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Abstract. We give combinatorial proofs for the generalizations of Stan-
ley’s Theorem given in Andrews and Merca (Math Stud 89(1–2): 175–
180, 2020). These involve the total number bk(n) of parts equal to k in
all partitions of n. We also introduce several infinite families of linear
inequalities involving bk(n).
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1. Introduction

The work of this article started with a search for combinatorial proofs of
the results in [4]. Before we discuss these results, we need to introduce some
notation and terminology.

Given a non-negative integer n, a partition λ of n is a non-increasing
sequence of positive integers, λ = (λ1, λ2, . . . , λk), that add up to n, i.e.,∑k

i=1
λi = n. Thus, if λ = (λ1, λ2, . . . , λk) is a partition, we have λ1 ≥ λ2 ≥

· · · ≥ λk. The numbers λi are called the parts of λ and n is the size of λ.
The number of parts of the partition is called the length of λ and is denoted
by �(λ). The number of times k appears as a part of λ is the multiplicity of
k in λ and is denoted by mk(λ). We denote by P(n) the set of partitions of
n and set p(n) = |P(n)|.

Let n and k be non-negative integers such that k > 0. We denote by
bk(n) the number of parts equal to k in all the partitions of n. Thus,

bk(n) =
∑

λ∈P(n)

mk(λ).

We denote by dp(n) the number of parts that appear at least once in a given
partition of n, counted without multiplicity, summed over all the partitions
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of n. We refer to dp(n) as the number of distinct parts in all partitions of n.
We have,

dp(n) =
∑

λ∈P(n)

∑

j≥1
mj(λ)≥1

1.

Stanley’s theorem states that b1(n) = dp(n) for all positive integers n.
Elder’s generalization of Stanley’s theorem states that for all positive

integers n and k,

bk(n) =
∑

λ∈P(n)

∑

j≥1
mj(λ)≥k

1.

For more on Stanley’s and Elder’s theorems and their history, see [4].
Andrews and Merca [4] used generating functions to prove two general-

izations of Stanley’s theorem. For non-negative integers k, n and r such that
0 ≤ r < k, denote by dr,k(n) the number of distinct parts congruent to −r
(mod k) in all partitions of n − r.

Theorem 1. (Andrews-Merca 2020). Let k, n and r be non-negative integers
such that 0 ≤ r < k. Then,

bk(n) = dr,k(n).

Theorem 2. (Andrews–Merca 2020). The sum of all parts equal to k in all
partitions of n equals the difference between the sum of parts divisible by k,
counted without multiplicity, in all the partitions of n and the sum of parts
divisible by k, counted without multiplicity, in all the partitions of n − k.

In Sect. 2 we prove Theorems 1 and 2 combinatorially. In Sect. 3 we in-
troduce several linear inequalities involving bk(n). Finally, since the inequal-
ities presented in Sect. 3 are non-negativity results, in Sect. 4 we introduce
combinatorial interpretations of the sums involved in these inequalities.

2. Combinatorial Proofs of Theorems 1 and 2

2.1. Combinatorial Proof of Theorem 1

Let n be a non-negative integer. Our goal is to prove that bk(n) = dr,k(n)
for all integers such that 0 ≤ r < k. We first show combinatorially that
dr,k(n) = d0,k(n) for all 0 ≤ r < k. Then, we prove the theorem for r = 0.

Lemma 3. Let k, n and r be non-negative integers such that 0 ≤ r < k. Then,

dr,k(n) = d0,k(n).

Proof. Denote by Ar,k(n) the set of overpartitions of n − r with exactly
one part overlined and the overlined part is congruent to −r (mod k). Then
A0,k(n) denotes the set of overpartitions of n with exactly one part overlined
and the overlined part is congruent to 0 (mod k). Clearly, |Ar,k(n)| = dr,k(n)
and |A0,k(n)| = d0,k(n)
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Adding r to the overlined part of an overpartition in Ar,k(n) (and keep-
ing the new part overlined) gives an overpartition in A0,k(n). Subtracting
r from the overlined part of an overpartition in A0,k(n) (and keeping the
new part overlined) gives an overpartition in Ar,k(n). Thus the overparti-
tions in Ar,k(n) are in one-to-one correspondence with the overpartitions
in A0,k(n). �

Next, we finish the proof of Theorem 1 by proving the following lemma.

