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On Ulam Stability of an Operatorial
Equation
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Abstract. An iterative method generates a sequence associated with an
equation, that, under appropriate conditions, converges to a solution of
that equation. A perturbation of the equation produces also a pertur-
bation of the sequence. In this paper, we study the Ulam stability (the
behavior of the solutions of the perturbed equation with respect to the
solutions of the exact equation) of an operatorial equation of the form
xn+1 = Tnxn + an, where Tn : X → X, n ∈ N, are linear and bounded
operators acting on a Banach space X. As applications we obtain some
stability results for the case of Volterra, Fredholm and Gram–Schmidt
operators. In this way, we improve and complement some results on this
topic.
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1. Introduction

In what follows, by N = {0, 1, 2, . . .} we denote the set of all nonnegative
integers and by X a Banach space over K ∈ {R,C}. Let T : X → X be a
bounded linear operator and consider the equation x = Tx + y, where y ∈ X
is a given element. By using the fixed point method to solve the equation,
we get a sequence of successive approximations (xn)n≥0, satisfying the linear
difference equation xn+1 = Txn+y, n ≥ 0, x0 ∈ X, converging to the solution.
The Ulam stability of this difference equation was studied in [5].

In this paper, we consider a generalization of the previous difference
equation, more precisely the linear difference equation

xn+1 = Tnxn + an, n ∈ N, (1.1)

where (Tn)n≥0 is a sequence of bounded linear operators, Tn : X → X, and
(an)n≥0 a sequence in X. We study its Ulam stability, which concerns the
behavior of the solutions of Eq. (1.1) under perturbations, with respect to
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the solutions of the unperturbed equation. A particular case of this equation
was considered and studied in [12] for the case of matrix operators (Tn)n≥0.
For various results on difference equations we refer the reader to [14,15].

Definition 1.1. Equation (1.1) is called Ulam stable if there exists a constant
L ≥ 0 such that for every ε > 0 and every sequence (xn)n≥0 in X satisfying

‖xn+1 − Tnxn − an‖ ≤ ε, n ∈ N, (1.2)

there exists a sequence (yn)n≥0 in X such that

yn+1 = Tnyn + an, n ∈ N (1.3)

and

‖xn − yn‖ ≤ Lε, n ∈ N. (1.4)

The sequence (xn)n≥0 satisfying (1.2) for some ε > 0 is called approxi-
mate solution of Eq. (1.1).

So we can reformulate Definition 1.1 as follows: Eq. (1.1) is Ulam stable
if for every approximate solution of it there exists an exact solution close to
it. The number L from (1.4) is called an Ulam constant of Eq. (1.1). Further,
we denote by LR the infimum of all Ulam constants of (1.1). If LR is an Ulam
constant for (1.1), then we call it the best Ulam constant or the Ulam constant
of Eq. (1.1). Generally, the infimum of all Ulam constants of an equation is
not an Ulam constant of that equation (see [8,27]).

The origin of stability for functional equations is a question formulated
by S. M. Ulam during a talk given to Madison University, Wisconsin, and
concerns the approximate homomorphism of a metric group [29]. A first par-
tial answer to Ulam’s question was given a year later by D. H. Hyers for the
Cauchy functional equation in Banach spaces [17]. The topic was intensively
studied by many authors in the last 50 years; for results, various general-
izations and extensions on Ulam stability we refer the reader to [2,8,18,22].
We recall also the results obtained in [7,20,21] on Ulam stability for some
second-order linear functional equations in connection with Fibonacci and
Lucas sequences.

Some results on Ulam stability for the linear difference equations in
Banach spaces were obtained by Brzdek et al. [9–11,24]. Buse et al. [6,13]
proved that a discrete system Xn+1 = AXn, n ∈ N, where A is a m×m com-
plex matrix, is Ulam stable if and only if A possesses a discrete dichotomy.
Recently, Baias and Popa obtained results on Ulam stability of linear differ-
ence equations of order one and two and determined the best Ulam constant
in [3,4]. Popa and Rasa obtained an explicit representation of the best Ulam
constant of some classical operators in approximation theory in [25,26].

