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Age-Structured SIR Model for the Spread
of Infectious Diseases Through Indirect
Contacts
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Abstract. In this article, we discuss an age-structured SIR model in
which disease spread not only through direct person-to-person contacts,
but also spread through indirect contacts. It is evident that age also
plays a crucial role in SARS virus infection including COVID-19 infec-
tion. We formulate our model as an abstract semilinear Cauchy problem
in an appropriate Banach space to show the existence of solution and
also show the existence of steady states. In this study, it is assumed that
the population is in a demographic stationary state and we show that
there is no disease-free equilibrium point as long as there is a transmis-
sion of infection due to the indirect contacts in the environment. We also
solved our model numerically to study the effect of indirect contacts on
the density of infected individuals.
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1. Introduction

Infectious diseases are one of the threat to humanity. Due to increase in world
population and mobility, pathogen transmission is easy and it is difficult
to control the spread of disease. Viral transmission depends both on the
interaction with host population and with the environment.

Mathematical models can project how infectious diseases progress. The
model can suggest the possible outcome of an epidemic which will help agen-
cies to take well thought measures. In 1927, Kermack and McKendrick [6]
introduced a model (called SIR model) by considering a given population
having three compartments. The compartments are divided into individuals
in susceptible S, infected I, and removed R classes. It is very important to
study infectious diseases and their possible nature of spread.
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In most instances, it is presumed that infectious diseases are spread
through direct contacts between individuals. But some infectious diseases
can also spread through indirect contacts like contact with contaminated
surface having virus on it. Transmission through the indirect contacts occurs
when there is no direct physical contact between individuals. Contact occurs
from a reservoir to contaminated surfaces or objects, or to vectors such as
mosquitoes, flies, mites, fleas, ticks, rodents or dogs. Through many stud-
ies, it is observed that coronaviruses (including SARS-Cov-2) may persist on
objects or surfaces for some hours to many days. The persistence depends on
different factors (e.g., surface type, humidity or temperature of the environ-
ment). Fomites consist of both permeable and non-permeable objects or sur-
faces that can be contaminated with pathogenic micro-organisms and serve
as a vehicle in transmission. SARS-CoV-2, the coronavirus (CoV) causing
COVID-19 is creating the most severe health issues for individuals above the
age of 60—with particularly fatal results for those individuals having age
above 80. In the United States, 31–59% of individuals ages 75–84 diagnosed
with the virus having severe symptoms due to which hospitalization is neces-
sary, in comparison with 14–21% of confirmed patients ages between 20 and
44. These data are based on US Centers for Disease Control and Prevention
(CDC) report. Therefore, it is natural to consider age structure while model-
ing the infectious disease transmission. The risk of transmission of infectious
disease varies in different environments, for example at school, at home, at
work place or in the community. Prem et al. [14] studied projected age-specific
contact rates for countries in different stages in development and with differ-
ent demographic structures from those studied in POLYMOD (a European
Commission project), which provides validated approximations to social con-
tact patterns when directly measured data are not available. The data plotted
in Fig. 1a–d show the relation between age of individual and age of contact,
i.e., number of contacts made by individuals at all locations, at home, school
and work, respectively. Yellowish color on the diagonal of Fig. 1a, b shows
that individuals of same age have more chances of direct contacts, so the
transmission coefficient will be large for same age individuals.

From the above heat maps, it is clear that it is natural to add age struc-
ture in ordinary differential equation (ODE)-based SIR models. Therefore,
after adding age structure, the ODE-based SIR models become partial dif-
ferential equation (PDE) models that are more complex to analyze. There is
extensive literature available on age-structured SIR models (for more details
see [2,4,5,7–10,12,13]). In [11], an epidemiological model which studies the
impact of decline in population on the dynamics of infectious diseases espe-
cially childhood diseases is considered and also an example of measles in
Italy is considered. Hsieh et al. [3] studied the SARS outbreak in Taiwan,
using the data of daily reported cases from May 5 to June 4, 2003 to study
the spread of virus. Inaba [4] discussed threshold and stability results for an
age-structured SIR model, Franceschetti et al. [2] generalized the work of [4]
and also considered immigration of infected individuals in all epidemiological
compartments. We considered an age-structured SIR model in which individ-
uals can also get infected due to contaminated surfaces. We also assume that
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Figure 1. Heat maps in Fig. 1a–d shows number of contacts
made by individuals at all locations, homes, schools and work
respectively

the net reproduction rate of the host population is unity which also makes
our model different from the model considered in [2].

Our work is divided into five sections. In Sect. 2, we formulate our age-
structured SIR model. In Sect. 3, we discuss the existence of solution to our
model. In Sect. 4, we discuss steady-state solutions and show that there is
no disease-free steady-state solution as long as there is transmission due to
indirect contacts in the environment. Last section is devoted to numerical
simulation.

