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Abstract. We show that the admissibility properties for a sequence of
linear operators and the corresponding evolution maps are equivalent
on various Banach spaces. We then use this information to obtain new
descriptions for the hyperbolicity of a sequence of linear operators and
the corresponding evolution maps.
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1. Introduction

Our main objective is to establish the equivalence of the admissibility prop-
erties for a sequence of linear operators on a Banach space and the corre-
sponding evolution maps on various Banach spaces. This includes spaces of
bounded sequences, of sequence vanishing at infinity, and /P spaces. We also
consider the relation to hyperbolicity and, as an application, we use the cor-
respondence of the admissibility properties to give new descriptions for the
hyperbolicity of a sequence of linear operators.

The notion of admissibility goes back to Perron in [9]. A simple mod-
ification of his work for continuous time gives the following statement. Let
(Am)mez be a (two-sided) sequence of n x n matrices. If for each bounded
sequence (Ym)mez in R™ there exists 2o € R™ such that the sequence

Tmg1 = Ao + Ymt1 (1)

is bounded for m € N, then any bounded sequence A,, --- A1z tends to zero
when m — oco. Related results for discrete time were first obtained by Li in
[6]. For some early contributions we refer the reader to the books [5,7].

A general notion of admissibility can be introduced as follows. We
say that a pair of Banach spaces (C, D) is admissible if for every sequence
(Ym)mez in C there exists a unique sequence (T, )mez in D satisfying (1).
We consider this notion for various Banach spaces of sequences with values
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in a given Banach space X as well as their corresponding evolution maps.
Namely, given a Banach space Y C X%, we define a map S: X? — X% by

(Su)y = Ap_1un_1 forn € Z and u = (U, )mez € XZ.

Provided that S(Y) C Y, the map S is called the evolution map of the
sequence (A, )mez on the Banach space Y.

As noted above, our main objective is to establish a faithful correspon-
dence between the admissibility properties for some pairs of Banach spaces
at the levels of sequences of linear operators and evolution maps, also on
various Banach spaces. Evolution maps transfer the dynamics at the level of
a sequence of linear maps to a dynamics on much larger space, although this
new dynamics is autonomous, which often makes the approach much simpler.
Furthermore, the properties of the dynamics are also transferred to those of
the evolution map, and this often leads to much simpler proofs. In addition,
the transference of properties is quite helpful in finding appropriate nonau-
tonomous notions when they are not yet available in the nonautonomous case.
An important example of such a correspondence is the study of hyperbolicity
and its various variations that goes back to Mather in [8]. The theory of semi-
groups is nowadays an important tool in the theory of differential equations
(see for example [10]).

To illustrate our results, we formulate a particular case of Theorem 3.
Let £3(X) be the set of all sequences in X vanishing at infinity and define
Do(X) = £ (6°(X)).

Theorem 1. Let A = (A,,)mez be a bounded sequence of linear maps. Then
the following properties are equivalent:

1. for each (Ym)mez € £F(X) there exists a unique (Tpm)mez € £°(X)
satisfying

Tmt1l = AmTm + Ym+1  for m € Z;

2. for each (Vpm)mez € Do(X) there exists a unique (Um)mez € Do(X)
satisfying

Umt1 = SUp + Va1 for m € Z.

Using the notion of admissibility, Theorem 1 can be reformulated as
follows: for a bounded sequence A the following properties are equivalent:

1. the pair formed by the spaces £5°(X) and ¢°°(X) is admissible;
2. the pair formed by the spaces Dy(X) and Dy(X) is admissible.

Further pairs of spaces are considered in the paper. These include in particular
spaces of sequences with bounded exponential growth and 7 spaces.

More generally, we consider families of norms ||-||,,, for m € Z. These
norms play an essential role for example in smooth ergodic theory in the
presence of nonuniform exponential behavior. Moreover, we use our results on
the equivalence of admissibility properties for sequence of linear operators and
evolution maps to give new descriptions for the hyperbolicity of a sequence
of linear operators (see Sect. 6).
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2. Evolution Maps

Let X = (X,]|']|) be a Banach space. Given a sequence A = (A,,)mez of
continuous maps on X, we define

U(m,n) :{

Ap_1--A, ifm>n,
Id ifm=n
for each m,n € Z with m > n. We shall only consider sequences A that

are exponentially bounded with respect to a sequence of norms. Namely, let
I|lm, for m € Z, be a sequence of norms on X such that

lz|l < |lzllm < Rumllz|| for m €Z and x € X

and some sequence (R;,)mez in RT. We say that the sequence A is expo-
nentially bounded with respect to the norms ||-||n, if there exist a, k > 0 such
that

U (m, )z < ke ||z, for m >n and z € X.