Lemma 4. Let k, n be integers such that n ≥ 0 and k > 0. Then,

bk(n) = d0,k(n).

Proof. In [5] it is proved combinatorially that

bk(n) =
∑

t≥1

p(n − kt).

Since the argument is not difficult, we recall it here for the convenience of
the reader.

We denote by P(n, k, t) the set of partitions λ ∈ P(n) such that mk(λ) ≥
t. Let p(n, k, t) = |P(n, k, t)|. Removing t parts equal to k from a partition
λ ∈ P(n, k, t) gives a partition of n − kt. Conversely, adding t parts equal to
k to a partition of n − kt gives a partition of n in P(n, k, t). Thus,

p(n, k, t) = p(n − kt).

To determine bk(n) we count, in order, the first appearance of k in all parti-
tions of n, then the second appearance of k in all partitions of n, and so on.
The number of the tth appearance of k in all partitions of n equals p(n, k, t).
Thus,

bk(n) =
∑

t≥1

p(n, k, t) =
∑

t≥1

p(n − kt). (1)

We create a one-to-one correspondence between A0,k(n) and the disjoint
union

⋃
t≥1

P(n − kt) as follows. If λ in an overpartition in A0,k(n), the

overlined part of λ is a part equal to kt for some t ≥ 1. Remove the overlined
part to obtain a partition in P(n − kt). Conversely, if t ≥ 1 and μ is a par-
tition in P(n − kt), add a part equal to kt to μ and overline it to obtain an
overpartition in A0.k(n). Therefore,

d0,k(n) = |A0,k(n)| =
∑

t≥1

p(n − kt) = bk(n).

�
Remark. Lemma 4 leads to the following refinement of Theorem 1. If k, n, t
be integers such that n ≥ 0 and k, t > 0, then

bk(n) =
(t−1)k∑

r=0

d̃r.k(n),

where d̃r.k(n) is the number of distinct parts congruent to −rk (mod tk) in
all partitions of n.
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To see this, suppose mk is a part counted by d0,k(n). Then m can be
written uniquely as m = qt − r with 0 ≤ r ≤ t − 1. Therefore, mk ≡ −rk
(mod tk) for a unique r ∈ {0, 1, . . . , t − 1}.

2.2. Combinatorial Proof of Theorem 2

To ease the explanation, we refer to the sum of parts divisible by k, counted
without multiplicity, in all partitions of n as the sum of distinct parts divisible
by k in P(n). Thus, we need to show that kbk(n) equals the difference between
the sum of distinct parts divisible by k in P(n) and the sum of distinct parts
divisible by k in P(n − k).

Each partition λ ∈ P(n) with mk(λ) = 1 contributes k to kbk(n). The
total contribution of these partitions is k(p(n, k, 1) − p(n, k, 2)). Thus,

kbk(n) = k(p(n, k, 1) − p(n, k, 2)) +
∑

λ∈P(n,k,2)

kmk(λ).

As in the proof of Lemma 4, there is a bijection between P(n, k, 1) and
P(n − k). It follows from the definition of this bijection (remove/add a part
equal to k) that the difference between the sum of distinct parts divisible
by k in P(n, k, 1) and the sum of distinct parts divisible by k in P(n − k)
equals k times the number of partitions λ ∈ P(n) with mk(λ) = 1, i.e.,
k(p(n, k, 1) − p(n, k, 2)). It remains to show that

∑

λ∈P(n,k,2)

kmk(λ)

equals the sum of distinct parts divisible by k in all partitions λ in P(n) with
mk(λ) = 0. Let A′

0,k(n) be the set of overpartitions in A0,k(n) with no part
equal to k. Then, the sum of overlined parts in all overpartitions in A′

0,k(n)
equals the sum of distinct parts divisible by k in all partitions λ in P(n) with
mk(λ) = 0.

There is a one-to one correspondence φ : A′
0,k(n) → P(n, k, 2) defined

as follows. Given an overpartition λ ∈ A′
0,k(n), let φ(λ) be the partition

obtained from λ by replacing the overlined part, kt, with t parts equal to k.
The inverse, takes all parts equal to k in μ ∈ P(n, k, 2), merges them, and
overlines the obtained part. Moreover, for each overpartition λ ∈ A′

0,k(n),
the overlined part is equal to kmk(φ(λ)). Summing the overlined parts of all
λ ∈ A′

0,k(n) completes the proof.

