈ D(X), we
shall denote by um,k the kth term of the sequence um ∈ �∞(X).
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Lemma 1. Given u, v ∈ D(X), Property (4) holds if and only if

um+1−k,m+1 = Amum−k,m + yk,m+1 for m, k ∈ Z, (5)

where yk,n = vn−k,n.

Proof of the lemma. First assume that property (4) holds. By the definition
of S we have

(Sup)m+1 = Amup,m

(where up,m is the mth term of the sequence up) and so

up+1,m+1 = (Sup)m+1 + vp+1,m+1 = Amup,m + vp+1,m+1

for each m, p ∈ Z. Taking p = m − k, we obtain

um+1−k,m+1 = Amum−k,m + vm+1−k,m+1 = Amum−k,m + yk,m+1. (6)

Now assume that property (5) holds. Proceeding as in (6) and again by
the definition of S, we have

um+1−k,m+1 = Amum−k,m + yk,m+1

= Amum−k,m + vm+1−k,m+1

= (Sum−k)m+1 + (vm+1−k)m+1.

Since m and k are arbitrary, this yields property (4). Indeed, replacing m−k
by p gives

(up+1)m+1 = up+1,m+1

= (Sup)m+1 + (vp+1)m+1

= (Sup + vp+1)m+1.

Finally, since m is arbitrary, we obtain

up+1 = Sup + vp+1

and property (4) follows from the arbitrariness of p (since k is arbitrary,
for a given m one can choose k such that p = m − k takes any desired
value). �

We proceed with the proof of the theorem.
(1 ⇒ 2). Take v ∈ D0(X). For each k ∈ Z, we define y(k) ∈ XZ by

y(k)
m = vm−k,m for m ∈ Z (7)

(in a similar manner to that in Lemma 1). Since v ∈ D0(X), we have

lim
|m|→∞

‖y(k)
m ‖m ≤ lim

|m|→∞
‖vm−k‖∞ = 0

and so y(k) ∈ �∞
0 (X). By property 1, there exists a unique solution x(k) ∈

�∞(X) of Eq. (3) with y = y(k), for each k ∈ Z.
By Lemma 1, if u ∈ D(X) is a solution of Eq. (4), then (um−k,m)m∈Z

is a solution of Eq. (3) with y = y(k), for each k ∈ Z, that is,

um+1−k,m+1 = Amum−k,m + vm+1−k,m+1 for m ∈ Z.
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Therefore, necessarily um−k,m = x
(k)
m for m, k ∈ Z, which is equivalent to

um,n = x(n−m)
n for m,n ∈ Z. (8)

This shows that any solution of Eq. (4) is given by (8) and so, in particular,
it is unique. We show below that the sequence u defined by (8) belongs to
D(X).

Let E be the Banach space of all sequences x ∈ �∞(X) for which
there exists y ∈ �∞

0 (X) satisfying (3) and define a linear operator R : E →
�∞
0 (X) by

(Rx)m+1 = xm+1 − Amxm for m ∈ Z. (9)

We show that R is closed. Let (x̄(i))i∈N be a sequence in E converging to
x ∈ �∞(X) such that ȳ(i) = Rx̄(i) converges to y ∈ �∞

0 (X). Then

xm+1 − Amxm = lim
i→∞

(
x̄
(i)
m+1 − Amx̄(i)

m

)
= lim

i→∞
(Rx̄(i))m+1 = ym+1

for m ∈ Z. This shows that Rx = y and so x ∈ E. Hence, the operator R is
closed. By the closed graph theorem, R is bounded. Moreover, by property 1
the operator R is onto and invertible. It follows from the open mapping
theorem that it has a bounded inverse.

Now we show that u ∈ D(X). First observe that for a fixed m, replac-
ing n by m + k we have

sup
n∈Z

‖x(n−m)
n ‖n = sup

k∈Z

‖x
(k)
m+k‖m+k ≤ sup

k∈Z

‖x(k)‖∞.

Since Rx(k) = y(k), we obtain

‖um‖∞ = sup
n∈Z

‖x(n−m)
n ‖n ≤ sup

k∈Z

‖x(k)‖∞ ≤ ‖R−1‖ sup
k∈Z

‖y(k)‖∞.

