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Abstract. In this article, we further explore convex functions by revealing
new bounds, resulting from stronger convexity behavior. In particular,
we define the so-called radical convex functions and study their prop-
erties. We will see that such convex functions are bounded above by
new curves, rather than straight lines. Applications including discrete
and continuous Jensen inequalities, subadditivity behavior, Hermite–
Hadamard and integral inequalities will be presented.
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1. Introduction

Convex functions and their properties have been in the core of studying
mathematical inequalities. This includes inequalities among real numbers,
functional inequalities, probability inequalities and matrix inequalities, to
mention a few.

In this article, we will be interested in convex functions f : [0,∞) →
[0,∞). Recall that a convex function is a function that lies under its secants
over the interval of convexity. This is equivalent to saying

f((1 − t)a + tb) ≤ (1 − t)f(a) + tf(b), ∀a, b ∈ [0,∞), 0 ≤ t ≤ 1. (1.1)

This inequality can be extended to n-parameters via the so-called Jensen’s
inequality stating that for the positive weights wi with

∑n
i=1 wi = 1, one has

the inequality

f

(
n∑

i=1

wixi

)

≤
n∑

i=1

wif(xi), ∀xi ∈ [0,∞). (1.2)

A concave function is a function f such that −f is convex. So, for a concave
function (1.2) is reversed.
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The inequality (1.2) has a continuous version stating that

f

(
1

b − a

∫ b

a

g(x)dx

)

≤ 1
b − a

∫ b

a

(f(g(x))dx, (1.3)

for the continuous function g : [a, b] → [0,∞) and the convex function f :
[0,∞) → R.
An important inequality is the well known Hermite–Hadamard inequality
stating that [3,5]

f

(
a + b

2

)

≤ 1
b − a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

, (1.4)

valid for the convex function f : [a, b] → R. This inequality refines (1.1) when
t = 1

2 .
Among the most important properties of concave/convex functions is

their sub or super additive behavior. That is, a concave function with f(0) = 0
satisfies the subadditive inequality [2, Problem II.5.12]

f(a + b) ≤ f(a) + f(b), a, b ≥ 0, (1.5)

while a convex function f with f(0) = 0 satisfies (1.5) with the inequality
reversed; as a super additive behavior of convex functions.

In this article, we will treat convex functions looking into their other
properties. This approach will allow obtaining new bounds, and nonlinear
terms that are related to convex functions. To simplify our statements, we
introduce the following simple definition.

Definition 1.1. Let f : [0,∞) → [0,∞) be a continuous function with f(0) =
0, and let p ≥ 1 be a fixed number. If the function g(x) = f

(
x

1
p

)
is convex

on [0,∞), we say that f is p-radical convex.

Remark 1.1. Although Definition 1.1 is stated for functions defined on [0,∞),
it can be stated for any interval [0, α) where α

1
p ≤ α; to guarantee the well

definiteness of the quantity f
(
x

1
p

)
. Since p ≥ 1, then α ≥ 1 can be selected

arbitrarily. Also, we remark that the assumption f(0) = 0 is essential, as we
will need the super additivity behavior of convex functions, which needs this
assumption.

Before proceeding, we list some basic properties of p-radical convex func-
tions.

Proposition 1.1. Let f be p-radical convex, for some p ≥ 1.

(1) f is increasing and convex.
(2) f is q-radical convex, for all 1 ≤ q ≤ p.
(3) If g is q-radical convex for some q ≥ 1, then f + g is min{p, q}-radical

convex.
(4) If g is increasing convex, then the composite function g ◦ f is p-radical

convex.
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Proof. We prove the first and second assertions only. The others are straight-
forward.

