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Abstract. In this paper, the authors investigate the oscillatory behavior
of quasilinear second order delay difference equations of the form

A(b(n)(Au(n))*) + p(n)u’(n — o) = 0.
By obtaining new monotonic properties of the nonoscillatory solutions
and using them to linearize the equation leads to new oscillation crite-
ria. The criteria obtained improve existing ones in the literature. Two
examples are included to show the importance of the main results.
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1. Introduction

In this paper, we investigate the oscillatory and asymptotic behavior of solu-
tions of the second order quasilinear delay difference equation

A(b(n)(Au(n))®) 4+ p(n)u’(n — o) =0, n > ng > 0, (E)
where ng is a positive integer. We assume that the following conditions hold
throughout this paper without further mention:

(C1) {b(n)} and {p(n)} are positive real sequences;

(C2) « and 3 are ratios of odd positive integers;

(Cs) ogisa posmve integer;
(Ca) B

Cy Zbl/o‘ — 00 as N — 0.

s=ng
By a solution of (E), we mean a real sequence {u(n)} defied for n >
no — o satisfying equation (E) for all n > ng. A nontrivial solution of (E) is

called oscillatory if it is neither eventually negative nor eventually positive,
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and it is called nonoscillatory otherwise. Equation (E) is called oscillatory if
all its solutions are oscillatory.

The problem of investigating oscillation criteria for various types of
difference equations has been a very active research area over the past several
decades. A large number of papers and monographs have been devoted to this
problem; for a few examples, see [1-3,7-9,11-17] and the references contained
therein. Koplatadze [11] obtained some very nice oscillatory criteria for the
equation

A?u(n) + p(n)u(n —o) =0 (1.1)
based on the following monotonic properties of positive solutions:
u(n) is increasing and u(n) is decreasing. (1.2)
n

The main aim of the paper is to establish some new comparison theorems
for investigation of oscillatory behavior of solutions of (E). First, we will
linearize equation (E). Then we will deduce the oscillation of (E) from that of
its linearized forms. To achieve this, we obtain some results on the monotonic
properties of nonoscillatory solutions of (E) that are new even for (1.1) and
improves those in (1.2). We will demonstrate the usefulness of our main
results via some examples. The technique of proof used here is based in part
on some recent papers of Baculikovd [4-6] on the oscillation of solutions of
differential equations.

2. Auxiliary Results

We begin with some useful lemmas concerning monotonic properties of
nonoscillatory solutions of (E).

Lemma 2.1. Let {u(n)} be a positive solution of (E). Then:

(P1) {u(n)} is eventually increasing and {b(n)(Au(n))} is eventually decreas-
ng;

(Ps) {;((Z))} is eventually decreasing.

Moreover, if
Z p(n)BP(n — o) = oo, (2.1)
n=ng
then
(Py) tim U _
B

ne B(n)

Proof. Let {u(n)} be a positive solution of (E). Then A(b(n)(Au(n))®) <0,
and there is an integer ny > ng that b(n)(Au(n))® has a constant sign for all
n > ni. We claim that b(n)(Au(n))* > 0 eventually. To show this, assume
that b(n)(Au(n))® < 0 for n > ny for some ny > ny. Then there exists a
constant M > 0 such that b(n)(Au(n))®* < —M < 0 for n > ng. Summing
the last inequality from ny to n — 1 and using (Cy4), we have

u(n) <u(ng) — MB(n) — —oco as n — o0
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which is a contradiction and proves our claim. Employing the monotonicity
of b*/*(n)Au(n), we obtain

L opt/a(s) Aus
TOEDS bb%)” > B(n)bV/* (n) Au(n), (2:2)

S=no

B(n) B(n)
exists ¢ € R such that

which implies A (u ) < 0. Since 4™ ig positive and decreasing, there

- u(n)
= > .
HILH;O B(n) c>0
If ¢ > 0, then, u(n) > ¢B(n) for n > n3 > nge. Using this in (E) and then
summing from ngz to n — 1, we obtain

b(ns)(Au(ng))* > Z s)BP(s — o),

s=ng
which as n — oo contradicts (2.1). Thus, ¢ = 0, that is lim, g((:?) =0,
which competes the proof of the lemma. O

Remark 2.2. In the case of equation (1.1) where b(n) = 1 and § = 1, the
three properties of nonoscillatory solutions described in Lemma 2.1 become:
(P1) {u(n)} is eventually increasing and {Au(n)} is eventually decreasing;
(P2) {%} is eventually decreasing;

(P3) lim,, oo 5 = 0.