Moreover,

sup
m∈Z

‖vm−k,m‖m ≤ sup
m,n∈Z

‖vm,n‖n (10)

since the pairs (m − k,m) with m ∈ Z form a subset of the pairs (m,n) with
m,n ∈ Z, and so

‖y(k)‖∞ = sup
m∈Z

‖vm−k,m‖m ≤ sup
m,n∈Z

‖vm,n‖n

= sup
m∈Z

‖vm‖∞ = ‖v‖D < ∞.

This shows that

‖um‖∞ ≤ ‖R−1‖ · ‖v‖D < ∞
and so um ∈ �∞(X). Finally, we also have

sup
m∈Z

‖um‖∞ ≤ ‖R−1‖ · ‖v‖D < +∞

and so u ∈ D(X).
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(2 ⇒ 1). Take y ∈ �∞
0 (X) and define a sequence (vm)m∈Z with values

in �∞
0 (X) by

vm,n =
yn

1 + (m − n)2
for m,n ∈ Z. (11)

Note that

‖vm‖∞ = sup
n∈Z

‖yn‖n

1 + (m − n)2
.

Given ε > 0, take ρ > 0 such that ‖yn‖n < ε whenever |n| ≥ ρ. Then

‖vm‖∞ ≤ sup
n∈[−ρ,ρ]

‖y‖∞
1 + (m − n)2

+ ε → ε

when |m| → ∞. It follows from the arbitrariness of ε that v ∈ D0(X).
By property 2, there exists a unique u ∈ D(X) satisfying (4). In view

of Lemma 1, for each k ∈ R the sequence x(k) = (um−k,m)m∈Z satisfies the
equation

x
(k)
m+1 = Amx(k)

m + y
(k)
m+1 for m ∈ Z,

where

y(k)
n = vn−k,n =

yn

1 + k2
for n ∈ Z.

Therefore, x̄(k) = (1 + k2)x(k) satisfies Eq. (3) for each k ∈ Z. Moreover,
proceeding as in (10) we obtain

‖x(k)‖∞ = sup
m∈Z

‖um−k,m‖m ≤ sup
m,n∈Z

‖um,n‖n

= sup
m∈Z

‖um‖∞ = ‖u‖D < ∞

and so x̄(k) ∈ �∞(X). We also show that x̄(k) is independent of k. Given
p ∈ Z, we define a sequence ū = (ūm)m∈Z in D(X) by

ūm,n =
x̄
(p)
n

1 + (n − m)2
for m,n ∈ Z. (12)

Then ūm−k,m = x̄
(p)
m /(1 + k2) satisfies equation (5) for all k and so by

Lemma 1, ū is a solution of Eq. (4). But by property 2, we must have ū = u.
Therefore, for each q ∈ Z we have

x(q)
m = um−q,m = ūm−q,m =

x̄
(p)
m

1 + q2

for all m ∈ Z and so x̄(q) = x̄(p). This shows that x̄ := x̄(k) ∈ �∞(X), which
is a solution of Eq. (3), is independent of k.

To establish property 1, it remains to show that Eq. (3) has a unique
solution. Assume that z ∈ �∞(X) was a solution different from x̄. We define
a sequence w ∈ D(X) by

wm,n =
zn

1 + (n − m)2
for m,n ∈ Z.
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Then wm−k,m = zm/(1 + k2) satisfies Eq. (5) for all k, that is,

wm+1−k,m+1 = Amwm−k,m + y
(k)
m+1 for m, k ∈ Z.

It follows from Lemma 1 that w is a solution of Eq. (4). But then both u,w ∈
D(X) are solutions of Eq. (4), which by hypothesis has a single solution.
Therefore, since ū = u and x̄(p) = x̄, it follows from (12) that

x̄n

1 + (n − m)2
= um,n = wm,n =

zn

1 + (n − m)2

for m,n ∈ Z, which readily implies that x̄ = z. This contradiction shows that
Eq. (3) has a unique solution. �

4. Admissibility with Exponential Growth

In this section we consider the same admissibility property as before but for
spaces of sequences with bounded exponential growth.

4.1. Evolution Maps

Given c ≥ 0, let Ec(X) be the set of all sequences (xm)m∈Z with values in X
such that the sequence xc = (xc

m)m∈Z defined by xc
m = e−c|m|xm for m ∈ Z

is in �∞
0 (X). We note that Ec(X) is a Banach space when equipped with the

norm

‖x‖Ec := ‖xc‖∞.

Proposition 2. Let A = (Am)m∈Z be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ‖·‖m. Then for each c ≥ 0
and y ∈ Ec(X) we have

Ty(Ec(X)) ⊂ Ec(X).