Remark. We note that the proof of Theorem 2 also follows from the fact that
kbk(n) = k

∑
t≥1 p(n − kt) and the sum of distinct parts divisible by k in

P(n) equals k
∑

t≥1 tp(n − kt).

2.3. A Simple Proof of a Further Result of [4]

In [4], the authors use logarithmic differentiation of the two variable gener-
ating function for partitions to show that

∞∑

j=−∞
(−1)jS(n − j(3j − 1)/2) = d(n),
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where S(n) denotes the total number of parts in all partitions of n and d(n)
denotes the number of divisors of n. We offer an alternative proof.

Recall, from the proof of Lemma 4 that

bk(n) =
∑

t≥1

p(n − kt).

Clearly

S(n) =
∑

k≥1

bk(n).

Therefore,
∞∑

j=−∞
(−1)jS(n − j(3j − 1)/2) =

∞∑

j=−∞
(−1)j

∑

k≥1

∑

t≥1

p(n − kt − j(3j − 1)/2)

=
∑

k≥1

∑

t≥1

∞∑

j=−∞
(−1)jp(n − kt − j(3j − 1)/2).

From Euler’s Pentagonal Number Theorem, it follows that
∞∑

j=−∞
(−1)jp(n − j(3j − 1)/2) =

{
0 if n > 0
1 if n = 0.

Thus,
∑

k≥1

∑

t≥1

∞∑

j=−∞
(−1)jp(n − kt − j(3j − 1)/2) =

∑

k,t≥1
kt=n

1 = d(n).

3. Linear Inequalities Involving bk(n)

In this section, and throughout this paper, we use the following customary
q-series notation:

(a; q)n =

{
1, for n = 0,
(1 − a)(1 − aq) · · · (1 − aqn−1), for n > 0;

(a; q)∞ = lim
n→∞(a; q)n.

Because the infinite product (a; q)∞ diverges when a �= 0 and |q| � 1, when-
ever (a; q)∞ appears in a formula, we shall assume |q| < 1.

We denote by pe−o(n) the difference between the number of partitions
of n into an even number of parts and the number of partitions of n into an
odd number of parts. We have the following infinite families of inequalities.

Theorem 5. Let k, m and n be three positive integers. Then

(−1)m

⎛

⎝bk(n) + 2
m∑

j=1

(−1)jbk(n − j2) −
�n/k�∑

t=1

pe−o(n − kt)

⎞

⎠ � 0,

with strict inequality if and only if n � k + (m + 1)2.
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Proof. It is well-known that the generating function for pe−o(n) is given by
∞∑

n=0

pe−o(n)qn =
1

(−q; q)∞
= (q; q2)∞.

From [4], we have
∞∑

n=0

bk(n)qn =
qk

(1 − qk)(q; q)∞
.

Considering the Cauchy multiplication of two power series and the generating
functions for bk(n) and pe−o(n), we obtain:

∞∑

n=0

⎛

⎝bk(n) + 2
m∑

j=1

(−1)jbk(n − j2) −
�n/k�∑

t=1

pe−o(n − kt)

⎞

⎠ qn

=

( ∞∑

n=0

bk(n)qn

) (
1 + 2

m∑

n=1

(−1)nqn2

)
−

( ∞∑

n=1

qkn

) ( ∞∑

n=0

pe−o(n)qn

)

=
qk

(1 − qk)(q; q)∞

(
1 + 2

m∑

n=1

(−1)nqn2

)
− qk

1 − qk

1
(−q; q)∞

=
qk

(1 − qk)(q; q)∞

(
1 + 2

m∑

n=1

(−1)nqn2 − (q; q)∞
(−q; q)∞

)
.