To each sequence A = (A, )mez of continuous maps on X, we associate
maps S = S|y on certain Banach spaces Y C X%. Namely, we define the
evolution map of A on a space Y by

(Su)p = Ap—qup—1 forn € Z and u = (um)mez €Y, (2)

whenever S(Y) C Y.

We also introduce a family of maps that will be used in the study of
admissibility. Let A = (A,,)mez be a sequence of linear maps on X. Given a
sequence y = (Y )nez in X, we define a map T,,: X2 — X% by

(Tyu)y = Ap—1up—1 +yn forneZ and u= (Un)mez € X2,

3. Admissibility for Bounded Sequences

In this section we consider a certain admissibility property on a space of
bounded sequences for evolution maps.

3.1. Evolution Maps

Let £>°(X) be the set of all sequences = (Z,;)mez with values in X such
that

|2]| oo := sup ||Zm||m < oo
meZL

We note that ¢*°(X) is a Banach space when equipped with the norm ||-||c.
We also consider the closed subspace ¢5°(X) C ¢>°(X) of those z € £>°(X)
such that

lm ||z ||m = 0.
Proposition 1. Let A = (A;,)mez be a sequence of linear maps on X that
is exponentially bounded with respect to the norms ||-||m. Then the following
properties hold:
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1. for each y € £°(X) we have
T, (t>(X)) C £2(X);
2. for each y € {F(X) we have
T, (457 (X)) < £5°(X).
Proof. Take y,u € £(X). Then

”TyU”oo =sup [|[A,—1up-1 + yan
nez
< ke® SupHun—IHn—l + SUPHZ/TLHH
nez neZ

< ref|ufloo + [[Ylloe < o0
and so Tyu € £°°(X). On the other hand, for y,u € £3°(X) we have
I(Tyw)nlln = [An-1tn—1 +ynll,
< ke |lun-1lln-1+ lynlln — 0
when |n| — oo and so Tyu € £5°(X). O
3.2. Admissibility Properties

We continue to consider a sequence of maps A = (A,,)mez that is exponen-
tially bounded with respect to some norms |-|,,. Taking y = 0 in Proposi-
tion 1 we find that A generates the evolution map S = Ty on £*°(X) given
by

(Su)p = Ap_qup—1 forn € Z and u = (um)mez € £7°(X).
Moreover, let D(X) be the set of all sequences v = (Vs )mez with values in
£>(X) such that

lvllp == sup||vmlleo < 00.
meZ

We note that D(X) is a Banach space when equipped with the norm ||| p.
We also consider the closed subspace Dy(X) C D(X) of all sequences v with
values in £3°(X) such that

Hm ||vm||eo = 0.
|—o0

|m
The following theorem is our main result.
Theorem 2. Let A = (An)mez be a sequence of linear maps on X that is

exponentially bounded with respect to the norms ||-||lm. Then the following
properties are equivalent:

1. for each y € €5°(X) there exists a unique x € £*°(X) such that
Tmt1 = AmTm + Yme1  for m € Z; (3)
2. for each v € Dy(X) there exists a unique u € D(X) such that

Um41 = SUp, + Vg1 form € Z. (4)

Proof. We first prove an auxiliary result. For each © = (ty,)mez € D(X), we
shall denote by wy, ; the kth term of the sequence u,, € ¢>(X).
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Lemma 1. Given u,v € D(X), Property (4) holds if and only if
Um4+1—k,m+1 = Amum—k,m + Yk,m+1 fO?” m, ke Z7 (5)
where Yi.n = Vn—k,n-

Proof of the lemma. First assume that property (4) holds. By the definition
of S we have

(Sup)m+1 = Amlp,m
(where u,, ,, is the mth term of the sequence u,) and so
Up+1,m+1 = (S“p)m—H + Vpt1,m+1 = AmUpm + Vpt1,m+1
for each m,p € Z. Taking p = m — k, we obtain
Ut 1—kymt1 = AmUm—km + Vmt1—kme1 = AmUm—km + Yemi1- (6)