Proof. Take y, u ∈ Ec(X). Then

e−c|n|‖(Tyu)n‖n = e−c|n| ‖An−1un−1 + yn‖n

≤ κeα+ce−c|n−1|‖un−1‖n−1 + e−c|n|‖yn‖n → 0

when |n| → ∞ and so Tyu ∈ Ec(X). �

4.2. Admissibility Properties

As a preparation for the result relating admissibility properties using the
spaces Ec(X), we first establish a version of Theorem 2 in which we consider
the same spaces for the perturbations and for the solutions.

Theorem 3. Let A = (Am)m∈Z be a sequence of linear maps that is exponen-
tially bounded with respect to the norms ‖·‖m. Then the following properties
are equivalent:

1. for each y ∈ �∞
0 (X) there exists a unique x ∈ �∞

0 (X) satisfying (3);
2. for each v ∈ D0(X) there exists a unique u ∈ D0(X) satisfying (4).
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Proof. (1 ⇒ 2). Take v ∈ D0(X) and consider the sequences y(k) ∈ �∞
0 (X)

defined by (7) for each k ∈ Z. By property 1, there exists a unique solution
x(k) ∈ �∞

0 (X) of equation (3) with y = y(k). Again we define um,n as in (8).
We will show that u ∈ D0(X). As in the proof of Theorem 2, u is then the
unique solution of Eq. (4) in D0(X).

We already know from the proof of Theorem 2 that u ∈ D(X) and so
it remains to verify that um ∈ �∞

0 (X) for each m ∈ Z and that ‖um‖∞ → 0
when |m| → ∞. Since

lim
|m|→∞

‖vm‖∞ = 0,

for each ε > 0 there exists M ∈ N such that

‖vm,n‖n < ε whenever |m| > M and n ∈ Z.

On the other hand, for each m ∈ [−M,M ]∩Z there exists nm ∈ N such that

‖vm,n‖n < ε whenever |n| ≥ nm.

Letting

N = max
{
n−M , . . . , nM

}
,

we obtain

‖vm,n‖n < ε whenever m ∈ [−M,M ] ∩ Z and |n| ≥ N. (13)

This readily implies that

‖y(k)‖∞ = sup
m∈Z

‖vm−k,m‖m < ε (14)

for any sufficiently large |k| since then the line {(m − k,m) : m ∈ Z} does
not intersect the rectangle [−M,M ] × [−N,N ]. Hence, it follows from the
arbitrariness of ε that

lim
|k|→∞

‖y(k)‖∞ = 0. (15)

Let E0 be the Banach space of all sequences x ∈ �∞
0 (X) for which there

exists y ∈ �∞
0 (X) satisfying (3) and define a linear operator R : E0 → �∞

0 (X)
by (9). One can show as in the proof of Theorem 2 that R has a bounded
inverse. By (15) we have

lim
|n|→∞

‖um,n‖n = lim
|n|→∞

‖x(n−m)
n ‖n ≤ lim

|n|→∞
‖x(n−m)‖∞

≤ ‖R−1‖ lim
|n|→∞

‖y(n−m)‖∞ = 0

and so um ∈ �∞
0 (X) for each m ∈ Z. Moreover, since

‖x(k)‖∞ ≤ ‖R−1‖ · ‖y(k)‖∞,

it follows from (15) that for each ε > 0 there exists K ∈ N such that

‖x(k)
n ‖n < ε whenever |k| > K and n ∈ Z.

Since x(k) ∈ �∞
0 (X), for each k ∈ [−K,K] ∩ Z there exist nk ∈ N such that

‖x(k)
n ‖n < ε whenever |n| ≥ nk.
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So, there exists N ∈ N such that

‖x(k)
n ‖n < ε whenever k ∈ [−K,K] ∩ Z and |n| ≥ N.

This implies that supn∈Z
‖x

(n−m)
n ‖n < ε for any sufficiently large |m| since

then the line {(n − m,n) : m ∈ Z} does not intersect [−K,K] × [−N,N ].
Hence, it follows from the arbitrariness of ε that

lim
|m|→∞

‖um‖∞ = lim
|m|→∞

sup
n∈Z

‖x(n−m)
n ‖n = 0.

and so u ∈ D0(X).
(2 ⇒ 1). Take y ∈ �∞

0 (X) and consider the sequence (vm)m∈Z ∈ D0(X)
defined by (11). By property 2, there exists a unique u ∈ D0(X) satisfying (4).
We already know from the proof of Theorem 2 that the sequence x = (xm)m∈Z

with

xm = (1 + k2)um−k,m for m ∈ Z

is independent of k ∈ Z and that it is the unique solution of equation (3)
in �∞(X). It remains to verify that x ∈ �∞

0 (X).
As in the proof of the implication 1 ⇒ 2 (see (13)), since u ∈ D0(X),

for each ε > 0 there exist M,N ∈ N such that

‖um,n‖n < ε whenever m ∈ [−M,M ] ∩ Z and |n| ≥ N.

