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On the Exponential Diophantine Equation
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n−1 = Fm

Bijan Kumar Patel and Ana Paula Chaves

Abstract. Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 =
Fn+1 + Fn for n ≥ 0, where F0 = 0 and F1 = 1. In this paper,
we explicitly find all solutions of the title Diophantine equation using
lower bounds for linear forms in logarithms and properties of continued
fractions. Further, we use a version of the Baker–Davenport reduction
method in Diophantine approximation due to Dujella and Pethö.
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1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1+Fn, for n ≥ 0,
where F0 = 0 and F1 = 1. These numbers are well known for possessing won-
derful and amazing properties (consult [7] together with their very extensive
annotated bibliography for additional references and history).

Diophantine equations related to sums of powers of two terms of a given
linear recurrence sequence were studied by several authors. For instance,
motivated by the naive identity

F 2
n + F 2

n+1 = F2n+1, (1.1)

which tells us that the sum of the square of two consecutive Fibonacci num-
bers is still a Fibonacci number, Marques and Togbé [12] questioned what
about such sums with higher powers, and showed that, if x ≥ 1 is an integer
such that F x

n + F x
n+1 is a Fibonacci number for all sufficiently large n, then

x ∈ {1, 2}. In 2011, Luca and Oyono [10] solved this problem completely by
showing that the Diophantine equation

F s
m + F s

m+1 = Fn (1.2)

has no solutions (m,n, s) with m ≥ 2 and s ≥ 3.
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Subsequently, their result have been extended by considering k-
generalized Fibonacci numbers [4,15]. Recently, Bednař́ık et al. [1] has proved
that the Diophantine equation (F (k)

n )2 + (F (k)
n+1)

2 = F
(l)
m has no solution

in positive integers n,m, k, l with 2 ≤ k < l and n > 1. Hirata-Kohno
and Luca [6] was revisited (1.2) and found that the solutions of the Dio-
phantine equation F x

n + F x
n+1 = F y

m, in positive integers (m,n, x, y), are
(3, 1, x, 1), (n + 2, n, 1, 1), (2n + 1, n, 1, 1), (3, 4, 1, 3), (4, 2, 3, 2). Subsequently,
Luca and Oyono [11] reversed the role of two exponents of the previous equa-
tion and studied whether F x

n +F y
n+1 = F x

m or F y
n +F x

n+1 = F x
m. They proved

that the only positive integer solution (m,n, x, y) of one of the mentioned
equations with n ≥ 3 and x �= y, is (5, 3, 2, 4), for which F 3

4 + F 4
2 = F 5

2 .
Miyazaki [14] showed that the only positive integer solutions (x, y, z, n) of
the equation F x

n + F y
n+1 = F z

2n+1 are for (x, y, z) = (2, 2, 1) (and for all
positive integers n).

Among the several pretty algebraic identities involving Fibonacci num-
bers, we are interested in the following one:

F2n = F 2
n+1 − F 2

n−1, for all n ≥ 0. (1.3)

In particular, the above identity tell us that, for two Fibonacci numbers whose
positions in the sequence differ by two, the difference of their squares is still
a Fibonacci number. So, in the same spirit of the previous works done on Eq.
(1.1), one could ask: Does this property still holds for F 3

n+1 − F 3
n−1? And for

F 4
n+1 − F 4

n−1? And so on?
The aim of this paper is to answer such questions, i.e. to know when

F x
n+1 − F x

n−1 is a Fibonacci number. More precisely, our main result is the
following.

Theorem 1.1. The only non-negative integer solutions (m,n, x) of the Dio-
phantine equation

F x
n+1 − F x

n−1 = Fm, (1.4)

are (2n, n, 2), (1, 1, x), (2, 1, x), (0, n, 0).