Now assume that property (5) holds. Proceeding as in (6) and again by
the definition of S, we have

Um4+1—k,m+1 = Amum—k,m + Yk,m+1
- Amumfkr,m + Um+1—k,m+1
- (Sum—k)m-l-l + (Um-i-l—k)m—i-l-

Since m and k are arbitrary, this yields property (4). Indeed, replacing m — k
by p gives

(Upt+1)m+1 = Upt1,m+1
= (Sup)m+1 + (Vp+1)m+1
= (Sup + Up+1)m+1.
Finally, since m is arbitrary, we obtain
Up+1 = Sup + Up+1

and property (4) follows from the arbitrariness of p (since k is arbitrary,
for a given m one can choose k such that p = m — k takes any desired
value). O

We proceed with the proof of the theorem.
(1 = 2). Take v € Dy(X). For each k € Z, we define y*) € X% by

Yy = v ko forme (7)
(in a similar manner to that in Lemma 1). Since v € Dg(X), we have

iyl < Tim Jlon-illos = 0
and so y*) e £ (X). By property 1, there exists a unique solution =) e
(>°(X) of Eq. (3) with y = y®, for each k € Z.

By Lemma 1, if w € D(X) is a solution of Eq. (4), then (tm—g m)mez
is a solution of Eq. (3) with y = 3, for each k € Z, that is,

Um+1—k,m+1 = Amum—k,m + Um41—k,m+1 for m € Z.
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Therefore, necessarily Uy, —g,m = ng) for m, k € Z, which is equivalent to

_ n—m
Upm,n = :cSl )

for m,n € Z. (8)

This shows that any solution of Eq. (4) is given by (8) and so, in particular,
it is unique. We show below that the sequence u defined by (8) belongs to
D(X).

Let E be the Banach space of all sequences = € ¢>°(X) for which
there exists y € (3°(X) satisfying (3) and define a linear operator R: E —

(5°(X) by

(RT)m+1 = Tmy1 — A&y, for m € Z. (9)
We show that R is closed. Let (E(i))ieN be a sequence in E converging to
x € £%°(X) such that 5 = Rz converges to y € £°(X). Then

Tot1 — AT = Zlirgo(aﬁsrgrl — Amﬁgg})

= lim (R-f(i))erl = Ym+1

11— 00

for m € Z. This shows that Rz = y and so x € E. Hence, the operator R is
closed. By the closed graph theorem, R is bounded. Moreover, by property 1
the operator R is onto and invertible. It follows from the open mapping
theorem that it has a bounded inverse.

Now we show that u € D(X). First observe that for a fixed m, replac-
ing n by m + k we have

_ k
supl|" ™™ |, = supllz}y [l < suple®|loc.
nez keZ keZ
Since Rz®) = y*) | we obtain
[t [l oo = supl|$ =™ ||, < supl|z™||se < IR suply™ |-
nez keZ keZ
Moreover,

sup||vm—k,mllm < sup [[vmnlln (10)
meZ m,ne

since the pairs (m — k, m) with m € Z form a subset of the pairs (m,n) with
m,n € Z, and so

19 loo = Sup [om—tmllm < SUD._ [V 0l

mEeZ m,nez
= sup [vmloe = [|v]|p < o0.
meZ

This shows that

[umlloc < IR7H - 0]l < 00
and so u,, € *°(X). Finally, we also have
I

sup [[tm [loe < IR - [Jvllp < 400
meZ

and so u € D(X).
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(2 = 1). Take y € £5°(X) and define a sequence (v, )mez with values
in £5°(X) by

Yn
Vo = m for m,n € Z. (11)

Note that
IIyan
z 1+ (m—n)?
Given ¢ > 0, take p > 0 such that ||y, ||, < ¢ whenever |n| > p. Then

lvmlloo = SUP

[omllos < sup l(lynm

+e—¢€
nef-p,p) L+ (M ?

n)
when |m| — oco. It follows from the arbitrariness of £ that v € Dg(X).