(1) Let g(x) = f
(
x

1
p

)
. Then g is convex, and g(0) = 0. A convex func-

tion on [0,∞) is either decreasing on [0,∞), increasing on [0,∞) or
decreasing on [0, α] and increasing on [α,∞) for some α > 0. Since
g(0) = 0 and g ≥ 0, it follows that g is increasing on [0,∞). Conse-
quently, f(x) = g(xp) is the composition of two increasing functions,
hence f is increasing. Further, since g is convex increasing and x 	→ xp

is convex, it follows that f is convex.
(2) Since f is p-radical convex, the function g(x) = f

(
x

1
p

)
is convex. Define

h(x) = f
(
x

1
q

)
, for 1 ≤ q ≤ p. It is clear that h(x) = g

(
x

p
q

)
. By the

first statement of the proposition, f is convex increasing, and hence g

is increasing. Since the mapping x 	→ x
p
q is convex and g is increasing

convex, it follows that h convex.
�

We also notice that p-radical convex functions can be constructed in
different ways. For example, if f is convex with f(0) = 0, then the function
g defined by g(x) = f (xp) is p-radical convex. Another observation is that if
f has the Maclaurin series

f(x) =
∞∑

n=0

αnxn, αn > 0,

then the function

g(x) = f(x) −
p∗
∑

n=0

αnxn,

can be easily seen to be p-radical convex, where p∗ is the greatest integer less
than p.

Example 1.1. (1) f(x) = ex has the Maclaurin series

ex =
∞∑

n=0

1
n!

xn.

Since 1
n! > 0, it follows that

ex −
p∗
∑

n=1

1
n!

xn

is p-radical convex. For example, f1(x) = ex − 1 − x is 2-radical convex,
f2(x) = ex − 1 − x − x2

2 is 3-radical convex, and so on.
(2) f(x) = 1

1−x has the Maclaurin series

1
1 − x

=
∞∑

n=0

xn, 0 ≤ x < 1.
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We may construct p-radical convex functions from f as follows. f1(x) =
1

1−x − 1 − x is 2-radical convex, f2(x) = 1
1−x − 1 − x − x2 is 3-radical

convex, and so on.
(3) A similar argument applies to the function

f(x) = − ln(1 − x) =
∞∑

n=0

1
n + 1

xn+1, 0 < x < 1.

As easy examples of p-radical convex functions, we notice that f(x) = x2

is 2-radical convex but not 3-radical convex, while the function f(x) = x4 is
p-radical convex for all 1 ≤ p ≤ 4. So, although both functions f1(x) = x2

and f2(x) = x4 are convex, it seems that the two functions do not behave
similarly, in terms of convexity. This understanding will lead to interesting
forms of (1.1), (1.2) and (1.5).

For example, we will show that a 2-radical convex function f satisfies
the interesting inequality

f ((1 − t) a + tb) + f
(√

t(1 − t) |a − b|
)

≤ (1 − t) f (a) + tf (b) ,

a, b ∈ [0,∞), 0 ≤ t ≤ 1. (1.6)

Since f ≥ 0, by definition, the inequality (1.6) provides a new refining term for
(1.1). Although (1.1) has been refined in the literature, the new refinement in
(1.6) presents a non-linear smooth refining term, namely f

(√
t(1 − t) |a − b|

)
.

We refer the reader to [4,8,9] for refinements that include linear or piecewise
linear refining terms. Also, we refer the reader to a non-linear refinement of
convex functions in [7], and to [6] for some composite ideas to refine con-
vex inequalities. Then, new forms of the subadditive inequality (1.5) will
be presented for such functions. Further applications include new forms of
the Hermite–Hadamard inequality and new unexpected bounds for 2-convex
functions.

After establishing our results for 2-radical convex functions, we go over
p-radical convex functions more generally. We will show multiple terms re-
fining (1.1) for p-radical convex functions and a new form of the Hermite–
Hadamrd inequality. A nice application of p-radical convex functions will be
its relation with the celebrated Hardy inequality stating

∫ ∞

0

(
1
x

∫ x

0

f(t)dt

)p

dx ≤
(

p

p − 1

)p ∫ ∞

0

f(x)pdx, (1.7)

valid for the measurable function f : (0,∞) → (0,∞) and p > 1. When f
is p-radical convex, it can be easily seen that

∫∞
0

f(x)pdx = ∞. However,
we will be able to prove a new version of (1.7), where the interval (0,∞) is
replaced by any other finite-length interval. This can be seen in Theorem 3.1
below.
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2. 2-Radical Convex Functions

In this section, we study detailed properties of 2-radical convex functions.
First, we present a refinement of Jensen’s inequality for 2-radical convex
functions.