2. Main Results

In this section, we present some results on Ulam stability for Eq. (1.1). First,
we give a result which will be useful in the sequel.
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Lemma 2.1. Suppose that the sequence (xn)n≥0 satisfies Eq. (1.1). Then

xn = Tn−1Tn−2 . . . T0x0 +
n−1∑

k=1

Tn−1 . . . Tkak−1 + an−1, n ≥ 2.

If in addition Tn, n ≥ 0, are invertible operators, then

xn = Tn−1 . . . T0

(
x0 +

n∑

k=1

T−1
0 T−1

1 . . . T−1
k−1ak−1

)
, n ≥ 1.

Proof. Induction. �

The first result on Ulam stability for Eq. (1.1) is contained in the fol-
lowing theorem.

Theorem 2.2. Suppose that (Tn)n≥0 is a sequence of invertible operators such
that

lim sup ‖T−1
n ‖ < 1. (2.1)

Then for every ε > 0 and every sequence (xn)n≥0 in X satisfying

‖xn+1 − Tnxn − an‖ ≤ ε, n ∈ N, (2.2)

there exists a unique sequence (yn)n≥0 in X such that

yn+1 = Tnyn + an, n ∈ N (2.3)

and

‖xn − yn‖ ≤ Lε, n ∈ N, (2.4)

where

L = sup
n∈N

∞∑

k=0

‖T−1
n . . . T−1

n+k‖ < ∞.

Proof. Existence. Suppose that (xn)n≥0 satisfies (2.2) and let

bn := xn+1 − Tnxn − an, n ∈ N.

Then ‖bn‖ ≤ ε, n ≥ 0, and, according to Lemma 2.1

xn = Tn−1 . . . T0

(
x0 +

n∑

k=1

T−1
0 . . . T−1

k−1(ak−1 + bk−1)

)
, n ≥ 1.

Remark further that the series
∞∑

n=1

‖T−1
0 ‖ · · · ‖T−1

n−1‖

is convergent. Indeed, denoting cn = ‖T−1
0 ‖ · · · ‖T−1

n−1‖, n ≥ 1, we get

lim sup
cn+1

cn
= lim sup ‖T−1

n ‖ < 1.

It follows that the series
∞∑

n=1

T−1
0 . . . T−1

n−1bn−1
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is convergent, too. This is a simple consequence of the first comparison test,
since

‖T−1
0 . . . T−1

n−1bn−1‖ ≤ ‖T−1
0 . . . T−1

n−1‖ · ‖bn−1‖ ≤ ‖T−1
0 . . . T−1

n−1‖ε

≤ ‖T−1
0 ‖ · · · ‖T−1

n−1‖ε, n ≥ 1.

Put now
∞∑

n=1

T−1
0 . . . T−1

n−1bn−1 = s, s ∈ X,

and define (yn)n≥0 by

yn+1 = Tnyn + an, n ≥ 1, y0 = x0 + s.

Then

yn = Tn−1 . . . T0

(
y0 +

n∑

k=1

T−1
0 . . . T−1

k−1ak−1

)
, n ≥ 1,

and

xn − yn = Tn−1 . . . T0

(
x0 − y0 +

n∑

k=1

T−1
0 . . . T−1

k−1bk−1

)

= Tn−1 . . . T0

(
−

∞∑

n=1

T−1
0 . . . T−1

n−1bn−1 +
n∑

k=1

T−1
0 . . . T−1

k−1bk−1

)

= −Tn−1 . . . T0

( ∞∑

k=0

T−1
0 . . . T−1

n+kbn+k

)

= −
∞∑

k=0

T−1
n . . . T−1

n+kbn+k, n ≥ 1.