Lemma 2.3. Let {u(n)} be an eventually increasing solution of (E). Then,
uP=%(n) > n(n), where n(n) is given by
L, if =0,
n(n) = q ai, if o <,
a;BP~%(n), ifa>p,
and a1 and as are positive constants.
Proof. Since u(n) is a positive increasing solution of (E), there exists a con-

stant M > 0 such that u(n) > M for all n > n; for some ny > ng. From
(P,), we see that u((z)) is decreasing and so

u(n) u(ny) B
B(n) = B(nq) =M.
Thus,
1, for a = (3,
uﬁia(n) > T](TL) = ar, for a < 67

asBP~%(n), for a > 3,

where a1 = MP~% and ay = Mﬁ ®. This proves the lemma. O
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Lemma 2.4. Let (2.1) hold and assune there exists a constant 6 € [0,1) such
that

p(n)n(n — 0)BY(n — o) B(n)b"/*(n) > ad, n > ng. (2.3)
If {u(n)} is a positive solution of (E), then
B(n)b"*(n)Au(n)
u(n) = =9

eventually (2.4)

and
u(n)
Bd%1(n)
Proof. In view of (2.1) and from Lemma 2.1, we see that (P;) holds and
A(b(n)(Au(n))*B*(n)) = A(b(n)(Au(n))*) B> (n + 1)
+b(n)(Au(n))* AB* (n). (2.6)
By the Mean-value Theorem,

is eventually increasing, where 8; = 6'/°. (2.5)

adB*~Y(n+1)AB(n), ifad > 1,

where B(n) < B(n + 1). Since AB(n) = b=/%(n), we have
B*(n+1)

AB®(n) < ad Bin)

bfl/a(n),

and using this in (2.6), we obtain
A(b(n)(Au(n))*B*(n)) < —p(n)n(n — o)u®(n — 0)B*(n +1)
b1/ (n)BY(n +1)

+adb(n)(Au(n))” B (2.7)
Since b'/*(n)(Au(n)) is decreasing, from (2.2)
u®(n —o) > B%n —o)b(n)(Au(n))®. (2.8)

Combining (2.7) and (2.8), and then using (2.3), we obtain
A(b(n)(Au(n)*B*(n))
ad

< —b(n)(Au(n))*B*®(n +1) {p(n)n(n —o)BY(n—o0) — W < 0.

Hence, {b(n)(Au(n))*B*(n)} is decreasing and thus there exists an integer
ny > ng such that

n—1 -5 s
u(n) > b"%(n)B° (n)Au(n) ) ﬁ/ags;

sS=n1

n—1
> 01/ ) B ) () 3 [

B

B(S+1) dx

S=nq

1-8(p,
= bY/%(n) B%(n)Au(n) (Bl _(5 )> ,
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which proves (2.4).
To prove (2.5) first note that (P3) implies

nlin;o b/ (n)Au(n) = 0. (2.9)

Therefore, a summation of (E) yields

1/
b/ (n [Zp (s —o)u (s—a)] . (2.10)

Using (2.3) and the facts that g((z)) is decreasing and u(n) is increasing, it
follows from (2.10) that

= S 1/
bl/a(n)Au(n) > u(n) [Z p(s)n(s —Bgzg ( )‘|

> ad e
20| g
> 5]1312517;) (2.11)
Now
u(n) \ B (n)Au(n) — u(n)AB (n)
A (B51 (n)) B Bo1(n)Bo% (n+1) ' (2.12)

By the Mean-Value Theorem,
BS(n+ 1) — B (n) < 6,B% L (n)AB(n),
since §; = 6Y/® < 1 and AB(n) = b~/%(n). Using this in (2.12), we obtain
1/a —
A u(n) > B(n)b'*(n)Au(n) — d1u(n) >0
Bd1(n) B(n)B%(n + 1)bY/«(n)

in view of (2.11). This proves (2.5) and completes the proof
of the lemma. O

Remark 2.5. The monotone increasing property of {B%S”))} obtained in

Lemma 2.4 improves that for {u(n)}. This is new even for equation (1.1)

for which it takes the form (ni(?))&l .