Theorem 2.1. Let f be 2-radical convex. If x1, . . . , xn ≥ 0 and 0 ≤ w1, . . . , wn

≤ 1 are such that
∑n

i=1 wi = 1, then

f

(
n∑

i=1

wixi

)

≤
n∑

i=1

wi

{

f

(∑n
j=1 wjxj + xi

2

)

+f

⎛

⎝

∣
∣
∣
∑n

j=1 wjxj − xi

∣
∣
∣

2

⎞

⎠

⎫
⎬

⎭
≤

n∑

i=1

wif (xi).

Proof. Assume that 0 ≤ t ≤ 1. We have

(1 − t) a2 + tb2 − ((1 − t) a + tb)2 − (1 − t)2(a − b)2

= (1 − t) (2t − 1) a2 + (1 − t) (2t − 1) b2 − 2 (1 − t) (2t − 1) ab

= (1 − t) (2t − 1)
(
a2 + b2 − 2ab

)

= (1 − t) (2t − 1) (a − b)2.

(2.1)

That is,

(1−t) a2 + tb2−((1 − t) a + tb)2 − (1 − t)2(a − b)2 = (1 − t) (2t − 1) (a − b)2.

Thus,

(1 − t) a2 + tb2 = t (1 − t) (a − b)2 + ((1 − t) a + tb)2.

Let g (t) = f
(√

t
)
, t ∈ [0,∞). Then g is an increasing convex function on

[0,∞). This implies,

g
(
((1 − t) a + tb)2

)
+ g

(
t(1 − t)(a − b)2

)
≤g
(
((1−t) a+tb)2+t(1−t)(a−b)2

)

= g
(
(1 − t) a2 + tb2

)

≤ (1 − t) g
(
a2
)

+ tg
(
b2
)
.

Consequently,

g
(
((1 − t) a + tb)2

)
+ g

(
t(1 − t)(a − b)2

)
≤ (1 − t) g

(
a2
)

+ tg
(
b2
)
.

Thus,

f ((1 − t) a + tb) + f
(√

t(1 − t) |a − b|
)

≤ (1 − t) f (a) + tf (b) , (2.2)

where 0 ≤ t ≤ 1. In particular,

f

(
a + b

2

)

+ f

( |a − b|
2

)

≤ f (a) + f (b)
2

. (2.3)
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Replacing a and b by
∑n

i=1 wixi and xi, respectively, in (2.3), we get

f

(∑n
j=1 wjxj + xi

2

)

+ f

⎛

⎝

∣
∣
∣
∑n

j=1 wjxj − xi

∣
∣
∣

2

⎞

⎠ ≤ f (
∑n

i=1 wixi) + f (xi)
2

.

(2.4)
Multiplying (2.4) by wi ≥ 0 (i = 1, . . . , n) and summing over i from 1 to n
we may deduce

f

(
n∑

i=1

wixi

)

≤
n∑

i=1

wif

(∑n
j=1 wjxj + xi

2

)

≤
n∑

i=1

wif

(∑n
j=1 wjxj + xi

2

)

+
n∑

i=1

wif

⎛

⎝

∣
∣
∣
∑n

j=1 wjxj − xi

∣
∣
∣

2

⎞

⎠

≤ f (
∑n

i=1 wixi) +
∑n

i=1 wif (xi)
2

≤
n∑

i=1

wif (xi),

which gives the desired inequality. �
The inequality (2.2) is of special interest that it deserves to be mentioned

explicitly.

Corollary 2.1. Let f be 2-radical convex and let a, b ≥ 0. If 0 ≤ t ≤ 1, then

f ((1 − t) a + tb) + f
(√

t(1 − t) |a − b|
)

≤ (1 − t) f (a) + tf (b) .

In particular, the following inequality holds for 2-radical convex func-
tions.

Corollary 2.2. Let f be 2-radical convex. Then, for 0 ≤ t ≤ 1,

f(t) ≤ f(1)t − f
(√

t(1 − t)
)

≤ f(1)t.

This provides a non linear term bounding the 2-radical convex function
from above, providing a better bound than the linear one.

Further, we have the following application related to the arithmetic-
geometric mean inequality.