Hence

‖xn − yn‖ ≤
∞∑

k=0

‖T−1
n . . . T−1

n+k‖ · ‖bn+k‖

≤ ε

∞∑

k=0

‖T−1
n . . . T−1

n+k‖ ≤ Lε, n ∈ N. (2.5)

We prove now that L < +∞. Indeed, since lim sup ‖T−1
n ‖ < 1, it follows

that there exists a constant q ∈ R and n0 ∈ N such that

‖T−1
n ‖ ≤ q < 1, n ≥ n0,

which implies that
∞∑

k=0

‖T−1
n . . . T−1

n+k‖ ≤
∞∑

k=0

‖T−1
n ‖ · · · ‖T−1

n+k‖

≤
∞∑

k=0

2k+1 =
q

1 − q
, n ≥ n0.
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For n = n0 − 1, n0 ≥ 1, we have
∞∑

k=0

‖T−1
n . . . T−1

n+k‖ =
∞∑

k=0

‖T−1
n0−1 . . . T−1

n0+k−1‖

= ‖T−1
n0−1‖ + ‖T−1

n0−1T
−1
n0

‖ + · · · + ‖
∞∏

k=n0−1

T−1
k ‖

≤ ‖T−1
n0−1‖

(
1 +

∞∑

k=0

‖T−1
n0

. . . T−1
n0+k‖

)
< ∞

since the series
∞∑

k=0

‖T−1
n0

. . . T−1
n0+k‖

is convergent. Analogously, the above series will be convergent for all n ∈
N, n < n0 and the proof is done.

Uniqueness. Suppose that for a sequence (xn)n≥0 satisfying the relation
(2.2) there exist two sequences (yn)n≥0 and (zn)n≥0 satisfying the relations
(2.3) and (2.4). Then, in view of (2.4)

‖xn − yn‖ ≤ Lε, ‖xn − zn‖ ≤ Lε, n ≥ 0,

hence

‖yn − zn‖ ≤ ‖yn − xn‖ + ‖xn − zn‖ ≤ 2Lε, n ≥ 0.

On the other hand, taking account of Lemma 2.1, one gets

yn − zn = Tn−1 . . . T0(y0 − z0), n ≥ 1,

or equivalently

y0 − z0 = T−1
0 . . . T−1

n−1(yn − zn).

Thus

‖y0 − z0‖ ≤ ‖T−1
0 . . . T−1

n−1‖ · ‖yn − zn‖
≤ 2Lε · ‖T−1

0 . . . T−1
n−1‖, n ≥ 1. (2.6)

Now, since the series
∑∞

n=1 ‖T−1
0 ‖ · · · ‖T−1

n−1‖ is convergent, we get that the
series

∞∑

n=1

‖T−1
0 . . . T−1

n−1‖

is convergent too, and consequently

lim
n→∞ ‖T−1

0 . . . T−1
n−1‖ = 0. (2.7)

Finally, from (2.6) and (2.7), we get y0 = z0, so yn = zn, for all n ∈ N. �

Theorem 2.3. Suppose that (Tn)n≥0 is a sequence of nonzero operators with

lim inf
1

‖Tn‖ > 1. (2.8)
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Then there exists a constant L ≥ 0 such that for every ε > 0 and every
sequence (xm)m≥0 in X satisfying

‖xn+1 − Tnxn − an‖ ≤ ε, n ∈ N, (2.9)

there exists a sequence (yn)n≥0 in X with the properties

yn+1 = Tnyn + an, n ∈ N, (2.10)
‖xn − yn‖ ≤ Lε, n ≥ 0. (2.11)

Proof. Suppose that (xn)n≥0 satisfies (2.9) and let bn := xn+1 − Tnxn −
an, n ∈ N. Then ‖bn‖ ≤ ε, n ∈ N, and

xn = Tn−1 . . . T0x0 +
n−1∑

k=1

Tn−1 . . . Tk(ak−1 + bk−1) + an−1 + bn−1, n ≥ 2,

according to Lemma 2.1.
Consider now (yn)n≥0 given by (2.10) with y0 = x0. Then

yn = Tn−1 . . . T0y0 +
n−1∑

k=1

Tn−1 . . . Tkak−1 + an−1, n ≥ 2.