Our method follows roughly the following steps: First, we use Matveev’s
result [13] on linear forms in logarithms to obtain an upper bound for x in
terms of m and n. When n is small, say n ≤ 112, we use Dujella and Pethö’s
result [5] to decrease the range of possible values and then let the computer
check the non-existence of solutions in this case. To the case where n ≥ 113,
we use again linear forms in logarithms to obtain an absolute upper bound
for x. In the final step, we use continued fractions to lower the bounds and
then let the computer cover the range of possible values, showing that there
are no solutions also in this case, which completes the proof.

2. Auxiliary Results

In this section, the main results used to “attack” our problem are presented.
One basic fact about Fibonacci numbers is their closed-form, given by Binet’s
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formula, which states that

Fn =
αn − βn

√
5

, for all n ≥ 0, (2.1)

where α := (1 +
√

5)/2, is the Golden Ratio, and β = −α−1, are the roots of
x2 − x − 1. This implies on the following well-known inequalities:

αn−2 ≤ Fn ≤ αn−1, (2.2)

which holds for all n ≥ 1. Also, it is easy to show that
Fn−1

Fn+1
≤ 2

5
, holds for any n ≥ 3. (2.3)

2.1. Lower Bounds for Linear Forms in Logarithms of Algebraic Numbers

To prove Theorem 1.1, we use a few times a Baker-type lower bound for
a non-zero linear forms in logarithms of algebraic numbers. We state a result
of Matveev [13] about the general lower bound for linear forms in logarithms,
but first, recall some basic notations from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive poly-
nomial

f(X) := a0X
d + a1X

d−1 + · · · + ad = a0

d∏

i=1

(X − η(i)) ∈ Z[X],

where the ais are relatively prime integers, a0 > 0, and the η(i)s are conjugates
of η. Then

h(η) =
1
d

(
log a0 +

d∑

i=1

log
(
max{|η(i)|, 1}

))
(2.4)

is called the logarithmic height of η. Some properties of the logarithmic height,
which will be used in the next section, are the following:

h(η ± γ) ≤ h(η) + h(γ) + log 2.

h(ηγ±1) ≤ h(η) + h(γ).

h(ηs) = |s|h(η) (s ∈ Z).

With the established notations, Matveev (see [13] or [2, Theorem 9.4])
proved the ensuing result.

Theorem 2.1. Assume that γ1, . . . , γt are positive real algebraic numbers in
a real algebraic number field K of degree D, b1, . . . , bt are rational integers,
and

Λ := γb1
1 · · · γbt

t − 1,

is not zero. Then

|Λ| ≥ exp
(−1.4 · 30t+3 · t4.5 · D2(1 + log D)(1 + log B)A1 · · · At

)
,

where

B ≥ max{|b1|, . . . , |bt|},
and
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Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

2.2. Reduction Algorithm

Another result which will play an important role in our proof is due to Dujella
and Pethö [5, Lemma 5 (a)]. It will be used to reduce the upper bounds of
the variables on Eq. (1.4).

Lemma 2.2. Let M be a positive integer, let p/q be a convergent of the con-
tinued fraction of the irrational γ such that q > 6M , and let A,B, μ be some
real numbers with A > 0 and B > 1. Let ε := ||μq|| − M ||γq||, where || · ||
denotes the distance from the nearest integer. If ε > 0, then there exists no
solution to the inequality

0 < |uγ − v + μ| < AB−u,

in positive integers u and v with

u ≤ M and u ≥ log(Aq/ε)
log B

.

The following result is known as Legendre’s criterion of a rational r/s
to be a convergent of α.

Lemma 2.3. [16, Lemma 5C] If α is irrational and r/s is a rational number
with s > 0 such that

∣∣∣α − r

s

∣∣∣ <
1

2s2
,

then r/s is a convergent to α.