Corollary 2.3. Let f(x) = xp, p ≥ 2 and let xi > 0 and wi > 0 with∑n
i=1 wi = 1. Then

n∏

i=1

x
wi
i ≤

n∑

i=1

wi

⎧
⎨

⎩
f

(∑n
j=1 wjf−1 (xj) + f−1 (xi)

2

)

+ f

⎛

⎝

∣
∣
∣
∑n

j=1 wjf−1 (xj) − f−1 (xi)
∣
∣
∣

2

⎞

⎠

⎫
⎬

⎭

≤
n∑

i=1

wixi.

Proof. Notice that f(x) = xp, p ≥ 2 is 2-radical convex. Since
n∏

i=1

xwi
i ≤

n∑

i=1

wixi
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and f is increasing, it follows that

f

(
n∏

i=1

xwi
i

)

≤
n∑

i=1

wi

⎧
⎨

⎩
f

(∑n
j=1 wjxj + xi

2

)

+ f

⎛

⎝

∣
∣
∣
∑n

j=1 wjxj − xi

∣
∣
∣

2

⎞

⎠

⎫
⎬

⎭

≤
n∑

i=1

wif (xi).

Of course f is an invertible function and its inverse is positive. So we may
repalce xi by f−1 (xi) in the above inequality. This implies the desired result.

Next, we show a refinement of the super additivity behavior of convex
functions. �

Proposition 2.1. Let f be 2-radical convex and let a, b ≥ 0. Then

f (a) + f (b) + f
(√

2ab
)

≤ f (a + b) .

Proof. Since for any a, b ∈ R

(a + b)2 = a2 + b2 + 2ab.

We have, for g(x) = f (
√

x) ,

g
(
(a + b)2

)
= g

(
a2 + b2 + 2ab

)

≥ g
(
a2 + b2

)
+ g (2ab)

≥ g
(
a2
)

+ g
(
b2
)

+ g (2ab) ,

where we have used the fact that g is super additive, being a convex function
with g(0) = 0, to obtain the last two inequalities. Noting that g(x) = f (

√
x) ,

the proof is complete. �

On the other hand, Hermite–Hadamard inequalities refining (1.4) can
be shown as follows.

Theorem 2.2. Let f be 2-radical convex. Then for b > a > 0,

f

(
a + b

2

)

+
2

b − a

∫ b−a
2

0

f(x)dx ≤ 1
b − a

∫ b

a

f(x)dx,

and

1
b − a

∫ b

a

f(x)dx +
1

b − a

∫ b−a
2

0

4xf(x)
√

(b − a)2 − 4x2
dx ≤ f(a) + f(b)

2
.

Proof. For the first inequality, the Inequality (2.3) implies

f

(
a+ b

2

)

= f

(
(1 − t)a+ tb+ ta+ (1 − t)b)

2

)

≤ f((1 − t)a+ tb) + f(ta+ (1 − t)b)

2
− f

( |(1 − t)a+ tb − ta − (1 − t)b|
2

)

=
f((1 − t)a+ tb) + f(ta+ (1 − t)b)

2
− f

( |1 − 2t|(b − a)

2

)

.
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Integrating this last inequality over the interval [0, 1], noting symmetry of
|1 − 2t| about t = 1

2 and calculating the integrals
∫ 1

0

f ((1 − t) a + tb) dt =
∫ 1

0

f(ta + (1 − t)b)dt =
1

b − a

∫ b

a

f(x)dx,

and
∫ 1

0

f

( |1 − 2t|(b − a)
2

)

dt = 2
∫ 1

2

0

f

(
(1 − 2t)(b − a)

2

)

dt

=
2

b − a

∫ b−a
2

0

f(x)dx

imply the first desired inequality.
For the second desired inequality, Corollary 2.1 implies

f ((1 − t) a + tb) + f
(√

t(1 − t) |a − b|
)

≤ (1 − t) f (a) + tf (b) , 0 ≤ t ≤ 1.