2. Model Formulation

Let U(a, t) be the density of individuals of age a at time t. μ(a) and β(a)
be age-dependent mortality and fertility rates, respectively. Let am be the
maximum age which an individual can attain, i.e., the maximum life span of
an individual. Then, the evolution of U(a, t) can be modeled by the following
McKendrick–Von Foerster PDE with initial and boundary conditions:
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⎧
⎪⎪⎨

⎪⎪⎩

∂U(a,t)
∂t + ∂U(a,t)

∂a = −μ(a)U(a, t) (a, t) ∈ (0, am) × (0,∞)

U(0, t) =
∫ am

0
β(a)U(a, t)da t ∈ (0,∞)

U(a, 0) = U0(a) a ∈ (0, am),

(2.1)

where U(0, t) denotes the number of newborns per unit time at time t.
We assume that the mortality rate μ ∈ L1

loc([0, am)) with the condi-
tion

∫ am

0
μ(a)da = +∞ and the fertility rate β ∈ L∞(0, am). e− ∫ a

0 μ(s)ds

indicates the proportion of individuals who are still living at age a and∫ am

0
β(a)e− ∫ a

0 μ(s)dsda represents the net reproduction rate. Let us assume
that the net reproduction rate is 1. Therefore, steady-state solution is given
by U(a, t) = U(a) = β0e

− ∫ a
0 μ(τ)dτ , where β0 is given by

β0 =

∫ am

0
U0(a)da

∫ am

0
e− ∫ a

0 μ(τ)dτda
.

Let S(a, t), I(a, t) and R(a, t) be the densities of susceptible, infected and
recovered individuals of age a at time t. Let Î(t) be defined by

Î(t) =
∫ am

0

γ(a)I(a, t)da,

where γ(a) denotes the weight factor for age class. Here, Î(t) is the
total number of infected individuals at time t with weight factor γ. In
addition, let r(a, b) is the age-dependent transmission coefficient which
describes the contact process between susceptible and infected individuals,
i.e., r(a, b)S(a, t)I(b, t)dadb is the number of individuals who are susceptible
and whose age lies between a and a+da and contract the disease after contact
with an infected individual aged between b and b + db. We assume the form
of force of infection is given in the following functional form:

λ(a, t) =
∫ am

0

r(a, η)I(η, t)dη.

Then, the disease spread according to the following system of partial differ-
ential equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(a,t)
∂t

+ ∂S(a,t)
∂a

= −λ(a, t)S(a, t) − c(a, Î(t))S(a, t) − μ(a)S(a, t)

∂I(a,t)
∂t

+ ∂I(a,t)
∂a

= λ(a, t)S(a, t) + c(a, Î(t))S(a, t) − b(a)I(a, t) − μ(a)I(a, t)

∂R(a,t)
∂t

+ ∂R(a,t)
∂a

= b(a)I(a, t) − μ(a)R(a, t)

S(0, t) =
∫ am

0 β(a)(S(a, t) + I(a, t) + R(a, t))da, I(0, t) = 0, R(0, t) = 0

S(a, 0) = S0(a), I(a, 0) = I0(a) and R(a, 0) = R0(a).

(2.2)

Here, b(a) is the recovery rate of individuals and c(a, Î(t)) is the proportion of
individuals which are infected due to indirect contacts. This factor c(a, Î(t))
depends on the number of infected individuals, because this proportion is
directly proportional to the total number of infected individuals. Here, we
are assuming that spread of disease already started and fomites are present
in the environment even if the transmission coefficient r(a, b) is zero. Assume
that b, γ ∈ L∞(0, am) and r ∈ L∞((0, am) × (0, am)) and also assume that
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Figure 2. Respiratory virus inactivation rates

all are non-negative. [1] studied how respiratory and viral disease spread
in the presence of fomites. It is observed that enveloped respiratory viruses
remain viable for less time and the non-enveloped enteric viruses remain
viable for longer time. They calculated the inactivation coefficients of various
respiratory viruses. Figure 2 shows the respiratory virus inactivation rates
(Kj). In Fig. 2, we have used the short forms flu and cov for influenza and
coronavirus, respectively.

We impose the following simplifying conditions on our model:

(i) Although there may be an incubation period for some diseases, here
we assume that there is no incubation period and the individuals
become infected instantaneously after contact with infected individu-
als or fomites.

(ii) We assume that the age zero individuals are not infected.
(iii) The transmission coefficient r(a, b) only summarizes the contact process

between susceptible and infected individuals.

(iv) Population is in stationary demographic state.
(v) The susceptible individuals who got infected due to contact with

infected individuals have not infected due to the indirect contacts.
(vi) We did not take into account social interventions such as hospitalization,

and quarantine. Therefore, c is not dependent on infected individuals.