Also as before (see (14)), this implies that supm∈Z
‖um−k,m‖m < ε for any

sufficiently large |k|. It thus follows from the arbitrariness of ε that x ∈
�∞
0 (X). This completes the proof of the theorem. �

Using this result we are able to consider the space Ec(X) for an arbitrary
constant c ≥ 0. Given c ≥ 0 and taking y = 0 in Proposition 2, we find that
A generates the evolution map S = T0 on Ec(X) given by

(Su)n = An−1un−1 for n ∈ Z and u ∈ Ec(X).

Moreover, let F c(X) be the set of all sequences (vm)m∈Z with values in Ec(X)
such that

lim
|m|→∞

‖vm‖Ec = 0.

We note that Ec(X) is a Banach space when equipped with the norm

‖v‖F c := sup
m∈Z

‖vm‖Ec < ∞.

Theorem 4. Let A = (Am)m∈Z be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ‖·‖m. Then for each c ≥ 0
the following properties are equivalent:

1. for each y ∈ Ec(X) there exists a unique x ∈ Ec(X) satisfying (3);
2. for each v ∈ F c(X) there exists a unique u ∈ F c(X) satisfying (4).

Proof. Take y, x ∈ Ec(X). We consider the sequences yc, xc ∈ �∞
0 (X) defined

by

yc
m = e−c|m|ym and xc

m = e−c|m|xm
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for m ∈ Z. Note that property (3) holds if and only if

xc
m+1 = Ac

mxc
m + yc

m+1 for m ∈ Z, (16)

where

Ac
m = e−c|m+1|+c|m|Am.

Therefore, property 1 holds if and only if for each f ∈ Ec(X) there exists a
unique x ∈ Ec(X) satisfying (16) (using the definitions of yc and xc).

Notice that the sequence Ac = (Ac
m)m∈Z is also exponentially bounded

with respect to the norms ‖·‖m. Since the maps y �→ yc and x �→ xc are
bijections from Ec(X) onto �∞

0 (X), it follows from Theorem 3 that property 1
holds if and only if for each F ∈ D0(X) there exists a unique u ∈ D0(X)
satisfying

um+1 = Scum + vm+1 for m ∈ Z, (17)

where

(Scv)m = Ac
m−1vm−1 for m ∈ Z and v ∈ �∞

0 (X).

We have

ec|m|(Scv)m = Am−1e
c|m−1|vm−1,

that is,

γ ◦ Sc = S ◦ γ, with γ(v)n = ec|n|vn.

Letting uc
m = γ(um), we obtain

γ(Scum) = S(γ(um)) = Suc
m

and so property (17) is equivalent to

uc
m+1 = Suc

m + vc
m+1, (18)

where

(vc
m)n = γ(vm)n = ec|n|vm,n.

Since the maps v �→ vc = (vc
m)m∈Z and u �→ uc = (uc

m)m∈Z are bijections
from D0(X) onto F c(X), it follows from (18) that property 1 holds if and
only if property 2 holds. �

5. Admissibility on �p Spaces

In this section we consider once more an admissibility property, now for
evolution maps on �p spaces.
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5.1. Evolution Maps

For each p ∈ [1,+∞), let �p(X) be the set of all sequences x = (xm)m∈Z with
values in X such that

‖x‖�p =

(∑
m∈Z

‖xm‖p
m

)1/p

< ∞.

We note that �p(X) is a Banach space when equipped with the norm ‖·‖�p .

Proposition 3. Let A = (Am)m∈Z be a sequence of linear maps on X that
is exponentially bounded with respect to the norms ‖·‖m. Then for each y ∈
�p(X), we have

Ty(�p(X)) ⊂ �p(X).