To obtain our inequality, we consider the Gauss hypergeometric series

2φ1

(
a, b
c

; q, z
)

=
∞∑

n=0

(a; q)n(b; q)n

(q; q)n(c; q)n
zn

and the second Heine transformation formula for 2φ1 [6, (III.2)], namely

2φ1

(
a, b
c

; q, z
)

=
(c/b; q)∞(bz; q)∞

(c; q)∞(z; q)∞
2φ1

(
abz/c, b

bz
; q, c/b

)
. (2)

In addition, using the classical theta identity of Gauss [1, p.23]

(q; q)∞
(−q; q)∞

= 1 + 2
∞∑

n=1

(−1)nqn2
,

we can write

qk

(1 − qk)(q; q)∞

⎛

⎝1 + 2
m∑

j=1

(−1)jqj2 − (q; q)∞
(−q; q)∞

⎞

⎠

= − 2qk

(1 − qk)(q; q)∞

∞∑

j=m+1

(−1)jqj2

= (−1)m 2qk+(m+1)2

(1 − qk)(q; q)∞

∞∑

j=0

(−1)jqj2+2j(m+1)

= (−1)m 2qk+(m+1)2

(1 − qk)(q; q)∞
lim
τ→0

∞∑

j=0

(q2m+3/τ ; q2)j

(τ ; q2)j
τ j
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= (−1)m 2qk+(m+1)2

(1 − qk)(q; q)∞
lim
τ→0

2φ1

(
q2, q2m+3/τ

τ
; q2, τ

)

= (−1)m 2qk+(m+1)2

(1 − qk)(q; q)∞
×

× lim
τ→0

(τ2/q2m+3; q2)∞(q2m+3; q2)∞
(τ ; q2)2∞

2φ1

×
(

q2m+5/τ, q2m+3/τ
q2m+3 ; q2, τ2/q2m+3

)

= (−1)m 2qk+(m+1)2(q2m+3; q2)∞
(1 − qk)(q; q)∞

×

× lim
τ→0

∞∑

j=0

(q2m+5/τ ; q2)j(q2m+3/τ ; q2)j

(q2; q2)j(q2m+3; q2)j

(
τ2

q2m+3

)j

= (−1)m 2qk+(m+1)2(q2m+3; q2)∞
(1 − qk)(q; q)∞

lim
τ→0

∞∑

j=0

(−1)jqj(j+1)(q2m+3/τ ; q2)j

(q2; q2)j(q2m+3; q2)j
τ j

= (−1)m 2qk+(m+1)2(q2m+3; q2)∞
(1 − qk)(q; q)∞

∞∑

j=0

qj(2j+2m+3)

(q2; q2)j(q2m+3; q2)j

= (−1)m 2qk+(m+1)2

(1 − qk)(q2; q2)∞

∞∑

j=0

qj(2j+2m+3)

(q2; q2)j(q; q2)m+j+1
.

Now we see that the coefficients of qn in the series

(−1)m qk

(1 − qk)(q; q)∞

⎛

⎝1 + 2
m∑

j=1

(−1)jqj2 − (q; q)∞
(−q; q)∞

⎞

⎠

are all non-negative. Moreover, for n � k +(m+1)2 the coefficients of qn are
all positive. This concludes the proof. �

The limiting case m → ∞ of Theorem 5 reads as follows.

Corollary 6. Let k and n be two positive integers. Then

bk(n) + 2
∞∑

j=1

(−1)jbk(n − j2) =
�n/k�∑

t=1

pe−o(n − kt).

In addition, we remark that
�n/k�∑

t=1

pe−o(n − kt) ≡ bk(n) (mod 2).

Usually, the number of partitions of n into distinct parts is denoted by
Q(n). For what follows, we denote by Qodd(n) the number of partitions of
n into distinct odd parts. It is well-known that the generating functions for
Q(n) and Qodd(n) are given by
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∞∑

n=0

Q(n)qn = (−q; q)∞

and
∞∑

n=0

Qodd(n)qn = (−q; q2)∞.

We have the following infinite families of linear inequalities.

Theorem 7. Let k, m and n be three positive integers. Then

(−1)m

⎛

⎝bk(n) + 2
m∑

j=1

(−1)jbk(n − 2j2) −
�n/k�∑

t=1

Qodd(n − kt)

⎞

⎠ � 0,

with strict inequality if and only if n � k + 2(m + 1)2.