3. The Proof of Theorem 1.1

Since the case nx = 0 is trivial, we assume n, x ≥ 1. Observe that, for x = 1,
the Diophantine equation (1.4) becomes Fn = Fn+1 − Fn−1 = Fm, which
gives m = n, and for x = 2, F2n = F 2

n+1 − F 2
n−1 = Fm, gives m = 2n. When

n = 1, we have that F x
2 − F x

0 = 1 = F1 = F2 holds for all x ≥ 1. For n = 2,
we get Fm + 1 = 2x, which has only the solutions (m,x) = (0, 0) and (4, 2),
as it was showed in [3, Theorem 2].

So, assume that n ≥ 3. Since x ≥ 3, we get that Fm ≥ F 3
4 − F 3

2 = 26,
so m > 8. Using (2.1) for Fm, we rewrite Eq. (1.4) as

αm

√
5

− F x
n+1 = −F x

n−1 +
βm

√
5

∈ [−F x
n ,−F x

n + 1]. (3.1)

Dividing by F x
n+1 on both sides of (3.1) and taking absolute values, we get

∣∣∣αm5−1/2F−x
n+1 − 1

∣∣∣ < 2
(

Fn−1

Fn+1

)x

<
2

2.5x
. (3.2)

To apply Theorem 2.1, we take

γ1 := α, γ2 :=
√

5, γ3 := Fn+1,

b1 := m, b2 := −1, b3 := −x,
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and also Λ1 := αm5−1/2F−x
n+1 − 1. Note that Q(

√
5) is the algebraic number

field containing γ1, γ2 and γ3, so D := 2. If αm =
√

5F x
n+1, then α2m ∈ Z

which is false for all positive integers m, therefore Λ1 �= 0.
Since h(γ1) = log α/2, we can choose A1 := 0.5 > log α. Furthermore,

since h(γ2) = log 5/2, and h(γ3) = log Fn+1, it follows that we can take
A2 := 1.61 > log 5, and A3 := 2n log α > 2 log Fn+1. Lastly, using (2.2), the
following chains of inequalities holds

α(n−2)x+2 < α(n−2)x · (αx − 1)︸ ︷︷ ︸
>α3−1>α2

< F x
n+1 − F x

n−1 = Fm < αm−1,

αnx > F x
n+1 > F x

n+1 − F x
n−1 = Fm > αm−2.

Thus, since n ≥ 3 and x > 2,

x < (n − 2)x + 3 < m < nx + 2 < (n + 1)x, (3.3)

so we can take B := m.
From Matveev’s theorem, we have a lower bound for |Λ1|, which com-

bined with (3.2) gives

exp
(−1.4 · 306 · 34.5 · 22 · (1 + log 2) · (1 + log m) · 0.5 · 1.61 · 2n log α

)
>

2
2.5x

.

Hence, using (3.2), (3.3) and that 1+ log m < 1.5 log m, is true for all m ≥ 8,
we get

x <
log 2

log 2.5
+ 1.23 · 1012 · n log m,

therefore,

x < 1.24 · 1012n log((n + 1)x). (3.4)

3.1. The Case n ∈ [3, 112]
In this case,

x < 1.24 · 1012n log((n + 1)x) ≤ 1.4 · 1014 log(113x),

providing x < 5.8 · 1015.
We set

Γ1 := −x log Fn+1 + m log α − log
√

5.

Thus, Λ1 = eΓ1 − 1. Recall that, from (3.1), we have Λ1 < 0, which implies
Γ1 < 0. Now, since |Λ1| < 2/(2.5)x ≤ 0.128, for x ≥ 3, it follows that
e|Γ1| < 1.15. Hence, we get

0 < |Γ1| < e|Γ1| − 1 ≤ e|Γ1||eΓ1 − 1| <
2.3
2.5x

.

Dividing the last inequality by log α, and using from (3.3) that m <
(n + 1)x, we have the following

0 < x

(
log Fn+1

log α

)
− m +

(
log

√
5

log α

)
< 4.78 · (2.5

1
113 )−m. (3.5)
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To use the Reduction Method, take

γn :=
log Fn+1

log α
, μ :=

log
√

5
log α

, A := 4.78, B := 2.5
1

113 .