By property 2, there exists a unique u € D(X) satisfying (4). In view
of Lemma 1, for each k € R the sequence z(¥) = (Um—k,m)mez satisfies the
equation

P | xk)+y(k) for m € Z,

m+1 +1
where
Y
ygk?) =Un—kn = Hin]# for n € Z.

Therefore, zF) = (1 + k?)z*) satisfies Eq. (3) for each k € Z. Moreover,
proceeding as in (10) we obtain

||x(k)Hoo = Sup ”um kam < sup Hum an

meZ m,ne
= sup [[um loc = [[ullp < o0
meZ

and so ) € (°(X). We also show that z(*) is independent of k. Given
p € Z, we define a sequence @ = (U, )mez in D(X) by

iglp)

U = m for m,n € Z. (12)

Then Up—fm = (p)/(l + k?) satisfies equation (5) for all k and so by
Lemma 1, @ is a solution of Eq. (4). But by property 2, we must have @ = u.
Therefore, for each ¢ € Z we have

7
20 = U g = U —gm = T+

for all m € Z and so (9 = z(P). This shows that z := #(®) € £°>°(X), which
is a solution of Eq. (3), is independent of k.

To establish property 1, it remains to show that Eq. (3) has a unique
solution. Assume that z € £°°(X) was a solution different from Z. We define
a sequence w € D(X) by

Zn
wm n

, :m fOI‘m,nEZ.
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Then Wy, —k.m = 2m/(1 + k?) satisfies Eq. (5) for all k, that is,

k
Wm+1—k,m+1 = Amwm—k,m + yr(nle for m, k€ Z.

It follows from Lemma 1 that w is a solution of Eq. (4). But then both u, w €
D(X) are solutions of Eq. (4), which by hypothesis has a single solution.
Therefore, since % = u and z®) = z, it follows from (12) that

Zn Zn
TF (=) = U = T e
for m,n € Z, which readily implies that T = z. This contradiction shows that
Eq. (3) has a unique solution. O

4. Admissibility with Exponential Growth

In this section we consider the same admissibility property as before but for
spaces of sequences with bounded exponential growth.

4.1. Evolution Maps

Given ¢ > 0, let E°(X) be the set of all sequences (2, )mez with values in X
such that the sequence ¢ = (2¢,)mez defined by x¢, = e~¢I™lx,, for m € Z
is in £5°(X'). We note that E°(X) is a Banach space when equipped with the
norm

[zl ze = |2 oo

Proposition 2. Let A = (An)mez be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ||-||m. Then for each ¢ > 0
and y € E¢(X) we have

T,(E°(X)) C E°(X).
Proof. Take y,u € E°(X). Then
e~ (T u)alln = e~ A rtn-1 + yall,,
< ke teemen [tn—1lln—1 + e~el"! [Ynlln — 0
when |n| — oo and so Tyu € E¢(X). O

4.2. Admissibility Properties

As a preparation for the result relating admissibility properties using the
spaces E°(X), we first establish a version of Theorem 2 in which we consider
the same spaces for the perturbations and for the solutions.

Theorem 3. Let A = (Ay,)mez be a sequence of linear maps that is exponen-
tially bounded with respect to the norms ||||;m. Then the following properties
are equivalent:

1. for each y € €52 (X) there exists a unique x € £5°(X) satisfying (3);
2. for each v € Dy(X) there exists a unique u € Do(X) satisfying (4).
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Proof. (1 = 2). Take v € Do(X) and consider the sequences y*) € £5°(X)
defined by (7) for each k € Z. By property 1, there exists a unique solution
) € 15°(X) of equation (3) with y = y*). Again we define u,, , as in (8).
We will show that v € Do(X). As in the proof of Theorem 2, u is then the
unique solution of Eq. (4) in Dg(X).
We already know from the proof of Theorem 2 that u € D(X) and so
it remains to verify that u,, € £3°(X) for each m € Z and that ||tum|lec — 0
when |m| — oo. Since
li

m || =0,
|m|—o0
for each € > 0 there exists M € N such that
lvmnlln <€ whenever |m| > M and n € Z.