Proof. The proof of this theorem is quite similar to the proof of Theorem 5,
i.e.,

∞∑

n=0

⎛

⎝bk(n) + 2
m∑

j=1

(−1)jbk(n − 2j2) −
�n/k�∑

t=1

Qodd(n − kt)

⎞

⎠ qn

=

( ∞∑

n=0

bk(n)qn

) (
1 + 2

m∑

n=1

(−1)nq2n2

)
−

( ∞∑

n=1

qkn

) ( ∞∑

n=0

Qodd(n)qn

)

=
qk

(1 − qk)(q; q)∞

(
1 + 2

m∑

n=1

(−1)nq2n2

)
− qk

1 − qk
(−q; q2)∞

=
qk

(1 − qk)(q; q)∞

(
1 + 2

m∑

n=1

(−1)nq2n2 − (q2; q2)∞
(−q2; q2)∞

)

= − 2qk

(1 − qk)(q; q)∞

∞∑

n=m+1

(−1)nq2n2

= (−1)m 2qk+2(m+1)2

(1 − qk)(q; q)∞

∞∑

n=0

(−1)n(q2)
n2+2n(m+1)

= (−1)m 2qk+2(m+1)2(q4m+6; q4)∞
(1 − qk)(q; q)∞

∞∑

n=0

q2n(2n+2m+3)

(q4; q4)n(q4m+6; q4)n

= (−1)m 2qk+2(m+1)2(q2; q4)∞
(1 − qk)(q; q)∞

∞∑

n=0

q2n(2n+2m+3)

(q4; q4)n(q2; q4)m+n+1
.

�

The limiting case m → ∞ of Theorem 7 reads as follows.

Corollary 8. Let k and n be two positive integers. Then

bk(n) + 2
∞∑

j=1

(−1)jbk(n − 2j2) =
�n/k�∑

t=1

Qodd(n − kt).
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Next, we give an infinite family of linear inequalities involving bk(n) and
Q(n).

Theorem 9. Let k, m and n be three positive integers. Then

(−1)m−1

⎛

⎝
2m−1∑

j=0

(−1)j(j+1)/2bk

(
n − j(j + 1)/2

)
−

�n/k�∑

t=1

Q

(
n − kt

2

)⎞

⎠ � 0,

with strict inequality if and only if n � k + m(2m + 1).

Proof. Considering the following classical theta identities of Gauss [1, p.23]
∞∑

n=0

(−q)n(n+1)/2 =
(q2; q2)∞
(−q; q2)∞

,

we can write
∞∑

n=0

⎛

⎝
2m−1∑

j=0

(−1)j(j+1)/2bk

(
n − j(j + 1)/2

)
−

�n/k�∑

t=1

Q

(
n − kt

2

)⎞

⎠ qn

=

( ∞∑

n=0

bk(n)qn

) (
2m−1∑

n=0

(−q)n(n+1)/2

)
−

( ∞∑

n=1

qkn

) ( ∞∑

n=0

Q(n)q2n

)

=
qk

(1 − qk)(q; q)∞

2m−1∑

n=0

(−q)n(n+1)/2 − qk(−q2; q2)∞
1 − qk

=
qk

(1 − qk)(q; q)∞

(
2m−1∑

n=0

(−q)n(n+1)/2 − (q2; q2)∞
(−q; q2)∞

)

= (−1)m−1 qk(−q2; q2)∞
1 − qk

(−q; q2)m

(q2; q2)m−1

∞∑

n=0

qm(2n+2m+1)(−q2n+2m+3; q2)∞
(q2n+2m+2; q2)∞

,

where we have invoked [3, Theorem 9]: for m � 1,

(−q; q2)∞
(q2; q2)∞

2m−1∑

n=0

(−q)n(n+1)/2

= 1 − (−1)m (−q; q2)m

(q2; q2)m−1

∞∑

n=0

qm(2n+2m+1)(−q2n+2m+3; q2)∞
(q2n+2m+2; q2)∞

.

This concludes the proof. �

The limiting case m → ∞ of Theorem 9 reads as follows.

Corollary 10. Let k and n be two positive integers. Then
∞∑

j=0

(−1)j(j+1)/2bk

(
n − j(j + 1)/2

)
=

�n/k�∑

t=1

Q

(
n − kt

2

)
.

Andrews and Garvan [2] introduced the crank of a partition as equal to
the largest part of the partition if there are no ones as parts and otherwise
equal to the number of parts larger than the number of ones minus the number
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of ones. We denote by C(n) the number of partition of n with non-negative
crank. We have the following infinite family of inequalities.