We claim that γn is irrational, for every n ∈ [3, 112]. Indeed, if γn = p/q
for some positive integers p and q, we would have αq = F p

n+1 ∈ Z, which is
an absurd. Let q(146,n) be the denominator of the 146th convergent of the
continued fraction of γn.

Taking M := 5.8 · 1015, we use Mathematica to get

min
3≤n≤112

q(146,n) > 1022 > 6M and max
3≤n≤112

q(146,n) < 1.33 · 1084.

Also, for εn := ||μ · q(146,n)|| − 5.8 · 1015||γn · q(146,n)||, we obtain that

min
3≤n≤112

εn > 0.004,

which means that εn is always positive (this is not true if we consider the
denominator of the 145th convergent). Notice that the conditions to apply
Lemma 2.2 are fulfilled, and hence there is no solution to inequality (3.5)
(and consequently no solution do the Diophantine equation (1.2)) for x and
m satisfying

log(A · q(146,n)/εn)
log(B)

≤ m and x ≤ M,

for all n ∈ [3, 112]. Then, the solutions, in this case, must be when

m <
log(A · q(146,n)/εn)

log(B)

<
log(4.78 · 1.33 · 1084/0.004)

2.5
1

113

< 24761.

Therefore, m ≤ 24760, and so x < (m − 3)/(n − 2) < 24757/(n − 2). Now,
we prepare a simple routine in Mathematica in the range n ∈ [3, 112], m ∈
[8, 24761] and x ∈ [3, 24757/(n − 2)], which returns no solutions for (1.2).
This completes the case n ∈ [3, 112].

3.2. An Upper Bound for x in Terms of n

From now on, assume n ≥ 113. Our short term goal is to find an explicit
lower bound for x in terms of n. If x ≤ n + 1, we are done. Otherwise, if
x > n + 2, then from (3.4), we get

x < 2.48 · 1012n log x,

which can be rewritten as
x

log x
< 2.48 · 1012n. (3.6)

From the useful fact that, for all x > e, x/ log x < A ⇒ x < 2A log A, holds
whenever A ≥ 3, and since log(2.48·1012n) < 7.05 log n, holds for all n ≥ 113,
it follows
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x < 2 · (2.48 · 1012n) log(2.48 · 1012n)

< 4.96 · 1012n · (7.04 log n)

< 3.5 · 1013n log n.

So finally, we have

x < 3.5 · 1013n log n (3.7)

for n ≥ 113.

3.3. An Absolute Upper Bound on x

Set y := x/α2n. From (3.7) and n ≥ 113, we have

y <
3.5 · 1013n log n

α2n
<

1
αn

. (3.8)

In particular, y < α−31 < 10−23. Now, we need to make a few algebraic
manipulations apply Theorem 2.1 a second time. Rewrite Eq. (1.4) as follows:

αm

√
5

− βm

√
5

=
α(n+1)x

5x/2
− α(n−1)x

5x/2
+

(
F

x
n+1 − α(n+1)x

5x/2

)
−

(
F

x
n−1 − α(n−1)x

5x/2

)
.(3.9)

Since y < 10−23 is very small, we have

max
{∣∣∣∣F

x
n+1 − α(n+1)x

5x/2

∣∣∣∣ ,

∣∣∣∣F
x
n−1 − α(n−1)x

5x/2

∣∣∣∣

}
<

2yα(n+1)x

5x/2
(Eq. (16), [10]) .

Taking absolute values, after a slight modification of (3.9), we obtain
∣∣∣∣
αm

√
5

− α(n−1)x

5x/2
(α2x − 1)

∣∣∣∣ =
∣∣∣∣
βm

√
5
+

(
F x
n+1 − α(n+1)x

5x/2

)
−

(
F x
n−1 − α(n−1)x

5x/2

)∣∣∣∣

<
1

αm
+ 2y

(
α(n−1)x(α2x − 1)

5x/2

)
.