On the other hand, for each m € [-M, M]NZ there exists n,, € N such that

lvm.nlln <& whenever [n| > n,,.
Letting
N = max{n_M, . ,nM},
we obtain
|vm,nlln <& whenever m € [-M,M]NZ and |n| > N. (13)

This readily implies that

1y loo = sup|[vim—rmlm < (14)
mEZ

for any sufficiently large |k| since then the line {(m — k,m) : m € Z} does
not intersect the rectangle [—M, M| x [—N, N]. Hence, it follows from the
arbitrariness of € that

tim |y = 0. (15)

|k|—o00

Let Ey be the Banach space of all sequences z € £3°(X) for which there
exists y € £5°(X) satisfying (3) and define a linear operator R: Ey — (°(X)
by (9). One can show as in the proof of Theorem 2 that R has a bounded
inverse. By (15) we have

o = lim (27|, < tim )
‘TLlHOO nj—oe n|—o0

< IR Timfly™ o = 0
and so uy, € £5°(X) for each m € Z. Moreover, since
1z lloo < IRTH - lly™ oo,
it follows from (15) that for each & > 0 there exists K € N such that
|z(®)]|,, <& whenever |k| > K and n € Z.
Since () € £3°(X), for each k € [~ K, K| N Z there exist nj, € N such that

||9C£Lk)||n < e whenever |n| > ng.
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So, there exists N € N such that
|2, <& whenever k € [-K,K]NZ and |n| > N.

This implies that sup,,cy, 12""™)|,, < ¢ for any sufficiently large |m/| since
then the line {(n — m,n) : m € Z} does not intersect [—K, K] x [N, NJ.
Hence, it follows from the arbitrariness of ¢ that
Hm  [Jum]|eo =
|m|—o00
and so u € Dy(X).

(2 =1). Take y € £5°(X) and consider the sequence (vy;)mez € Do(X)
defined by (11). By property 2, there exists a unique u € Dy (X) satisfying (4).
We already know from the proof of Theorem 2 that the sequence & = (2, )mez
with

lim sup [|z"~™)||,, = 0.
m|—00 nez

T = (1+ k) Up—pn formezZ
is independent of k£ € Z and that it is the unique solution of equation (3)
in ¢°°(X). It remains to verify that = € £5°(X).

As in the proof of the implication 1 = 2 (see (13)), since u € Dy(X),
for each ¢ > 0 there exist M, N € N such that

lumnlln <€ whenever m € [-M, M| NZ and |n| > N.

Also as before (see (14)), this implies that sup,,cyz [|Um—k,m|lm < € for any
sufficiently large |k|. It thus follows from the arbitrariness of ¢ that x €
£3°(X). This completes the proof of the theorem. O

Using this result we are able to consider the space E°(X) for an arbitrary
constant ¢ > 0. Given ¢ > 0 and taking y = 0 in Proposition 2, we find that
A generates the evolution map S = T on E¢(X) given by

(Su)p = Ap—qup—1 forn € Z and u € E°(X).

Moreover, let F¢(X) be the set of all sequences (Vs )mez with values in E¢(X)
such that

lim ||vp||ge = 0.
[m|—o0

We note that E¢(X) is a Banach space when equipped with the norm

[lv]| Fe := sup||vm|| g < oc.
MmEZL

Theorem 4. Let A = (Ap)mez be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ||-||;m. Then for each ¢ > 0
the following properties are equivalent:

1. for each y € E¢(X) there exists a unique x € E(X) satisfying (3);
2. for each v € F°(X) there exists a unique u € F°(X) satisfying (4).

Proof. Take y,x € E¢(X). We consider the sequences y¢, 2¢ € £5°(X) defined
by

—c|m|

Yoy = efclmlym and zi, =e T
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for m € Z. Note that property (3) holds if and only if
o = AL v, Yy formeZ, (16)
where

Afn _ e—c|m+1|+c\m|Am.

Therefore, property 1 holds if and only if for each f € E°(X) there exists a
unique z € E°(X) satisfying (16) (using the definitions of ¢ and z°).