Theorem 11. Let k, m and n be three positive integers. Then

(−1)m−1

⎛

⎝
m−1∑

j=0

(−1)jbk

(
n − j(j + 1)/2

)
−

�n/k�∑

t=1

C(n − kt)

⎞

⎠ � 0,

with strict inequality if and only if n � k + 2(m + 1)2.

Proof. Recently, Uncu [8] proved that the generating function for partitions
with non-negative crank is given by

∞∑

n=0

C(n)qn =
1

(q; q)∞

∞∑

n=0

(−1)nqn(n+1)/2.

Thus we can write
∞∑

n=0

⎛

⎝
m−1∑

j=0

(−1)jbk

(
n − j(j + 1)/2

)
−

�n/k�∑

t=1

C(n − kt)

⎞

⎠ qn

=

( ∞∑

n=0

bk(n)qn

) (
m−1∑

n=0

(−1)nqn(n+1)/2

)
−

( ∞∑

n=1

qkn

)( ∞∑

n=0

C(n)qn

)

=
qk

(1 − qk)(q; q)∞

m−1∑

n=0

(−1)nqn(n+1)/2 − qk

1 − qk

∞∑

n=0

C(n)qn

=
qk

1 − qk

(
1

(q; q)∞

m−1∑

n=0

(−1)nqn(n+1)/2 −
∞∑

n=0

C(n)qn

)

= − qk

(1 − qk)(q; q)∞

∞∑

n=m

(−1)nqn(n+1)/2

= (−1)m−1 qk+m(m+1)/2

(1 − qk)(q; q)∞

∞∑

n=0

(−1)nqn(2m+1)/2+n2/2

= (−1)m−1 qk+m(m+1)/2

(1 − qk)(q; q)∞
lim
z→0

∞∑

n=0

zn(qm+1/z; q)n

(z; q)n

= (−1)m−1 qk+m(m+1)/2

(1 − qk)(q; q)∞

× lim
z→0

(z2/qm+1; q)∞(qm+1; q)∞
(z; q)2∞

∞∑

n=0

(qm+2/z; q)n(qm+1/z; q)n

(q; q)n(qm+1; q)n

(
z2

qm+1

)n

(By Heine’s transformation (2))

= (−1)m−1 qk+m(m+1)/2(qm+1; q)∞
(1 − qk)(q; q)∞

∞∑

n=0

qn(n+m+1)

(q; q)n(qm+1; q)n
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= (−1)m−1 qk+m(m+1)/2

1 − qk

∞∑

n=0

qn(n+m+1)

(q; q)n(q; q)n+m
.

This concludes the proof. �
The limiting case m → ∞ of Theorem 11 reads as follows.

Corollary 12. Let k and n be two positive integers. Then
∞∑

j=0

(−1)jbk

(
n − j(j + 1)/2

)
=

�n/k�∑

t=1

C (n − kt) .

4. Combinatorial Interpretations of the Linear Inequalities

This section makes use of the results of Sect. 3 of [7]. First we introduce some
notation following [7].

Definition 1. Given a partition λ, the m-Durfee rectangle of λ is the largest
rectangle whose width minus height equals m that fits in the Ferrers diagram
of λ.

Definition 2. Let λ = (λ1, λ2, . . . , λ�(λ)) be a partition. Each part λi of λ
can be written uniquely as λi = 2μi + si, where si ∈ {1, 2}. The 2-modular
Ferrers diagram of the partition λ is a Ferrers digram whose i-th row consists
of μi boxes labeled 2 and one box labeled si.

Let Mo,m(n) be the set of partitions of n into odd parts such that parts
2t + 1, 0 ≤ t ≤ m, occur (at least once) and parts below the (m + 2)-Durfee
rectangle in the 2-modular Ferrers diagram are strictly less than the width
of the rectangle. Denote by Mo,m(n) the cardinality of Mo,m(n). In [7], the
authors prove that

∞∑

n=0

Mo,m(n)qn = q(m+1)2
∞∑

j=0

qj(2j+2m+3)

(q2; q2)j(q; q2)m+j+1
.