Noting that the quantity f
(√

t(1 − t) |a − b|
)

is symmetric about 1
2 , inte-

grating the above inequality over the interval [0, 1] implies
∫ 1

0

f ((1 − t) a + tb) dt + 2
∫ 1

2

0

f
(√

t(1 − t) |a − b|
)

dt

≤
∫ 1

0

((1 − t) f (a) + tf (b)) dt.(2.5)

Noting that
∫ 1

0

f ((1 − t) a + tb) dt =
1

b − a

∫ b

a

f(x)dx,

2
∫ 1

2

0

f
(√

t(1 − t) |a − b|
)

dt =
1

b − a

∫ b−a
2

0

4xf(x)
√

(b − a)2 − 4x2
dx;x =

√
t(1 − t) |a − b| ,

and
∫ 1

0

((1 − t) f (a) + tf (b)) dt =
f(a) + f(b)

2
,

implies the desired inequality. �

Further, we have the following integral inequality, as a special case of
(1.4). The general case is stated in Theorem 2.4 below.

Theorem 2.3. Let f be 2-radical convex. Then

f

(
1
2

)

≤
∫ 1

0

{

f

(
x + 1

2

2

)

+ f

( |x − 1
2 |

2

)}

dx ≤
∫ 1

0

f(x)dx.
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Proof. From Theorem 2.1,

f

(
n∑

i=1

wixi

)

≤
n∑

i=1

wif

(∑n
j=1 wjxj + xi

2

)

+
n∑

i=1

wif

⎛

⎝

∣
∣
∣
∑n

j=1 wjxj − xi

∣
∣
∣

2

⎞

⎠

≤
n∑

i=1

wif (xi),

for any positive wi’s with
∑n

i=1 wi = 1 and any xi ≥ 0. In particular, for
n ∈ N, let wi = 1

n and wi = i
n . Since f is convex non-negative and f(0) = 0,

it follows that f is increasing. Therefore, Riemann sums entail the following
two integrals

lim
n→∞

n∑

i=1

wixi =
∫ 1

0

xdx =
1
2

and

lim
n→∞

n∑

i=1

wif(xi) =
∫ 1

0

f(x)dx.

To complete the proof of the theorem, it remains to show that

lim
n→∞

⎧
⎨

⎩

n∑

i=1

wif

(∑n
j=1 wjxj + xi

2

)

+
n∑

i=1

wif

⎛

⎝

∣
∣
∣
∑n

j=1 wjxj − xi

∣
∣
∣

2

⎞

⎠

⎫
⎬

⎭

=
∫ 1

0

{

f

(
x + 1

2

2

)

+ f

( |x − 1
2 |

2

)}

dx.(2.6)

Since limn→∞
∑n

i=1 wixi = 1
2 , and f is continuous, then given a positive

number ε, there exists nε ∈ N such that

f

( 1
2 + xi

2

)

− ε < f

(∑n
j=1 wjxj + xi

2

)

< f

( 1
2 + xi

2

)

+ ε,∀n ≥ nε.

Therefore, for n ≥ nε,

n∑

i=1

wif

( 1
2 + xi

2

)

−ε <

n∑

i=1

wif

(∑n
j=1 wjxj+xi

2

)

<

n∑

i=1

wif

( 1
2 + xi

2

)

+ ε.

(2.7)

Clearly,

lim
n→∞

n∑

i=1

wif

( 1
2 + xi

2

)

=
∫ 1

0

f

( 1
2 + x

2

)

dx.

Consequently, (2.7) implies, for arbitrarily small ε > 0,
∫ 1

0

f

( 1
2 + x

2

)

dx − ε ≤ lim sup
n

n∑

i=1

wif

(∑n
j=1 wjxj + xi

2

)

≤
∫ 1

0

f

( 1
2 + x

2

)

dx + ε, (2.8)
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Letting ε → 0+ implies that

lim
n→∞

n∑

i=1

wif

(∑n
j=1 wjxj + xi

2

)

=
∫ 1

0

f

( 1
2 + x

2

)

dx.

A similar argument implies that

lim
n→∞

n∑

i=1

wif

⎛

⎝

∣
∣
∣
∑n

j=1 wjxj − xi

∣
∣
∣

2

⎞

⎠ =
∫ 1

0

f

( |x − 1
2 |

2

)

dx.

The last two identities together with (2.6) imply the desired result. �

An unexpected property of 2-radical convex functions that follows from
Theorem 2.3 is the following integrals bounds .

Corollary 2.4. Let f be 2-radical convex. Then

3
∫ 1

4

0

f(x)dx +
∫ 3

4

1
4

f(x)dx ≤
∫ 1

3
4

f(x)dx.