The following lemma taken from [16] will also be needed in the proofs
of our results.

Lemma 2.6. ([16, Lemma 1]) Let F(n,u) be a continuous function defined on
No x R that is nondecreasing in u with sgn F(n,u) = sgnu, and let « and o
be as above. If the difference inequality

A((Azy)*) + F(n,z(n —0) <0
has an eventually positive solution, then so does the difference equation

A((Ayn)?) + F(n,y(n — o)) = 0.
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3. Comparison Results

In this section, we present new comparison principles that significantly simply
the examination of (E).

Theorem 3.1. Let conditions (2.1) and (2.3) hold. Then Eq. (E) is oscillatory
provided that the equation

p(n)n(n — 0)B%(n — o)

Aw(n) + i—op

w(n—oc)=0 (3.1)

is oscillatory.

Proof. Assume to the contrary that {u(n)} is a nonoscillatory solution of
(E), say u(n) > 0 for n > ny for some ny; > ng. Then using (2.4) in (E), we
obtain

o L P — 0)B%(n — 0)b(n — o) (Au(n — 7))°

Ab(n)(Au(n))®) + — o

(1-9)
Letting w(n) = b(n)(Au(n))®, we see that {w(n)} is a positive solution of
the inequality

<0.

p(n)n(n — o)B%(n - o)

Aw(n) + i—op w(n —o) <0.
By Lemma 2.6, the corresponding difference equation (3.1) also has a positive
solution. This contradiction completes the proof of the theorem. O

Theorem 3.2. Let a > 1 and conditions (2.1) and (2.3) hold. Then Eq. (E)
is oscillatory provided that
(1 _ 6)0471

A (n)Au(n)) + .

B* Y(n —o)p(n)n(n — o)u(n —o) =0 (3.2)
is oscillatory.

Proof. Assume to the contrary that {u(n)} is a positive solution of (E), say
u(n) > 0 for n > ny > ng. It is easy to see that by the Mean-Value Theorem,

A(b(n)(Au(n))®) = a (b (n) Au(n))* "t ADY (n) Au(n)),
—p(n)n(n — o)u®(n — o) = a(b/*(n)Au(n))* " ADBY (n) Au(n)),
which implies
ADY*(n)Au(n)) + é(bl/a(n)Au(n))lfap(n)n(n —o)u®(n—o) <0.
(3.3)
Using (2.4) in (3.3) and taking into account that b'/%(n)Au(n) is decreasing,

we have

1— 5)0471

ABY* (n)Au(n)) + ( B Y(n—o)p(n)n(n — o)u(n — o) <0.

But by Lemma 2.6, the corresponding Eq. (3.2) has a positive solution, and
so this contradiction completes the proof. O
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Before stating our next theorem, first note that since B(n) is increasing,
there exists a constant A > 1 such that
B(n)

Bon—e) 2™ (3.4)

Theorem 3.3. Let 0 < a < 1 and conditions (2.1) and (2.3) hold. Then Eq.
(E) is oscillatory provided the equation
st \(1-a)

— Ba—l(n + 1)p(n)n(n — O‘)u(n — 0‘) =0

e () Au(n _—
AW Au) + -

(3.5)
is oscillatory.

Proof. Let {u(n)} be a nonoscillatory solution of (E) with u(n) > 0 for
n > ny > ng. From (2.9) and (E), we have

Q=

b/ (n)Au(n) = [Z p(s)u’(s — o—)]

S=nNn

Hence,

A (n)Au(n)) = A

By the Mean-Value Theorem,

A (n)Au(n)) +

p(n)n(n —o)u®(n — o) <0.