Let S(a, t), I(a, t) and R(a, t) be defined in the following way:

S(a, t) =
S(a, t)
U(a, t)

, I(a, t) =
I(a, t)
U(a, t)

and R(a, t) =
R(a, t)
U(a, t)

,

and the force of infection is given by

λ(a, t) =
∫ am

0

r(a, η)U(η)I(η, t)dη.
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Then, our new system becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(a,t)
∂t + ∂S(a,t)

∂a = −λ(a, t)S(a, t) − c(a, Î(t))S(a, t)
∂I(a,t)

∂t + ∂I(a,t)
∂a = λ(a, t)S(a, t) + c(a, Î(t))S(a, t) − b(a)I(a, t)

∂R(a,t)
∂t + ∂R(a,t)

∂a = b(a)I(a, t)

S(0, t) = 1, I(0, t) = 0, R(0, t) = 0

S(a, 0) = S0(a), I(a, 0) = I0(a) and R(a, 0) = R0(a)

S(a, t) + I(a, t) + R(a, t) = 1,

(2.3)

where

Î(t) =
∫ am

0

γ(η)U(η)I(η, t)dη.

Therefore, new transformations reduced our system into a simpler form, i.e.,
boundary conditions now become constant and there is no term involving the
natural mortality rate.

3. Existence of Solution

If we observe system (2.3) carefully, then it is clear that once susceptible and
infected individuals are known, recovered individuals can be obtained easily
so, it is enough to show the existence of solution to the following SI system
instead of full SIR system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂S(a,t)
∂t + ∂S(a,t)

∂a = −λ(a, t)S(a, t) − c(a, Î(t))S(a, t)
∂I(a,t)

∂t + ∂I(a,t)
∂a = λ(a, t)S(a, t) + c(a, Î(t))S(a, t) − b(a)I(a, t)

S(0, t) = 1, I(0, t) = 0.

(3.1)

We will analyze the system (3.1) only, because force of infection does not
explicitly depends on recovered individuals. Let S̃(a, t) = S(a, t)−1, Ĩ(a, t) =
I(a, t), then the system (3.1) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S̃(a,t)
∂t

+ ∂S̃(a,t)
∂a

= −λ(a, t)(1 + S̃(a, t)) − c(a, Î(t))(1 + S̃(a, t))

∂Ĩ(a,t)
∂t

+ ∂Ĩ(a,t)
∂a

= λ(a, t)(1 + S̃(a, t)) + c(a, Î(t))(1 + S̃(a, t)) − b(a)Ĩ(a, t)

S̃(0, 0147t) = 0, Ĩ(0, t) = 0.

λ(a, t) =
∫ am

0 r(a, η)U(η)Ĩ(η, t)dη.

(3.2)

Let X = L1(0, am;C2) equipped with the L1 norm and A be a linear operator
defined as

(Aξ)(a) =
(

− d

da
ξ1(a),− d

da
ξ2(a) − b(a)ξ2(a)

)

where ξ = (ξ1(a), ξ2(a)) ∈ D(A)
D(A) = {ξ = (ξ1, ξ2) ∈ X | ξ1, ξ2 ∈ AC[0, am], ξ(0) = (0, 0)},
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where AC[0, am] is the set of absolutely continuous functions. Suppose that
r(a, b) ∈ L∞((0, am) × (0, am)) and for x ∈ R

+, c(·, x) ∈ L1
loc(0, am). In

addition, for all C̃ > 0, there exists a constant L(C̃) such that

|c(a, x1) − c(a, x2)| ≤ L(C̃)|x1 − x2|, if|x1| < C̃, |x2| ≤ C̃. (3.3)

Let us define

(Fξ)(a) = (−(P1ξ2)(a)(1 + ξ1(a))
−(P2ξ2)(a)(1 + ξ1(a)), (P1ξ2)(a)(1 + ξ1(a)) + c(a))
+(P2ξ2)(a)(1 + ξ1(a)), ξ ∈ X,

where the bounded linear operator P1, P2 are defined by

(P1ψ)(a) =
∫ am

0

r(a, η)U(η)ψ(η)dη, ψ ∈ L1(0, am),

(P2ψ)(a) = c(a, Î), Î =
∫ am

0

γ(η)U(η)ψ(η)dη.

Remark 3.1. If we take c(a, Î) = c(a)Î, then condition (3.3) is automatically
satisfied.

Now, system (3.2) can be written as an abstract semilinear Cauchy
problem in Banach space X

{dZ(t)
dt = AZ(t) + F (Z(t))

Z(0) = Z0 ∈ X

where Z(t) = (S̃(·, t), Ĩ(·, t)) ∈ Z, Z0(a) = (S̃0(a), Ĩ0(a)).

(3.4)

In the same manner as proved in [4], we can prove that A generates a C0

semigroup T (t), t ≥ 0 and F is continuously Fréchet differentiable on X.
Therefore, for each Z0 ∈ X, there exists a maximal interval of existence [0, t0)
and a unique solution t −→ Z(t;Z0) which is continuous from [0, t0) to X
such that

Z(t, Z0) = T (t)Z0 +
∫ t

0

T (t − σ)F (Z(σ;Z0))dσ ∀ t ∈ [0, t0]. (3.5)

Moreover, if Z0 ∈ D(A), then Z(t;Z0) ∈ D(A) for 0 ≤ t < t0 and t −→
Z(t;Z0) is continuously differentiable and satisfies (3.2) on [0, t0).