Proof. From Theorem 2.3, we have
∫ 1

0

{

f

(
x + 1

2

2

)

+ f

( |x − 1
2 |

2

)}

dx ≤
∫ 1

0

f(x)dx.

Noting that
∫ 1

0

f

( |x − 1
2 |

2

)

dx =
∫ 1

2

0

f

( 1
2 − x

2

)

dx +
∫ 1

1
2

f

(
x − 1

2

2

)

dx,

then substituting x+ 1
2

2 = y,
1
2−x

2 = z,
x− 1

2
2 = w imply the desired inequality.

�

What Corollary 2.4 says is that, on average, the values of a 2-radical
convex function on the interval

[
3
4 , 1
]

are much bigger than its values on the
interval

[
0, 3

4

]
.

Numerical examples show these differences!
In fact, the proof of Theorem 2.3 can be carried out over any interval

[a, b] to obtain the following natural generalization of the Hermite–Hadamard
inequality (1.4).

Theorem 2.4. Let f be 2-radical convex and let b, a > 0. Then

f

(
a + b

2

)

≤ 1
b − a

∫ b

a

{

f

(
x + a+b

2

2

)

+ f

(
|x − a+b

2 |
2

)}

dx

≤ 1
b − a

∫ b

a

f(x)dx.(2.9)

Proof. Let f be 2-radical convex and assume b > a. If wi = 1
n and xi =

a + b−a
n i, then

n∑

i=1

wixi =
1

b − a

n∑

i=1

b − a

n
xi → 1

b − a

∫ b

a

xdx =
b + a

2
.
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Since f is continuous, it follows that

f

(
n∑

i=1

wixi

)

→ f

(
a + b

2

)

.

This implies the left hand side of (2.9). The middle and right sides of (2.9)
follow similarly, adopting similar proof to Theorem 2.3. �

Another application of 2-radical convex functions is the following new
form of the continuous Jensen inequality (1.3).

Corollary 2.5. Let f be 2-radical convex and let g : [a, b] → [0,∞) be contin-
uous. Then

f

(
1

b − a

∫ b

a

g(x)dx

)

≤ 1
b − a

∫ b

a

{

f

(
x + 1

b−a

∫ b

a
g(x)dx

2

)

+f

(
|x − 1

b−a

∫ b

a
g(x)dx|

2

)}

dx ≤ 1
b − a

∫ 1

0

f(g(x))dx.

Proof. Replacing xi in Theorem 2.1 by g(xi), then proceeding like Theorems
2.3 and 2.4 imply the desired inequalities. �

3. More General Discussion

As mentioned in the introduction, one of our goals is to show how convex
functions behave differently, due to their convexity behavior.

Our first result in this section is the following necessary condition fol-
lowing from p-radical convexity.

Proposition 3.1. Let f be p-radical convex, for some p ≥ 1. Then, for every
x ≥ 0, ∫ x

0

f(t)dt ≤ x

p + 1
f(x). (3.1)

Equality in (3.1) holds, for all x > 0, if and only if f(x) = cxp, for some
constant c.

Proof. Assume first that f is twice differentiable and let g(x) = f
(
x

1
p

)
.

Since g is convex, f being p-radical convex, it follows that g′′ ≥ 0. This
implies that (1− p)f ′

(
x

1
p

)
+x

1
p f ′′

(
x

1
p

)
≥ 0 for all x > 0. This implies that

xf ′′(x) ≥ (p−1)f ′(x), for all x > 0. Integrating this inequality on [0, x] twice
by parts implies the desired inequality, when f is twice differentiable.

When f is not twice differentiable, let g(x) = f
(
x

1
p

)
and let gn be a

sequence of twice differentiable convex functions such that gn → g uniformly.
Such a sequence can be found using [1, Theorem 1]. Let hn(x) = gn(xp).
Since gn is convex, it follows that hn is convex, because p ≥ 1. Further,
hn is twice differentiable and hn

(
x

1
p

)
= gn(x), which is convex. That is,

hn is a sequence of p-radical convex twice differentiable functions such that
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hn → f uniformly. Since (3.1) is valid for p-radical convex twice differentiable
functions, it is valid for hn, and hence

∫ x

0

hn(t)dt ≤ x

p + 1
hn(x), ∀x > 0.