Since { B’;E’E;) } is increasing,

l—o

AR WAu(m) + 5 Fi s [ > pls)als —o)B (s - o>]
s=n-+1

p(n)n(n —o)u“(n — o) <O0.
Therefore, {u(n)} satisfies the linear difference inequality

A (n)Au(n)) + ;Bﬁ(ﬁ)f’of)”(;_”)g

l1—a
o0

> pls)n(s — o) B (s — 0)1 u(n — o) <0. (3.6)

s=n-+1
Since 41 < 1, from (3.4) we obtain
Ba(ﬁlfl)(n _ O') > )\a(lfél)Boz(élfl)(n)
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Using this and (2.3), we have

S o0 Ba(51 (e _
> plsinls o) B(s—o) 2 as > El o)
s=n-+1 s=n-+1 b )

> Ba(él—l)—l(s)

> 04(5)\0‘(1_61) Z
s=n+1 bl/a(s)

= a\v1—%) Z Be1i=D=1(5)AB(s)

s=n+1
o0 B(S-‘rl) du
01(1751)
> ad\ S;ﬂ;ﬂ /B(S) ue(1=61)+1

Substituting this into (3.6) gives
5%)\(1—51)(1—00
a(l — 61)17Ta

AW (n)Au(n)) +

B(51—1)(1—a)(n +1)
Bo(1=a)(n — g)

p(n)n(n — oju(n — o) <0

which in view of (3.4) yields that {u(n)} is a positive solution of the difference
inequality

61’—‘*/\1 a
ADY*(n)Au(n)) + WB(“ D(n+ )p(n)n(n — o)u(n — o) <0.
—6) =
By Lemma 2.6, the corresponding difference equation (3.5) has also a positive
solution, so the proof is complete. O

Remark 3.4. The comparison results presented in Theorems 3.1-3.3 reduce
the examination of oscillatory properties of (E) to those of linear equations.

4. Oscillation Criteria

In this section, we apply the results from the previous section to establish
new oscillation criteria for Eq. (E).

Theorem 4.1. Let (2.1) and (2.3) hold. If

o+1
lim inf Z (s—0)B¥(s—o0)>(1—-9)“ ( j—l) , (4.1)
n— oo o

S=n—o

then (E) is oscillatory.

Proof. In view of (4.1) and Theorem 7.6.1 of [10], it is easy to see that Eq.
(3.1) is oscillatory. Therefore, by Theorem 3.1, Eq. (E) is oscillatory. O
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Theorem 4.2. Let o > 1 and conditions (2.1) and (2.3) hold. If

' 1 n—o—1 .
lim sup {B(n—a) Z p(s)n(s —o)B(s)BY(s — o)

n—0oo
S=n1

+ Z n(s —o)B¥(s — o)

S=n—o

+BY % (n—o Zp o)BoTO (s J)} >

for some nqy > ng + o, where k = (17‘207 , then equation (E) is oscillatory.

(4.2)

ol

Proof. Assume that (E) is not oscillatory. By Theorem 3.2, Eq. (3.2) is also
nonoscillatory and we may assume that it possess an eventually positive solu-

tion {u(n)} with u(n) > 0 for n > n; > ng+o such that (4.2) holds. Summing
(3.2) yields

Au(n bl/a Zp (s —0)B* (s — o)u(s — o).

Summing once more gives

o)B* Yt — o)u(t — o)

ni

—1 n—1
Zbl/a Zp Wt —o)BHt — o)u(t — o)
n—1 00

+k Z bl/a Zp() (t — o) BNt — o)u(t — o).

Using summation by parts,

u(n) >k Z p(s)n(s —o)B(s +1)B*" (s — o)u(s — o)

s=n1

+kB(n Zp (t —0)B*"L(t — o)u(t — o).
t=n

Hence,

n—o—1

u(n —o) >k Z p(s)n(s —o)B(s +1)B* (s — o)u(s — o)

s=n1

n—1
+kB(n—o) Z p(s)n(s —o)B* (s — o)u(s — o)

S=Nn—o
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In view of the fact that ;((Z)) is decreasing and B%y&) is increasing (see
Lemmas 2.1 and 2.4), the previous inequality gives
u(n — o) i
=) 2 ET 3 bl B+ Do)
n—1
+ ku(n — o) E:p@M@—JﬁW@—J)

B(n —o)u(n — o) ko —
+k Bo(n— o) Zp (s —0)BY 17 1(s — o).