Notice that the sequence A = (AS,)mez is also exponentially bounded
with respect to the norms |[-||,,,. Since the maps y — y° and z +— ¢ are
bijections from E¢(X) onto £3°(X), it follows from Theorem 3 that property 1
holds if and only if for each F € Dy(X) there exists a unique u € Dy(X)
satisfying

U1 = SUpm + Upy1  for m € Z, (17)
where
(SV)m = A%, _jUm—1 form € Z and v € (°(X).
We have
ec‘m|(ch)m = Ap_qefm "y, g,
that is,

v0S5¢=Sox, with~v(v), = e“ly,,.
Letting u’, = v(u.,), we obtain
V(S Um) = S(y(um)) = Sug,
and so property (17) is equivalent to
U1 = Sty + V541, (18)
where

cf

(U )n = Y(VUm)n =€ n‘vm,n'

Since the maps v — v = (v, )mez and u — u® = (uf,)mez are bijections
from Dy(X) onto F¢(X), it follows from (18) that property 1 holds if and
only if property 2 holds. O

5. Admissibility on #” Spaces

In this section we consider once more an admissibility property, now for
evolution maps on /P spaces.
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5.1. Evolution Maps

For each p € [1,+00), let 7(X) be the set of all sequences & = (Z, )mez Wwith
values in X such that

1/p
Hx”” = (Z xml%@) < 0.

meEZ

We note that £7(X) is a Banach space when equipped with the norm ||| .

Proposition 3. Let A = (A;,)mez be a sequence of linear maps on X that

is exponentially bounded with respect to the norms ||||m. Then for each y €
P(X), we have

T,(fP(X)) C P(X).

Proof. Take y,u € (P(X). By Minkowski’s inequality we have

1/p
[ Tyuller = <Z |[An—1tn—1+ynllh ds)

nez
1/p 1/p
< <Z ”An—lum—luﬁ dS) + <Z|yn||p>
neEZ nez
1/p
< ke (Z ||Un—1||ﬁ_1> + |yl er
nez

= ke |uller + [[yller < 00,

which shows that Tyu € 7(X). O

5.2. Admissibility Properties
Taking y = 0 in Proposition 3, we find that A generates the evolution map
S =Ty on ¢P(X) given by

(Su)p = Ap—qup—1 forn € Z and u € ¢P(X).

Moreover, for each p € [1,400) let MP(X) = (P(¢?(X)) be the set of all
sequences v = (v, )nez With v, € £P(X) such that

1/p 1/p
[vllare = <Z|Um||§p> = (Z ZHUmmH%) < 0.

meZ meZne’

We note that MP(X) is a Banach space when equipped with the norm ||| as».

Theorem 5. Let A = (An)mez be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ||-||lm. Then the following
properties are equivalent:

1. for each y € tP(X) there exists a unique x € (P(X) satisfying (3);
2. for each v € MP(X) there exists a unique u € MP(X) satisfying (4).
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Proof. (1 = 2). Take v € MP(X). For each k € R we consider the sequence
y*) € X% defined by (7). We have

ST1P1E =303 on-kwml?
kEZ k€Z nel (19)
= Z ZHUm,j”? = ||U||§7\/IP < 0
mEZL jEL

and so y*) € ¢P(X). By property 1, there exists a unique solution z) e
(X)) of Eq. (3) with y = y*). Again we define u,, ,, as in (8). By Lemma 1,
u is a solution of Eq. (4) and as in the proof of Theorem 2 it is automatically
unique. We will show that u € MP(X).

Let F' be the Banach space of all sequences = € ¢P(X) for which there
exists y € (P(X) satisfying (3) and define a linear operator R: F' — (P(X)
by (9). One can show as in the proof of Theorem 2 that R has a bounded
inverse.

Now we show that u € MP(X). We have

D Ml = >0 D Ml

meZ meZneZ

=SSP pE = Sl ® e,

kEZ jEL keZ

(20)

Since
2 ler < [R7H] - g™l

it follows from (19) that

>l =D llz®IE,

meEZ keZ
<IRTHPY Iy ™17,
keZ
= [[R7HPlvll}m < o0

and so u € MP(X).
(2 =1). Take y € ((X) and define v = (Vy)mez by

Umon = T Yn for m,n € Z.

T+ (m—n)?
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Note that v € MP(X). Indeed,

olfe = Y D llomnllh

meZne’

= Z Z l[vim,nllh
n€EZmeZL

1

=Y vt Y w55

nez mez 1+ (m—n)?)p
1

=D Mol > s

nez meZ (1 +m )p

= cpllyller < o0

for some constant ¢, > 0 that depends only on p. By property 2, there exists
a unique u € MP(X) satisfying (4). By Lemma 1, for each k € R the sequence
z®) defined by

xﬁ,’f) = Upm—k,m form €Z

satisfies Eq. (3) with y replaced by y*) = (y,(,]f))mez with

Ym
1+ k2

yfff) = VUm—k,m = for m € 7Z.