Letting n → ∞ and noting that hn → f uniformly on the compact interval
[0, x] imply

∫ x

0

f(t)dt ≤ x

p + 1
f(x).

This completes the proof of (3.1). For the equality condition, direct compu-
tations show that f(x) = cxp turns (3.1) into an equality. Also, assuming
equality in (3.1) and differentiating, we obtain f(x) = 1

p+1 (f(x) + xf ′(x)).
Solving this differential equation implies that f(x) = cxp, for some constant
c. This completes the proof. �

Our first observation about proposition 3.1 is that a function cannot be
p-radical convex, for all p ≥ 1, as we show next.

Corollary 3.1. A function f : [0,∞) → [0,∞) is p-radical convex for all p ≥ 1
if and only if f = 0.

Proof. Assume that f is p-radical convex for all p ≥ 1. Then Proposition 3.1
implies

∫ x

0

f(t)dt ≤ x

p + 1
f(x),∀x > 0,∀p ≥ 1.

Letting p → ∞ and noting that f ≥ 0 implies that
∫ x

0

f(t)dt = 0, ∀x > 0,

which gives f(x) = 0, ∀x, upon differentiation. This completes the proof.
�

The inequality (3.1) can be used sometimes to decide if a function is
not p-radical convex. For example, consider the function f(x) = ex − 1. This
function is convex, increasing and f(0) = 0. Calculating

∫ x

0

(et − 1)dt = ex − x − 1 and
x

3
f(x) =

x(ex − 1)
3

.

It is then clear that when x = 1, we have

ex − x − 1 <
x(ex − 1)

3
,

while the inequality is reversed when x = 3. This shows that the function
f(x) = ex − 1 does not satisfy (3.1) for all x, and hence it is not 2-radical
convex. However, it should be noted that f(x) = ex−1−x is 2-radical convex.

Also, we notice that (3.1) can be written as

1
x

∫ x

0

f(t)dt ≤ 1
p + 1

f(x). (3.2)
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The left side of this inequality is the average value of f over the interval [0, x].
The Hermite–Hadamard inequality assures that (when f(0) = 0)

1
x

∫ x

0

f(t)dt ≤ 1
2
f(x).

This shows that p-radical convex functions have tighter bounds than convex
functions.

One more observation about (3.2) is its similarity to the well known
Hardy inequality (1.7). We notice first that a convex function on [0,∞) with
f(0) = 0 is not an Lp function, for any p ≥ 1. However, we have the following
new Hardy-type inequality.

Theorem 3.1. Let f be p-radical convex, and let α, β > 0. Then, for p ≥ 1,
∫ β

α

(
1
x

∫ x

0

f(t)dt

)p

dx ≤
(

1
p + 1

)p ∫ β

α

f(x)pdx. (3.3)

The inequality is sharp, and the function f(x) = xp turns this inequality to
an identity.

Proof. The proof follows immediately from proposition 3.1. �
Further, we have the following better bound for m-radical convex func-

tions, when m ≥ 2 is an even integer.

Theorem 3.2. Let f be m-radical convex for some even integer m ≥ 2. Then

(1 − t)f(a) + tf(b) ≥
m
2∑

k=0

f

(
(m/2

k

) 1
m

(t(1 − t))
k
m (a − b)

2k
m ((1 − t)a+ tb)1−

2k
m

)

= f((1 − t)a+ tb)

+

m
2∑

k=1

f

(
(m/2

k

) 1
m

(t(1 − t))
k
m (a − b)

2k
m ((1 − t)a+ tb)1−

2k
m

)

where a, b > 0 and 0 ≤ t ≤ 1. In particular,

f(a) + f(b)
2

≥
m
2∑

k=0

f

((
m/2
k

) 1
m
(

a + b

2

) 2k
m
(

a − b

2

)1− 2k
m

)

.