From the proof of Theorem 5, we have

(−1)m
∞∑

n=0

⎛

⎝bk(n) + 2
m∑

j=1

(−1)jbk(n − j2) −
�n/k�∑

t=1

pe−o(n − kt)

⎞

⎠ qn

= 2
qk

(1 − qk)(q2; q2)∞
q(m+1)2

∞∑

j=0

qj(2j+2m+3)

(q2; q2)j(q; q2)m+j+1

Let Nm,k(n) be the set of pairs of partitions (μ, λ) with |μ|+ |λ| = n and
such that μ is a partition in which k appears at least once and all parts not
equal to k (if any) are even and λ ∈ Mo,m(n−|μ|). Let Nm.k(n) = |Nm,k(n)|.
We then have the following combinatorial version of Theorem 5.

Theorem 13. Let k,m, and n be positive integers. Then,

(−1)m

⎛

⎝bk(n) + 2
m∑

j=1

(−1)jbk(n − j2) −
�n/k�∑

t=1

pe−o(n − kt)

⎞

⎠ = 2Nm,k(n).
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To obtain a combinatorial version of Theorem 7, let Me,o,m(n) be the
set of partitions λ of n into even parts such that the partition whose parts
are half the parts of λ is in Mo,m

(
n
2

)
. Let Me,o,m(n) = |Me,o,m(n)|. Then,

∞∑

n=0

Me,o,m(n)qn = q2(m+1)2
∞∑

n=0

q2n(2n+2m+3)

(q4; q4)n(q2; q4)m+n+1
.

Let Tm,k(n) be the set of pairs of partitions (μ, λ) with |μ|+ |λ| = n and
such that μ is a partition in which k appears at least once and all parts not
equal to k (if any) are �≡ 2 (mod 4) and λ ∈ Me,o,m(n − |μ|). Let Tm.k(n) =
|Tm,k(n)|. We then have the following combinatorial version of Theorem 7.

Theorem 14. Let k,m, and n be positive integers. Then,

(−1)m

⎛

⎝bk(n) + 2
m∑

j=1

(−1)jbk(n − 2j2) −
�n/k�∑

t=1

Qodd(n − kt)

⎞

⎠ = 2Tm,k(n).

From the proof of Theorem 9, it is clear that a combinatorial version
would be very cumbersome and we omit it here.

To obtain a combinatorial version of Theorem 11, let Mm(n) be the set
of partitions of n such that parts 1 ≤ t ≤ m occur (at least once) and parts
below the (m + 1)-Durfee rectangle of λ are strictly less than the width of
the rectangle. Let Mm(n) = |Mm(n)|. As in [7], we have

∞∑

n=0

Mm(n)qn = qm(m+1)/2
∞∑

n=0

qn(n+m+1)

(q; q)n(q; q)n+m
.

Let Um,k(n) be the set of pairs of partitions (μ, λ) with |μ| + |λ| = n
and such that μ is a nonempty rectangular partition with all parts equal to k
and λ ∈ Mm(n − |μ|). Let Um,k(n) = |Um,k(n)|. We then have the following
combinatorial version of Theorem 11.

Theorem 15. Let k,m, and n be positive integers. Then,

(−1)m−1

⎛

⎝
m−1∑

j=0

(−1)jbk

(
n − j(j + 1)/2

)
−

�n/k�∑

t=1

C(n − kt)

⎞

⎠ = Um,k(n),

5. Concluding Remarks

We presented combinatorial proofs of the generalizations of Stanley’s theorem
given in [4] as well as linear inequalities involving bk(n) and their combina-
torial meaning. It would be very nice to find combinatorial proofs of the
corollaries in Sect. 3. Since bk(n) =

∑
t≥1 p(n − kt) is explained combinato-

rially, it suffices to prove combinatorially the identities in terms of numbers
of partitions.

Let k and n be two positive integers. Proving combinatorially that
∞∑

j=−∞
(−1)jp(n − j2) = pe−o(n)
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would give a combinatorial proof of Corollary 6. Proving combinatorially
that

∞∑

j=−∞
(−1)jp(n − 2j2) = Qodd(n)

would give a combinatorial proof of Corollary 8. Proving combinatorially
that

∞∑

j=0

(−1)j(j+1)/2p
(
n − j(j + 1)/2

)
= Q

(n

2

)

would give a combinatorial proof of Corollary 10. Finally, proving combina-
torially that

∞∑

j=0

(−1)jp
(
n − j(j + 1)/2

)
= C (n)

would give a combinatorial proof of Corollary 12.
The above identities have fairly straight forward proofs in terms of gen-

erating functions. However, their combinatorial proofs remain elusive.
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