Hence

‖xn − yn‖ = ‖
n−1∑

k=1

Tn−1 . . . Tkbk−1 + bn−1‖

≤ ε + ε

n−1∑

k=1

‖Tn−1 . . . Tk‖ ≤ ε

(
1 +

n−1∑

k=1

‖Tn−1‖ · · · ‖Tk‖
)

.

(2.12)

Taking account of (2.8), we find q ∈ R and n0 ∈ N such that
1

‖Tn‖ ≥ q > 1, n ≥ n0.

Thus for every n ≥ n0 + 1 we have

1 +
n−1∑

k=1

‖Tn−1‖ · · · ‖Tk‖ = 1 +
n0−1∑

k=1

‖Tn−1‖ · · · ‖Tk‖ +
n−1∑

k=n0

‖Tn−1‖ · · · ‖Tk‖

≤ 1 +
n0−1∑

k=1

‖Tn−1‖ · · · ‖Tk‖ +
n−1∑

k=n0

1
qn+k

< 1 +
1

q − 1
+

n0−1∑

k=1

‖Tn−1‖ · · · ‖Tk‖ < ∞.

Taking

L1 := 1 +
1

q − 1
+

n0−1∑

k=1

‖Tn−1‖ · · · ‖Tk‖

we get

‖xn − yn‖ ≤ L1ε, for all n ∈ N
∗, n ≥ n0.
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Finally, for

L := max
n≤n0

{
L1, 1 +

n−1∑

k=1

‖Tn−1‖ · · · ‖Tk‖
}

we obtain

‖xn − yn‖ ≤ Lε, n ≥ n0.

�

Remark 2.4. The condition (2.8) in Theorem 2.3 can be replaced by the
following: there exists q ∈ (0, 1) such that

‖Tn‖ ≤ q, for all n ∈ N.

Thus, following the lines of the above proof, the Ulam constant can be chosen
L = 1

1−q .

Finally, we present a nonstability result for Eq. (1.1). Taking into
account that the stability results presented above hold for ‖Tn‖ < 1 or
‖T−1

n ‖ < 1, n ≥ n0, we will consider for nonstability results the case ‖Tn‖ = 1,
n ∈ N.

Theorem 2.5. Suppose that ‖Tn‖ = 1, for all n ∈ N and there exists u0 ∈
B(0X , 1) such that

lim
n→∞ n‖Tn−1 . . . T0u0‖ = +∞. (2.13)

Then for every ε > 0 there exists a sequence (xn)n≥0 in X satisfying

‖xn+1 − Tnxn − an‖ ≤ ε, n ∈ N,

such that for every sequence (yn)n≥0 given by the recurrence

yn+1 = Tnyn + an, n ∈ N, y0 ∈ X,

we have

sup
n∈N

‖xn − yn‖ = +∞,

i.e., Eq. (1.1) is not Ulam stable.

Proof. Let ε > 0 and consider the sequence (xn)n≥0 defined by the relation

xn+1 = Tnxn + an + εTn . . . T0u0, n ∈ N.

Then, according to Lemma 2.1, we get

xn = Tn−1 . . . T0x0 +
n−1∑

k=1

Tn−1 . . . Tk(ak−1 + εTk−1 . . . T0u0)

+an−1 + εTn−1 . . . T0u0, n ≥ 2.

On the other hand,

‖xn+1 − Tnxn − an‖ = ε‖Tn . . . T0u0‖ ≤ ε, n ∈ N,
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hence (xn)n≥0 is an approximate solution of Eq. (1.1). Let (yn)n≥0 be an
arbitrary sequence in X, yn+1 = Tnyn + an, n ∈ N, y0 ∈ X. Then

yn = Tn−1 . . . T0y0 +
n−1∑

k=1

Tn−1 . . . Tkak−1 + an−1, n ≥ 1,

therefore

xn − yn = Tn−1 . . . T0(x0 − y0) + ε

n∑

k=1

Tn−1 . . . T0u0,

= Tn−1 . . . T0(x0 − y0) + nεTn−1 . . . T0u0, n ≥ 1.