Now, our aim is to prove the global existence and uniqueness of solution
of (3.4). We will prove the existence of unique global classical solution which
in turn gives the existence of unique global mild solution.

Theorem 3.2. The abstract Cauchy problem (3.4) has a unique global solution
on X with initial data Z0 ∈ V ∪ D(A), where V is defined by

V = {(S̃, Ĩ) ∈ X | S̃ ≥ −1, Ĩ ≥ 0}.

Proof. Let

V0 = {(S̃, Ĩ) ∈ X | − 1 ≤ S̃ ≤ 0, 0 ≤ Ĩ ≤ 1}.
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We will prove that after a finite time t, the mild solution enters into V and
the set V0 is positively invariant. First, let us observe that

S̃(a, t) =

⎧
⎪⎨

⎪⎩

exp
(
− ∫ a

0
(λ(ξ, t − a + ξ) + c(ξ, Î(t − a + ξ))

)
dξ, t > a

S̄0(a − t) exp
(
− ∫ t

0
(λ(a − t + ξ, ξ) + c(a − t + ξ, Î(ξ)))dξ

)
, t < a.

Observe that if S̄0(a) ≥ 0, then S̃(a, t) ≥ −1. Now, let us write the remaining
problem as abstract Cauchy problem

dĨ

dt
= BĨ(t) + (P1Ĩ(t))(1 + S̃(t)) + (P2Ĩ(t))(1 + S̃(t)) (3.6)

Ĩ(0) = Ĩ0, (3.7)

where B = − d
da − b with

D(B) = {φ ∈ L1(0, am) | φ is absolutely continuous function on [0, am],
φ(0) = 0}.

Then, we have

Ĩ(t) = T̃ (t)Ĩ0 +
∫ t

0

T̃ (t − s)[(P1Ĩ(s))(1 + S̃(s)) + (P2Ĩ(s))(1 + S̃(s))]ds,

where T̃ (t) is the strongly continuous semigroup generated by the operator
B. Here, Ĩ(t) > 0 if S̃(t) ≥ −1, Ĩ0 ≥ 0 and Ĩ(t) can be evaluated using
monotone iteration scheme

Ĩ(t)= T̃ (t)Ĩ0+
∫ t

0

T̃ (t−s)[(P1Ĩ(0))(1+S̃(s))+P2(Ĩ(0))(1+S̃(s))]ds+· · · .

Therefore, Z(t;Z0) ∈ V for non-negative t, when Z0 ∈ V . Now, let us define

U(t) := S̃(t) + Ĩ(t),

then it satisfies
dU(t)

dt
= CU(t) − bU(t), U(0) = S̃0 + Ĩ0,

where

C = − d

da
, D(C) = D(B).

Then, we have

U(t) = W (t)U(0) −
∫ t

0

W (t − s)bĨ(s)ds,

where W (t) is the positive strongly continuous translation semigroup with
the generator C. Since W (t) is nilpotent semigroup, therefore, we have

U(t)a ≤ S̃0(a − t) + Ĩ0(a − t), a − t > 0

and U(t) ≤ 0 for t ≥ am, which shows that Z(t; z0) ∈ V0 for Z0 ∈ V0 for
all non-negative t. Therefore, the norm of local solution Z(t, Z0), Z0 ∈ V is
finite as far as it is defined, which gives the existence of unique global mild
solution. �



MJOM Age-Structured SIR Model for the Spread Page 9 of 18 14

4. Steady-State Solutions

In this section, we are choosing c(a, Î(t)) = c(a). The possible reason is
that since we do not know how many infected are coming into contact with
susceptible, we can assume this as a constant rate.

In addition, the calculation of c(a, Î(t)) is difficult, because not all new
infections are reported, and it is often difficult to know how many susceptibles
were exposed. However, λ can be calculated for an infectious disease in an
endemic state if homogeneous mixing of the population and a rectangular
population distribution (such as that generally found in developed countries)
is assumed. In this case, λ is given by λ = 1

A , where A is the average age of
infection. In other words, A is the average time spent in the susceptible group
before becoming infected. The rate of becoming infected (λ) is, therefore, 1

A
(since rate is 1/time). The advantage of this method of calculating λ is that
data on the average age of infection are very easily obtainable, even if not
all cases of the disease are reported. In addition, in the absence of social
interventions such as quarantine, we can assume c(a, Î(t)) = c(a). Therefore,
our model in steady state can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(a)
da = −λ(a)S(a) − c(a)S(a)

dI(a)
da = λ(a)S(a) + c(a)S(a) − b(a)I(a)

S(0) = 1, I(0) = 0

(4.1)

with λ(a) =
∫ am

0
r(a, η)U(η)I(η)dη.

Steady-state solution can be obtained as

S(a)=exp
(

−
∫ a

0

(λ(σ) + c(σ))dσ

)

I(a)=
∫ a

0

exp
(

−
∫ a

σ

b(η)dη

)

(λ(σ)+c(σ)) exp
(

−
∫ σ

0

(λ(η)+c(η))dη

)

dσ.