Proof. Take y, u ∈ �p(X). By Minkowski’s inequality we have

‖Tyu‖�p =

(∑
n∈Z

‖An−1un−1 + yn‖p
n ds

)1/p

≤
(∑

n∈Z

‖An−1um−1‖p
n ds

)1/p

+

(∑
n∈Z

‖yn‖p

)1/p

≤ κeα

(∑
n∈Z

‖un−1‖p
n−1

)1/p

+ ‖y‖�p

= κeα‖u‖�p + ‖y‖�p < ∞,

which shows that Tyu ∈ �p(X). �

5.2. Admissibility Properties

Taking y = 0 in Proposition 3, we find that A generates the evolution map
S = T0 on �p(X) given by

(Su)n = An−1un−1 for n ∈ Z and u ∈ �p(X).

Moreover, for each p ∈ [1,+∞) let Mp(X) = �p(�p(X)) be the set of all
sequences v = (vn)n∈Z with vn ∈ �p(X) such that

‖v‖Mp :=

(∑
m∈Z

‖vm‖p
�p

)1/p

=

(∑
m∈Z

∑
n∈Z

‖vm,n‖p
n

)1/p

< ∞.

We note that Mp(X) is a Banach space when equipped with the norm ‖·‖Mp .

Theorem 5. Let A = (Am)m∈Z be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ‖·‖m. Then the following
properties are equivalent:

1. for each y ∈ �p(X) there exists a unique x ∈ �p(X) satisfying (3);
2. for each v ∈ Mp(X) there exists a unique u ∈ Mp(X) satisfying (4).
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Proof. (1 ⇒ 2). Take v ∈ Mp(X). For each k ∈ R we consider the sequence
y(k) ∈ XZ defined by (7). We have

∑
k∈Z

‖y(k)
n ‖p

�p =
∑
k∈Z

∑
n∈Z

‖vn−k,n‖p
n

=
∑
m∈Z

∑
j∈Z

‖vm,j‖p
j = ‖v‖p

Mp < ∞
(19)

and so y(k) ∈ �p(X). By property 1, there exists a unique solution x(k) ∈
�p(X) of Eq. (3) with y = y(k). Again we define um,n as in (8). By Lemma 1,
u is a solution of Eq. (4) and as in the proof of Theorem 2 it is automatically
unique. We will show that u ∈ Mp(X).

Let F be the Banach space of all sequences x ∈ �p(X) for which there
exists y ∈ �p(X) satisfying (3) and define a linear operator R : F → �p(X)
by (9). One can show as in the proof of Theorem 2 that R has a bounded
inverse.

Now we show that u ∈ Mp(X). We have

∑
m∈Z

‖um‖p
�p =

∑
m∈Z

∑
n∈Z

‖x(n−m)
n ‖p

n

=
∑
k∈Z

∑
j∈Z

‖x
(k)
j ‖p

j =
∑
k∈Z

‖x(k)‖p
�p .

(20)

Since

‖x(k)‖�p ≤ ‖R−1‖ · ‖y(k)‖�p ,

it follows from (19) that

∑
m∈Z

‖um‖p
Lp =

∑
k∈Z

‖x(k)‖p
Lp

≤ ‖R−1‖p
∑
k∈Z

‖y(k)‖p
�p

= ‖R−1‖p‖v‖p
Mp < ∞

and so u ∈ Mp(X).

(2 ⇒ 1). Take y ∈ �p(X) and define v = (vm)m∈Z by

vm,n =
yn

1 + (m − n)2
for m,n ∈ Z.
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Note that v ∈ Mp(X). Indeed,

‖v‖p
Mp =

∑
m∈Z

∑
n∈Z

‖vm,n‖p
n

=
∑
n∈Z

∑
m∈Z

‖vm,n‖p
n

=
∑
n∈Z

‖yn‖p
n

∑
m∈Z

1
(1 + (m − n)2)p

=
∑
n∈Z

‖yn‖p
n

∑
m∈Z

1
(1 + m2)p

= cp‖y‖p
�p < ∞

for some constant cp > 0 that depends only on p. By property 2, there exists
a unique u ∈ Mp(X) satisfying (4). By Lemma 1, for each k ∈ R the sequence
x(k) defined by

x(k)
m = um−k,m for m ∈ Z

satisfies Eq. (3) with y replaced by y(k) = (y(k)
m )m∈Z with

y(k)
m = vm−k,m =

ym

1 + k2
for m ∈ Z.