Now, dividing both sides of the above inequality by α(n+1)x/5x/2, we get
∣∣∣αm−(n+1)x5(x−1)/2 − (1 − α−2x)

∣∣∣ <
5x/2

αm+(n+1)x
+ 2y(1 − α−2x)

<
1

2αn
+

17y

9

<
43

18αn
, (3.10)

where we used that 5x/2/α(n+1)x ≤ (√
5/α113

)x
< 1/2, and α2x ≥ α6 > 18.

Thus,
∣∣∣αm−(n+1)x5(x−1)/2 − 1

∣∣∣ <
43

18αn
+

1
α2x

≤ 61
18αl

,

where l := min{n, 2x}. Hence, we deduce that
∣∣∣αm−(n+1)x5(x−1)/2 − 1

∣∣∣ <
61

18αl
. (3.11)
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Observe that, by the same argument used previously, αm−(n+1)x5(x−1)/2−
1 is non-zero. Since x ≥ 3 and n ≥ 113, we get

∣∣∣αm−(n+1)x5(x−1)/2 − 1
∣∣∣ ≤ 1

α3
+

1
α113

<
1
2
, (3.12)

so that αm−(n+1)x5(x−1)/2 ∈ [1/2, 2]. In particular,

1.6x − 4 < (n + 1)x − m < 1.7x. (3.13)

Now, we are about to use of Matveev’s result one more time, to obtain a
lower bound for the left-hand side of (3.11). For this, we take

t := 2, γ1 := α, γ2 :=
√

5, b1 := m − (n + 1)x, b2 := x − 1,

D := 2, A1 := log α,A2 := log 5, and B := 1.7x > max{|b1|, |b2|}.
Hence,

log
∣∣∣αm−(n+1)x5(x−1)/2 − 1

∣∣∣ > −1.4 · 305 · 24.5 · 22

(1 + log 2)(1 + log(1.7x))(logα)(log 5).(3.14)

From (3.11) and (3.14), we deduce

l < 3.5 × 109 log x.

Treating separately the case l = n and l = 2x, and performing the respective
calculations, we arrive that x < 5 × 1036 and x < 4.29 × 1010 respectively. In
any case we have that

x < 5 × 1036.

3.4. Reducing the Bound on x

Next, we take Γ2 := (x−1) log
√

5− ((n+1)x−m) log α. Observe that (3.12)
becomes

∣∣∣αm−(n+1)x5(x−1)/2 − 1
∣∣∣ = |eΓ2 − 1| <

1
2
.

Thus, we have that e|Γ2| < 2. Hence,

|Γ2| ≤ e|Γ2| ∣∣eΓ2 − 1
∣∣ < 2 ·

∣∣∣αm−(n+1)x5(x−1)/2 − 1
∣∣∣ < 2

(
43

18αn
+

1
α2x

)
.

This leads to∣∣∣∣∣
log

√
5

log α
− (n + 1)x − m

x − 1

∣∣∣∣∣ <
1

(x − 1) log α

(
43

9αn
+

2
α2x

)
. (3.15)

Assume that x > 100. Then α2x > α200 > 1041 > 104x. Hence, we deduce
that

1

(x − 1) logα

(
43

9αn
+

2

α2x

)
< 8

x(x−1)104 log α

< 1
600(x−1)2 . (3.16)

Estimates (3.15) and (3.16) lead to the following inequality:
∣∣∣∣∣
log

√
5

log α
− (n + 1)x − m

x − 1

∣∣∣∣∣ <
1

600(x − 1)2
. (3.17)
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By virtue of Lemma 2.3, inequality (3.17) implies that the rational number