The force of infection depends on the number of infected individuals which, in
turn depends on the proportion of individuals getting infected due to indirect
contacts (steady-state solution shows this). Therefore, force of infection will
automatically take care of fomites present in the environment.
The force of infection is given by

λ(a) =
∫ am

0

r(a, ζ)U(ζ)I(ζ)dζ (4.2)

=
∫ am

0

r(a, ζ)U(ζ)
∫ ζ

0

exp

(

−
∫ ζ

σ

b(η)dη

)

(λ(σ)

+c(σ)) exp
(

−
∫ σ

0

(λ(η) + c(η))dη

)

dσdζ.

=
∫ am

0

φ(a, σ)(λ(σ) + c(σ)) exp
(

−
∫ σ

0

(λ(η)

+c(η))dη) dσ (4.3)
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where φ(a, σ) =
∫ am

σ

r(a, ζ)U(ζ) exp

(

−
∫ ζ

σ

b(η)dη

)

dζ (4.4)

Using (4.2), we can get the following estimate:

|λ(a)| ≤ U‖r‖∞‖I‖1
where ‖ · ‖∞ and ‖ · ‖1 are the L∞ and L1 norms, respectively, and U is the
total population.

Therefore, λ ∈ L∞(0, am).

It is clear that there is no disease-free equilibrium as long as there is transmis-
sion due to indirect contacts. That means if there are fomites present in the
environment contaminated with pathogenic micro-organisms, disease still can
spread without direct contact between susceptible and infected individuals.
On Banach space E = L1(0, am), with positive cone E+ = {ψ ∈ E | ψ ≥
0 a.e.}, let us define

Φ(ψ)(a) =
∫ am

0

φ(a, σ)(ψ(σ) + c(σ)) exp
(

−
∫ σ

0

(ψ(η) + c(η))dη

)

dσ

(4.5)

Suppose that we have the following assumptions:
(A1) r(·, ·) satisfies limh−→0

∫ am

0
‖r(a + h, s) − r(a, s)‖da = 0 uniformly

for s ∈ R with r(·, ·) extended by defining r(a, s) = 0 for a.e.
a, s ∈ (−∞, 0) ∪ (am,∞).

(A2) There exist m > 0, 0 < α < am such that r(a, b) ≥ m for a.e.
(a, b) ∈ (0, am) × (am − α, am).

(A3) There exist a1, a2 satisfying 0 ≤ a1 < a2 ≤ am such that c(a) > 0 a.e.
a ∈ (a1, a2).

Observe that

Φ(0)(a) =
∫ am

0

φ(a, σ) exp
(

−
∫ σ

0

c(η)dη

)

c(σ)dσ. (4.6)

Since force of infection is non-negative, we have

λ(a) ≥ Φ(0)(a) a.e. a ∈ (0, am)

and because of assumption (A2), we have Φ(0)(a) > 0. Now, we will prove
an important theorem which will help us to show the existence of fixed point
to (4.5).

Theorem 4.1. Let D={ψ ∈ L1
+(0, am) | ‖ψ‖1≤M, M is a positive constant}

and suppose that the assumptions (A1)–(A3) hold, then
(a) D is bounded, closed, convex and also Φ(D) ⊆ D.
(b) Φ is completely continuous.
Hence, Schauder’s principle gives existence of fixed point of (4.5).
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Proof. Boundedness of set D is clear and also for any ψ1, ψ2 ∈ D, 0 ≤ p ≤ 1
we have

pψ1 + (1 − p)ψ2 ∈ D.

Closedness also follows from the definition of D. Now, we will show that
Φ(D) ⊆ D.

Φ(ψ)(a) ≤ ‖φ‖∞
∫ am

0

(ψ(σ) + c(σ)) exp
(

−
∫ σ

0

(ψ(η) + c(η))dη

)

dσ

≤ M1‖φ‖∞‖c‖∞
∫ am

0

exp
(

−
∫ am

0

ψ(η)dη

)

dσ

+M1‖φ‖∞
∫ am

0

ψ(σ) exp
(

−
∫ am

0

ψ(η)dη

)

dσ

= M1‖φ‖∞‖c‖∞
∫ am

0

exp
(

−
∫ am

0

ψ(η)dη

)

dσ

+M1‖φ‖∞

[

1 − exp
(

−
∫ am

0

ψ(s)ds

)]

where M1 is an upper bound on exp
(− ∫ σ

0
c(η)dη

)
. Now , using the fact that

|ψ|1 ≤ M , we can easily prove that

|Φ(ψ)(a)|1 ≤ M

for some generic constant M . Now,

(Φ(ϕ1))(a) − (Φ(ϕ1))(a)

=
∫ am

0

[
ϕ1e

− ∫ σ
0 ϕ1(η)dη − ϕ2e

− ∫ σ
0 ϕ2(η)dη

]
φ(a, σ)e− ∫ σ

0 c(η)dηdσ

+
∫ am

0

[
e− ∫ σ

0 ϕ1(η)dη − e− ∫ σ
0 ϕ2(η)dη

]
φ(a, σ)e− ∫ σ

0 c(η)dηdσ. (4.7)