Proof. Let f be m-radical convex, and define g(x) = f( m
√

x). Then, by defi-
nition, g is convex and g(0) = 0. Consequently,

(1 − t)f(a) + tf(b) = (1 − t)g(am) + tg(bm)

≥ g((1 − t)am + tbm)

≥ g
(
[(1 − t)a2 + tb2]

m
2
)

= g
(
[t(1 − t)(a − b)2 + ((1 − t)a + tb)2]

m
2
)

= g

⎛

⎝

m
2∑

k=0

(
m/2
k

)

(t(1 − t)(a − b)2)k((1 − t)a + tb)2)
m
2 −k

⎞

⎠

≥
m
2∑

k=0

g

((
m/2
k

)

(t(1 − t)(a − b)2)k((1 − t)a + tb)2)
m
2 −k

)
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=

m
2∑

k=0

f

((
m/2
k

) 1
m

(t(1 − t))
k
m (a − b)

2k
m ((1 − t)a + tb)1− 2k

m

)

,

where we have used the facts that g is convex and super additive to obtain
the first and third inequalities, respectively, while the facts that the function
t 	→ t

m
2 is convex and g is increasing were used to obtain the second inequality

in the above computations. This completes the proof. �
For example, when f is 4-radical convex, applying Theorem 3.2 implies

the following.

Corollary 3.2. Let f be 4-radical convex, and let a, b ≥ 0. Then,

f ((1−t) a+tb)+f
(√

t (1−t) |a − b|
)
+f
(

4
√

2t (1−t)
√

|a − b| ((1 − t) a+tb)
)

≤ (1 − t) f (a) + tf (b) , 0 ≤ t ≤ 1.

In particular,

f

(
a + b

2

)

+ f

( |a − b|
2

)

+ f

(
1
2

3
4

√
|a − b| (a + b)

)

≤ f (a) + f (b)
2

.

We conclude this article by emphasizing that although p-radical convex
functions are convex, treating them as p-radical convex implies better convex
inequalities. Further, the largest p such that f is p-radical convex implies the
best bound in our inequalities. For example, when f is 4-radical convex, it
is 2-radical convex. However, applying Corollary 3.2 implies better bounds
than Corollary 2.1.

Acknowledgements

The authors would like to thank the anonymous referee for his/her valuable
comments, which have considerably improved the presentation and quality
of this paper.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Azagra, D.: Global and fine approximation of convex functions. Proc. Lond.
Math. Soc. 3(107), 799–824 (2013)

[2] Bhatia, R.: Matrix Analysis. Springer, New York (1997)

[3] Mitrinovic, D.S., Lackovic, I.B.: Hermite and convexity. Aequat. Math. 28, 229–
232 (1985)

[4] Mitroi, F.: About the precision in Jensen–Steffensen inequality. Ann. Univ.
Craiova 37(4), 73–84 (2010)

[5] Niculescu, C.P., Persson, L.E.: Convex Functions and their Applications. A Con-
temporary Approach, CMS Books in Mathematics, vol. 23, 2nd edn. Springer,
New York (2018)

[6] Sababheh, M., Furuichi, S., Moradi, H.R.: Composite convex functions. J. Math.
Ineq. (in press)



MJOM Radical Convex Functions Page 15 of 15 137

[7] Sababheh, M., Moradi, H.R., Furuichi, S.: Integrals refining convex inequalities.
Bull. Malays. Math. Sci. Soc. 43(3), 2817–2833 (2020)

[8] Sababheh, M.: Means refinements via convexity. Mediterr. J. Math. 14, 125
(2017). https://doi.org/10.1007/s00009-017-0924-8

[9] Sababheh, M.: Improved Jensen’s inequality. Math. Inequal. Appl. 17(2), 389–
403 (2017)

Mohammad Sababheh
Department of Basic Sciences
Princess Sumaya University For Technology
Al Jubaiha
Amman 11941
Jordan
e-mail: sababheh@psut.edu.jo; sababheh@yahoo.com

Hamid Reza Moradi
Department of Mathematics
Payame Noor University (PNU)
P.O. Box 19395-4697Tehran
Iran
e-mail: hrmoradi@mshdiau.ac.ir

Received: May 9, 2020.

Revised: September 23, 2020.

Accepted: May 19, 2021.

https://doi.org/10.1007/s00009-017-0924-8

	Radical Convex Functions
	Abstract
	1. Introduction
	2. 2-Radical Convex Functions
	3. More General Discussion
	Acknowledgements
	References