Proceeding as in (20), we obtain

D@ = lumlfe = lullhy < oo

keZ meZ

and so 2(®) € fP(X). One can then show in a similar manner to that in the
proof of Theorem 2 that © = (2, )mez With

Tm = 1+ k2™ formeZ

is independent of k and that it is the unique solution of Eq. (3) in P(X).
This concludes the proof of the theorem. O

6. Hyperbolicity

In this section we discuss the relation of hyperbolicity with the admissibility
properties considered in the former sections.

Let ||||m, for m € Z, be a family of norms on a Banach space X. We
say that a sequence (A, )mez of linear maps on X is hyperbolic with respect
to the norms ||-||m if:

1. there exist projections P, for n € Z such that P,;1 A4, = A, P, and the
map

Aplimg,: ImQy, — Im Qpyq,

where @, =1d — P,, is onto and invertible for each n € Z;
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2. there exist constants A\, NV > 0 such that for each z € X we have

||U(m7n)an||m < Nei)\(min)Hx”n form>n

and
1T (m, 1) Qnit||m < Ne 2=™)||z||,,  for m < n,
where U(mm) = (U(mﬂ)\lan)_l-

The following proposition is a particular case of more general results in
at relate hyperbolicity with admissibility.
1] that relate h; bolicity with admissibilit

Proposition 4. Let A = (A;,)mez be a sequence of linear maps on X that
is exponentially bounded with respect to the norms ||-||;,. Then the following
properties are equivalent:

1. the sequence (Ap)mez is hyperbolic with respect to the norms ||-||m;
2. for each y € L (X) there exists a unique x € (°(X) satisfying (3);
3. for each y € (P(X) there exists a unique x € (P(X) satisfying (3).

We refer the reader to [2] for a detailed list of references on further
related results, including specifically for the family of norms |||, = ||-||-

The following statement is a simple consequence of Theorems 3 and 5
together with Proposition 4.

Theorem 6. Let A = (An)mez be a sequence of linear maps on X that is
exponentially bounded with respect to the norms ||-||;,. Then the following
properties are equivalent:

1. the sequence (Ap)mez is hyperbolic with respect to the norms ||-||m;
2. for each v € Dy(X) there exists a unique u € Do(X) satisfying (4);
3. for each v € MP(X) there exists a unique u € MP(X) satisfying (4).

One can also consider the hyperbolicity of the evolution map. We recall
that a map T on a Banach space Y is said to be hyperbolic if:

1. there exists a projection P satisfying PT = TP and the map
Tlimg: ImQ — ImQ,

where Q = Id — P, is onto and invertible;
2. there exist A, N > 0 such that

[T™P|| < Ne™™ and [S™Q| < Ne™*™
for m > 0, where S = (T|imq) "
In particular, the equivalence of the notions of hyperbolicity for a sequence
(Am)mez and its evolution map on £5°(X) and on ¢P(X) lead to further

equivalences to the former admissibility properties.
In particular, we have the following result.

Theorem 7. [3] Let A = (A,,)mez be a sequence of linear maps on X that
is exponentially bounded with respect to the norms ||||m. Then (Am)mez s
hyperbolic with respect to the norms ||-||m if and only if the evolution map S
on'Y = {52 (X) given by (2) is hyperbolic.
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In addition, one can replace the space Y in Theorem 7 by many other
Banach spaces, including ¢7(X) with p € [1,4+00) (see [4] for details).
The following statement is a simple consequence of the former results.

Theorem 8. Let A = (An)mez be a sequence of linear maps on X that is
exponentially bounded with respect to the norms |-||,,. Then the following
properties are equivalent:

1. the sequence (Am)mez s hyperbolic with respect to the norms ||-||m;
the pair formed by the spaces £F(X) and £°(X) is admissible;

the pair formed by the spaces (P(X) and ¢P(X) is admissible;

the evolution map S on'Y = L3°(X) or on' Y = (P(X) is hyperbolic;
the pair formed by the spaces Do(X) and Do(X) is admissible;

the pair formed by the spaces MP(X) and MP?(X) is admissible.

S U W
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