Let us first estimate the first integral as follows:
∣
∣
∣
∣

∫ am

0

[
ϕ1e

− ∫ σ
0 ϕ1(η)dη − ϕ2e

− ∫ σ
0 ϕ2(η)dη

]
φ(a, σ)e− ∫ σ

0 c(η)dηdσ

∣
∣
∣
∣

≤ ‖φ‖∞M1

[
e− ∫ am

0 ϕ2(η)dη − 1 − e− ∫ am
0 ϕ1(η)dη + 1

]

= M1‖φ‖∞
(
e−‖ϕ2‖1 − e−‖ϕ1‖1

)
≤ M1‖φ‖∞‖ϕ2 − ϕ1‖1 ≤ M‖ϕ2 − ϕ1‖1

where M is a generic constant. Similarly,
∣
∣
∣
∣

∫ am

0

[
e− ∫ σ

0 ϕ1(η)dη − e− ∫ σ
0 ϕ2(η)dη

]
φ(a, σ)e− ∫ σ

0 c(η)dηdσ

∣
∣
∣
∣

≤M1‖φ‖∞
∫ am

0

[
e−

∫ am
0 ϕ1(η)dηe

∫ am
σ

ϕ1(η)dη−e−∫ am
0 ϕ2(η)dηe

∫ am
σ

ϕ2(η)dη
]
dσ

= M1‖φ‖∞
∫ am

0

[
e−‖ϕ1‖1e

∫ am
σ

ϕ1(η)dη − e−‖ϕ2‖1e
∫ am
σ

ϕ2(η)dη
]
dσ

≤ M
(
e‖ϕ1‖ − e‖ϕ2‖

)
≤ M‖ϕ2 − ϕ1‖1

which proves the continuity of Φ.
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Now, we will prove that Φ is a compact operator, so let us define T1, T2 :
L1
+(0, am) −→ L1

+(0, am) by

T1(ψ)(a) =
∫ am

0

ψ(σ)k1(a, σ)dσ (4.8)

T2(ψ)(a) =
∫ am

0

ψ(σ)k2(a, σ)dσ (4.9)

k1(a, σ) = φ(a, σ) exp
(

−
∫ σ

0

c(η)dη

)

, k2(a, σ)

= φ(a, σ)c(σ) exp
(

−
∫ σ

0

c(η)dη

)

. (4.10)

The operators T1, T2 are linear, continuous and positive. By applying Riesz–
Fréchet–Kolmogorov theorem on compactness in L1, we can conclude that
T1, T2 are compact operators. Now, let us define the nonlinear operators
F1, F2 : L1

+(0, am) −→ L1
+(0, am) by

F1(ψ)(σ) = ψ(σ) exp
(

−
∫ σ

0

ψ(τ)dτ

)

(4.11)

F2(ψ)(σ) = exp
(

−
∫ σ

0

ψ(τ)dτ

)

. (4.12)

Here, F1, F2 are continuous and hence T ◦ F1, T ◦ F2 are compact operators
in L1

+(0, am).
Therefore, Φ = T ◦ F1 + T ◦ F2 is compact operator. Hence, Schauder’s

principle gives existence of fixed point of (4.5). �

Let T = Φ
′
(0) denote the Fréchet derivative of Φ at 0, i.e.,

T (ψ)(a) =
∫ am

0

φ(a, σ)ψ(σ) exp
(

−
∫ σ

0

c(η)dη

)

dσ for a

∈ (0, am), ψ ∈ L1(0, am).

Clearly, T is a positive linear, continuous and also compact operator. Let us
define

T0(ψ)(a) =
∫ am

0

φ(a, σ)ψ(σ)dσ (4.13)

Tn(ψ)(a) =
∫ am

0

φ(a, σ)ψ(σ) exp
(

−
∫ σ

0

cn(η)dη

)

dσ (4.14)

where cn is the sequence of the proportion of individuals infected due to indi-
rect contacts. The spectral radius (ρ(T )) of the operator T plays an important
role in deciding the nature of equilibrium solutions, i.e., whether disease-free
equilibrium solution exists or not. In our case if there is a proportion of indi-
viduals who are infected due to fomites, disease-free equilibrium point will
not exists. Our aim is to prove the following theorem:

Theorem 4.2. Let T0 be as defined in (4.13) and Φn be analogous to Φ in
which c is replaced by cn.
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(a) If the spectral radius ρ(T0) ≤ 1, then the sequence {ψn} of fixed points
of Φn converges to zero.

(b) If the spectral radius of T0 is larger than 1, then ∃γ > 0 such that
‖ψn‖ ≥ γ ∀n ∈ N.

Our aim is also to prove that

lim
n→∞ ρ(Tn) = ρ(T0)

which gives dependence of force of infection on cn. Before proving the above
theorem, we will prove some lemmas and also state some theorems.

Definition 4.3. Let E+ ⊂ E be a cone in the Banach space E, then the cone
E+ is called total if the following set:

{f − g : f, g ∈ E+}
is dense in the Banach space E.