Proceeding as in (20), we obtain∑
k∈Z

‖x(k)‖p
�p =

∑
m∈Z

‖um‖p
�p = ‖u‖p

Mp < ∞

and so x(k) ∈ �p(X). One can then show in a similar manner to that in the
proof of Theorem 2 that x = (xm)m∈Z with

xm = (1 + k2)x(k)
m for m ∈ Z

is independent of k and that it is the unique solution of Eq. (3) in �p(X).
This concludes the proof of the theorem. �

6. Hyperbolicity

In this section we discuss the relation of hyperbolicity with the admissibility
properties considered in the former sections.

Let ‖·‖m, for m ∈ Z, be a family of norms on a Banach space X. We
say that a sequence (Am)m∈Z of linear maps on X is hyperbolic with respect
to the norms ‖·‖m if:

1. there exist projections Pn for n ∈ Z such that Pn+1An = AnPn and the
map

An|ImQn
: Im Qn → Im Qn+1,

where Qn = Id − Pn, is onto and invertible for each n ∈ Z;
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2. there exist constants λ,N > 0 such that for each x ∈ X we have

‖U(m,n)Pnx‖m ≤ Ne−λ(m−n)‖x‖n for m ≥ n

and

‖Ū(m,n)Qnx‖m ≤ Ne−λ(n−m)‖x‖n for m ≤ n,

where Ū(n,m) = (U(m,n)|ImQn
)−1.

The following proposition is a particular case of more general results in
[1] that relate hyperbolicity with admissibility.

Proposition 4. Let A = (Am)m∈Z be a sequence of linear maps on X that
is exponentially bounded with respect to the norms ‖·‖m. Then the following
properties are equivalent:

1. the sequence (Am)m∈Z is hyperbolic with respect to the norms ‖·‖m;
2. for each y ∈ �∞

0 (X) there exists a unique x ∈ �∞
0 (X) satisfying (3);

3. for each y ∈ �p(X) there exists a unique x ∈ �p(X) satisfying (3).

We refer the reader to [2] for a detailed list of references on further
related results, including specifically for the family of norms ‖·‖m = ‖·‖.

The following statement is a simple consequence of Theorems 3 and 5
together with Proposition 4.

Theorem 6. Let A = (Am)m∈Z be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ‖·‖m. Then the following
properties are equivalent:

1. the sequence (Am)m∈Z is hyperbolic with respect to the norms ‖·‖m;
2. for each v ∈ D0(X) there exists a unique u ∈ D0(X) satisfying (4);
3. for each v ∈ Mp(X) there exists a unique u ∈ Mp(X) satisfying (4).

One can also consider the hyperbolicity of the evolution map. We recall
that a map T on a Banach space Y is said to be hyperbolic if:

1. there exists a projection P satisfying PT = TP and the map

T |ImQ : Im Q → Im Q,

where Q = Id − P , is onto and invertible;
2. there exist λ,N > 0 such that

‖TmP‖ ≤ Ne−λm and ‖SmQ‖ ≤ Ne−λm

for m ≥ 0, where S = (T |ImQ)−1.
In particular, the equivalence of the notions of hyperbolicity for a sequence
(Am)m∈Z and its evolution map on �∞

0 (X) and on �p(X) lead to further
equivalences to the former admissibility properties.

In particular, we have the following result.

Theorem 7. [3] Let A = (Am)m∈Z be a sequence of linear maps on X that
is exponentially bounded with respect to the norms ‖·‖m. Then (Am)m∈Z is
hyperbolic with respect to the norms ‖·‖m if and only if the evolution map S
on Y = �∞

0 (X) given by (2) is hyperbolic.
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In addition, one can replace the space Y in Theorem 7 by many other
Banach spaces, including �p(X) with p ∈ [1,+∞) (see [4] for details).

The following statement is a simple consequence of the former results.

Theorem 8. Let A = (Am)m∈Z be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ‖·‖m. Then the following
properties are equivalent:

1. the sequence (Am)m∈Z is hyperbolic with respect to the norms ‖·‖m;
2. the pair formed by the spaces �∞

0 (X) and �∞(X) is admissible;
3. the pair formed by the spaces �p(X) and �p(X) is admissible;
4. the evolution map S on Y = �∞

0 (X) or on Y = �p(X) is hyperbolic;
5. the pair formed by the spaces D0(X) and D0(X) is admissible;
6. the pair formed by the spaces Mp(X) and Mp(X) is admissible.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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[5] Daleckii, J., Krĕın, M.: Stability of Solutions of Differential Equations in Ba-
nach Space. Translations of Mathematical Monographs, vol. 43. American
Mathematical Society, Providence (1974)
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Departamento de Matemática, Instituto Superior Técnico
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