Simplifying, we obtain

p(s)n(s —o)B*(s — o)

M7

{B(nl_a) S pls)n(s — 0)B(s + 1)B(s — o) +

o0 1

Bl=61(p — _ g)BOtSi—1(g _ < =

+ (n—o) SE:np(S)n(S o) (s 0)} <3
This is a contradiction and proves the theorem. ]

For our next and final result we set

11—«

5% )\1—(1
a(l—6) ="
Theorem 4.3. Let 0 < a < 1 and conditions (2.1) and (2.4) hold. If

lim sup {1 Z B(s+1)B(s —o)p(s)n(s — o)

n—oo B(n - U) s=ny
n—1
+ Z B* (s +1)B(s — o)p(s)n(s — o)
+B' (n—0) Y B* (s +1)B% (s — o)p(s)n(s — 0)} > %

(4.3)
then (E) is oscillatory.

Proof. Assume that equation (E) is not oscillatory. By Theorem 3.3, Eq.
(3.5) is also nonoscillatory. Without loss of generality, we may assume that it
possesses an eventually positive solution {u(n)} for n > ny > ng. Summing
(3.5) gives

Au(n _bl/a ZBals—i—l p(s)n(s — o)u(s — o).

Then,

oo

S e 2B+ Uplon( — oJutt —o)

s=nq t=s
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Z o /a z_: (bt — o)ult — o)
+L Z bl/a ZB“ ! p(t)n(t — o)u(t — o).
Thus,
u(n) > L i Bo(s + Dp(s)n(s — o)uls — o)
+ LB(n ZB“ Ys+ Dp(s)n(s — o)u(s — o),
and so
n—o—1
uln—0)>L Y B*(s+1)p(s)n(s — o)u(s — o)
+ LB(n—o0) z_: B s+ Dp(s)n(s — o)u(s — o)

+LB(n—0)Y B s+ 1)p(s)n(s — o)u(s — o).

s=n

Since g((") is decreasing and 781) is increasing, the last inequality implies

that

n—o—1
u(n — o) > Z B%(s+ 1)B(s — o)p(s)n(s — o)
+ Lu(n — o) Z B s+ 1)p(s)n(s — o)B(s — o)
1B (”3;2“_(”0_)_ 9) 3" B (s + 1)B% (s — o)p(s)n(s — o).

Hence,
{B(]L _Z_ B%(s+1)B(s — o)p(s)n(s — o)

n—o) =

- Z B (s + 1)B(s — 0)p(s)n(s — )

+B'" (n—0) Y B (s + 1)B” (s — o)p(s)n(s — 0)} < %

This contradicts (4.3), and completes the proof of the theorem. O
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5. Examples

In this section, we illustrate the oscillation criteria obtained in the previous
section with examples of Euler type difference equations.

FEzample 5.1. Consider the second order delay difference equation

A((Au(n))?) + %u% —2)=0, n>3, (5.1)

with @ > 0. Here we have b(n) = 1, 0 = 2, and a = = 3. Asimple
calculation shows that B(n) = n — 3, and by taking A = 1 and § = §, we
have §; = 1, k = 22 and n(n — ¢) = 1. Condition (2.1) becomes

27 1927
> a
> =5 =00
n

n=3

and (2.3) is satisfied if ¢ > 32. Condition (4.2) becomes

3
|

w
),k@ ||M
& 5

3 _
a 3

. 1

hmp{m_g) Se-neate & o
¥ > ) 192
s g\, 192
Z } ‘7o

and hence (4.2) is satisfied for ny = 6 if a > 3. Therefore, by Theorem 4.2,
Eq. (5.1) is oscillatory if a > 32.

Ezample 5.2. Consider the second order delay difference equation

A(ns (Au(n ))%)Jrn(;ou%(nfl):(), n>1, (5.2)
where a > 0. We have b(n) = n?/?, ¢ = 1, and a = 8 = 1/3. Then, with

A=1landd =4, Wehave51:8,77(n—a)—1 L=
Condition (2.1) becomeb

2 and B(n) ~ 3n'/3.

ZQ?a_

1
no

and (2.3) is satisfied for a (2/27)5. Condition (4.3) reduces to

;\H

n—o0 s=n, S
n—1 a
1 1
£ Bl )i e -1t g
s=n—1

IS

H[30n = 1)FF 0B + 1) TEB(s ~ 1) } - 5>

10
9

s . 21
Therefore, by Theorem 4.3, Eq. (5.2) is oscillatory if a > 5
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