Theorem 4.4. (Krein-Rutman 1948) Let E be a real Banach space and E+

be total order cone in E. Let A : E −→ E be positive linear and compact
operator w.r.t. E+ and also ρ(A) > 0. Then, ρ(A) is an eigenvalue of A and
A

∗ with eigenvectors in E+ and E∗
+, respectively.

In SIR model without fomites the transmission coefficient c, Inaba [4]
proved the following results:

Theorem 4.5 ([4] Proposition 4.6). Let T be the Fréchet derivative of Φ at 0
(a) If the spectral radius ρ(T ) ≤ 1, then there is a disease-free fixed point

ψ = 0 to the operator Φ.
(b) If the spectral radius ρ(T ) > 1, then there exist at least one nonzero

fixed point of Φ.

Theorem 4.6 ([15] Theorem V6.6). Let E = Lp(μ), p ∈ [1,∞] and (Z,S, μ)
be a σ− finite measure space. Suppose A ∈ L(E) is defined by

Ag(t) =
∫

K(s, t)g(s)dμ(s), g ∈ Lp(μ),

non-negative K is S×S measurable kernel which satisfy the following assump-
tions:
(a) Some power of A is compact.
(b) C ∈ S and μ(C) > 0, μ(Z \ C) > 0

=⇒
∫

Z\C

∫

C

K(s, t)dμ(s)dμ(t) > 0.

Then, ρ(A) > 0 is an eigenvalue of A with a unique normalized eigen function
g satisfying g(C) > 0 μ-a.e. Moreover, if K(s, t) > 0 μ ⊗ μ-a.e, then every
other eigenvalue λ of A has the bound |λ| < ρ(A).

Let {cn} be a sequence in L∞
+ (0, am) such that cn(a) −→ 0 as n −→ ∞

a.e. a ∈ (0, am), i.e., proportion of individuals who are susceptible to fomite
infection are becoming less and Φ0 is defined as in (4.5) with c = 0.
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Proposition 4.7. There exist a converging subsequence {ψnk
} of {ψn} such

that if ψ = limk→∞ ψnk
, then ψ is the fixed point of Φ0.

Proof. Since Φ0 is compact and 0 ≤ ‖ψn‖ ≤ M, ∃ a converging subsequence
{Φ0(ψnk

)} and let

ψ = lim
k→∞

Φ0(ψnk
).

Since

Φnk
(ψnk

) − Φ0(ψnk
) =

∫ am

0

φ(a, σ)ψ(σ) exp
(

−
∫ σ

0

cnk
(η)dη

)

dσ

−
∫ am

0

φ(a, σ)ψ(σ)dσ

=
∫ am

0

φ(a, σ)ψ(σ)
[

exp
(

−
∫ σ

0

cnk
(η)dη

)

− 1
]

dσ

because lim
n→∞ cn(a) = 0 a.e. a ∈ (0, am),

we have lim
k→∞

[Φnk
(ψnk

) − Φ0(ψnk
)] = 0.

Therefore, lim
k→∞

ψnk
= lim

k→∞
Φnk

(ψnk
)

= lim
k→∞

[Φ0(ψnk
) + Φnk

(ψnk
) − Φ0(ψnk

)] = ψ.

Since Φ0 is continuous, we have

lim
k→∞

Φ0(ψnk
) = Φ0(ψ) = ψ

which proves that

Φ0(ψ) = ψ.

�
Lemma 4.8. Suppose T0 be as defined in (4.13), then ρ(T0) is an eigenvalue
of both T0 and T ∗

0 with unique strictly positive normalized eigenvectors ψ and
f , respectively.

Proof. We know that

T0(ψ)(a) =
∫ am

0

φ(a, η)ψ(η)dη

and is a compact operator by Theorem 4.1. Comparing T0 with A, con-
ditions of Theorem 4.6 are satisfied, and therefore, ρ(T0) > 0 is the only
eigenvalue of T0 with a unique normalized eigenvector ψ ∈ L1

+(0, am), satis-
fying ψ(a) > 0 a.e. and every other eigenvalue λ of T0 satisfy |λ| < ρ(T0).
In addition, T0 and T ∗

0 both have the same nonzero eigenvalues with same
multiplicities. Since ρ(T0) is the only eigenvalue of T0 with a unique nor-
malized eigenvector ψ, ρ(T0) is also an algebraically simple eigenvalue of T ∗

0

with unique normalized eigen function f . Now our task is to prove that eigen
function f is strictly positive. Suppose function f̂ ∈ L∞

+ \ {0} representing
the functional f be defined as

〈f, ψ〉 =
∫ am

0

f̂(η)ψ(η)dη ∀ψ ∈ L1(0, am).
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Now, T ∗
0 (ϕ)(a) =

∫ am

0

ϕ(η)φ(η, a)dη ∀ϕ ∈ L∞(0, am),

there exist a function g : [0, am] −→ R which is continuous and g(a) >
0 ∀a ∈ [0, am) and vanishes at am (because of assumption (A2)) such that
φ(η, a) ≥ g(a) a.e. η, a ∈ (0, am).