(n + 1)x − m

(x − 1)

is a convergent to γ := log(
√

5)/ log α. Let [a0, a1, a2, a3, . . . ] = [1, 1, 2, 19, . . . ]
be the continued fraction of γ and pt/qt its tth convergent. Assume that
((n + 1)x − m)/(x − 1) = pk/qk for some k. Then x − 1 = dqk for some
positive integer d, where d = gcd[(n + 1)x − m,x − 1]. On the other hand,
using the Mathematica, we get that

q54 = 14014190203160504083256905054 > 1.4 × 1028 > 3 × 1027 − 1 > x − 1;

therefore, 0 ≤ k ≤ 53. Again, using Mathematica, we observe that at ≤ 29
for t ∈ {0, . . . , 53}. From the properties of continued fractions, we have

∣∣∣∣γ − (n + 1)x − m

x − 1

∣∣∣∣ =
∣∣∣∣γ − pk

qk

∣∣∣∣ >
1

(ak + 2)q2
k

≥ 1
31(x − 1)2

,

which contradicts (3.17). Hence, x ≤ 100.

3.5. The Final Step

From (3.10), we have
∣∣∣αm−(n+1)x5(x−1)/2(1 − α−2x)−1 − 1

∣∣∣ <
43

18αn(1 − α−2x)
<

3
αn

.

Put s := (n + 1)x − m. We computed all the numbers∣∣α−s5(x−1)/2(1−α−2x)−1−1
∣∣ for all x ∈ [3, 100] and all s ∈ [�1.6x−4	, �1.7x	].

None of them ended up being zero, since if it were we would get the Diophan-
tine equation

α2x − 1 = 5(x−1)/2α2x−s. (3.18)

Conjugating the above relation in Q(
√

5), we get

β2x − 1 = 5(x−1)/2β2x−s. (3.19)

Multiplying (3.18) and (3.19), we get

−α2x − β2x + (−1)s + 1 = (α2x − 1)(β2x−1 − 1)

= (αβ)2x−s5(x−1)

= (−1)s5(x−1).(3.20)

If s is even, then (3.20) implies that L2x = 2 − 5x−1, where (Ln)n≥0 be the
Lucas sequence given by Ln+2 = Ln+1+Ln, for n ≥ 0, with (L0, L1) = (2, 1).
However, 5x−1 > 2 for any x ≥ 2. Thus, s is odd, then (3.20) implies that
L2x = 5(x−1). Using the identity L2

k − 5F 2
k = 4(−1)k, it is easy to check that

5 � Lk for any positive integer k. This theorem is, therefore, proved.
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Comments

It is evident from the title Diophantine equation that one can revisit the
equation under some more general forms. A number of directions for future
research are discussed below.

(i) The only positive integer solution (m,n, x, y) of F x
n+1 − F y

n−1 = F x
m

with m ≥ 1, n ≥ 3, x ≥ 2, y ≥ 1 and x �= y is (4, 4, 2, 4) for which
F 2

5 − F 4
3 = F 2

4 .
(ii) The only positive integer solutions (m,n, x, y) of F x

n+1 − F x
n−1 = F y

m

with n > 1 are (n, n, 1, 1), (n, 2n, 2, 1), (3, 3, 2, 3), (6, 3, 1, 3).
(iii) The only positive integer solutions (n, x, y, z) of F x

n+1 −F y
n−1 = F z

2n are
(x, y, z) = (2, y, 1) for n = 2, 3 and (x, y, z) = (2, 2, 1) for n ≥ 4.
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Brazil
e-mail: apchaves@ufg.br

Received: July 3, 2020.

Revised: December 16, 2020.

Accepted: August 2, 2021.


	On the Exponential Diophantine Equation Fn+1x - Fn-1x = Fm
	Abstract
	1. Introduction
	2. Auxiliary Results
	2.1. Lower Bounds for Linear Forms in Logarithms of Algebraic Numbers
	2.2. Reduction Algorithm

	3. The Proof of Theorem 1.1
	3.1. The Case n in[3,112]
	3.2. An Upper Bound for x in Terms of n
	3.3. An Absolute Upper Bound on x
	3.4. Reducing the Bound on x
	3.5. The Final Step

	Comments
	Acknowledgements
	References