Then, f̂(a) =
1

ρ(T0)
T ∗
0 (f̂)(a) ≥ 1

ρ(T0)
g(a)

∫ am

0

f̂(η)dη > 0

Therefore, f is strictly positive as f̂ ∈ L∞
+ (0, am) \ {0}. �

Lemma 4.9. Let T0 and Tn be as defined in (4.13) and (4.14), respectively.
Then,

lim
n→∞ ρ(Tn) = ρ(T0) and ρ(Tn) ≥ ρ(T0) ∀n.

Proof. Clearly, Tn −→ T0 uniformly. Since T0 and Tn are compact operators
and ρ(T0) and ρ(Tn) are simple eigenvalues of T0 and Tn, respectively, we
have the conclusion of our lemma. �

Now, we are ready to prove our Theorem 4.2.

Proof. We know that any converging subsequence {ψnk
} of {ψn} converges

to ψ, the fixed point of Φ0. By Theorem 4.5, for ρ(T0) ≤ 1,Φ0 has only
one fixed point which is 0. Therefore, every convergent subsequence of {ψn}
converges to zero, i.e., the sequence {ψn} converges to zero. Now, we will
prove the part (b) of the theorem.

Given ρ(T0) > 1, by lemma 4.9 we have ρ(Tn) > 1 ∀n.
Let fn ∈ (L1

+(0, am))∗ \ {0} be the strictly positive eigenvector of T ∗
n

with eigenvalue ρ(Tn). Then, for all n, we have

〈fn, ψn〉 = 〈fn,Φnψn〉 = 〈fn, Φ̄nψn + un〉
where Φ̄n = Φn − un and un is defined by integral on R.H.S. of (4.6) with c
replaced by cn.

Observe that

exp(−‖ψ‖1)T0ψ ≤ Φ̄ψ ≤ T0ψ ∀ψ ∈ L1
+(0, am)

Therefore,

〈fn, ψn〉 ≥ 〈fn, exp(−‖ψn‖1)Tnψn + un〉 > 〈fn, exp(−‖ψn‖1)Tnψn〉
= exp(−‖ψn‖1)〈T ∗

nfn, ψn〉 = exp(−‖ψn‖1)ρ(Tn)〈fn, ψn〉
which implies

exp(−‖ψn‖1)ρ(Tn) < 1 ∀n,

i.e., ‖ψn‖1 > log(ρ(Tn)) ≥ log(ρ(T0))
choose γ = log(ρ(T0)) > 0

then the conclusion of our theorem holds. �
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5. Numerical Simulation

We applied finite-difference scheme to solve our model numerically. It is
assumed that r(a, b) is of the form k1(a)k2(b) and am is taken 60 Years.
We take initial age distributions of the following form

S0(a) = exp(−0.09a) + 0.7(sin(0.05a))2

I0(a) = 0.0001 exp(−a2) + 0.09(sin(0.05a))2

R0(a) = 0.001 exp(−0.05a) + 0.1(sin(0.055a))2.

Age-dependent mortality rate is taken as μ(a) = 1
0.001+a and recovery rate is

taken as 1
exp(a)+1 . Other age-dependent functions are

β(a) =
a

a + 80
, k1(a) = k2(a) = exp(−a).

From Fig. 3a, b, it is clear that c(a) affect the density of infected indi-
viduals. For next two plots Fig. 4a and Fig. 4b, we take c(a) as

c(a) =

{
0, 0 ≤ a ≤ 20

1
20+a , 20 < a ≤ 60

and

c(a) =

{
0, 0 ≤ a ≤ 20
1
a , 20 < a ≤ 60

,

respectively. We are assuming that the individuals with age between 20 and 60
are highly susceptible to infection due to indirect contacts. This assumption
makes sense because most of the individuals in working class lies in this age
group. Especially, front-line workers lie in this age class (Fig. 4).

It is clear that the peak will be attained at higher value as long as there
is infection through indirect contacts.

Figure 3. c(a) is taken as zero in (a) and 1
400+a in (b)
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Figure 4. The figure depicts the effect of c(a), the peak is
attained at a higher value in the age interval (20, 60]

6. Discussion

The figures on data related to interaction show that the age plays a cru-
cial role in SARS diseases and especially in COVID-19 infection as well
as in recovery. Therefore, we have studied an age-structured SIR model in
which susceptible individuals not only get infected due to direct contact with
infected person, but can also get infected due to indirect contacts. We proved
that there is no disease-free equilibrium as long as there is transmission due
to indirect contacts in the environment. That means for instance if there
are fomites present in the environment contaminated with pathogenic micro-
organisms, disease still can spread without direct contact between susceptible
and infected individuals. Therefore, removing fomites present on the surfaces
is one of the effective measure to slow the infection. Hence sanitization of
surfaces and proper care to front-line workers will help to fight with such
diseases. Main idea in this work is to study the role of indirect contacts in
the dynamics of infectious diseases.
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