It follows

‖xn − yn‖ = ‖Tn−1 . . . T0(x0 − y0) + εnTn−1 . . . T0u0‖
≥ |‖Tn−1 . . . T0(x0 − y0)‖ − εn‖Tn−1 . . . T0u0‖| , n ≥ 1.

The sequence (Tn−1 . . . T0(x0 − y0))n≥1 is bounded, since

‖Tn−1 . . . T0(x0 − y0)‖ ≤ ‖Tn−1‖ · · · ‖T0‖‖x0 − y0‖ = ‖x0 − y0‖, n ≥ 1,

therefore limm→∞ n‖xm − ym‖ = +∞. �

Similar results can be obtained when we replace (xn)n≥0, (Tn)n≥0 and
(an)n≥0 by Xn := (x1(n), x2(n), . . . , xp(n))T ∈ Xp, An ∈ K

p×p and Bn ∈
Xp, respectively. In this way we get Ulam stability results for systems of
linear difference equations (see [30]). Note that on Xp, the following norm
‖Y ‖∞ := max1≤i≤p ‖yi‖ (Y = (y1, y2, . . . , yp)T ) is considered, alongside the
matrix norm ‖A‖∞ = max1≤i≤p

∑p
j=1 |aij | of A ∈ K

p×p (which is simply the
maximum absolute row sum of the matrix), induced by the vector norm ‖·‖∞
on K

p. Also, one can easily verify that ‖AY ‖∞ ≤ ‖A‖∞‖Y ‖∞ and ‖AB‖∞ ≤
‖A‖∞‖B‖∞, for any A,B ∈ K

p×p and Y ∈ Xp. Finally, it is worth mentioning
here that one can replace the above norms with some submultiplicative ones
in order to obtain similar stability results for the equation

Xn+1 = AnXn + Bn, n ≥ 0. (2.14)

Corollary 2.6. Suppose that (An)n≥0 is a sequence of invertible matrices in
K

p×p with

lim sup ‖A−1
n ‖∞ < 1. (2.15)

Then for every ε > 0 and every sequence (Xn)n≥0 in Xp with

‖Xn+1 − AnXn − Bn‖∞ ≤ ε, n ∈ N, (2.16)

there exists a unique sequence (Yn)n≥0 in Xp such that

Yn+1 = AnYn + Bn, n ∈ N (2.17)

and

‖Xn − Yn‖∞ ≤ sup
n∈N

∞∑

k=0

‖A−1
n ‖∞ · · · ‖A−1

n+k‖∞ε, n ∈ N. (2.18)
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Corollary 2.7. Suppose that (An)n≥0 is a sequence of nonzero matrices in
K

p×p with

lim inf
1

‖An‖∞
> 1. (2.19)

Then, there exists a constant L ≥ 0 such that for every ε > 0 and every
sequence (Xn)n ≥ 0 in Xp satisfying

‖Xn+1 − AnXn − Bn‖∞ ≤ ε, n ∈ N,

there exists a sequence (Yn)n≥0 in Xp with the property

Yn+1 = AnYn + Bn, n ∈ N (2.20)

such that

‖Xn − Yn‖∞ ≤ Lε, n ≥ 1. (2.21)

The next nonstability result for Eq. (2.14) is a simple consequence of
Theorem 2.5.

Corollary 2.8. Suppose that (An)n≥0 is a sequence of matrices in K
p×p such

that ‖An‖∞ = 1, for all n ∈ N and there exists U0 ∈ Xp, ‖U0‖∞ = 1 such
that

lim
n→∞ n‖An−1 . . . A0U0‖∞ = +∞. (2.22)

Then for every ε > 0 there exists a sequence (Xn)n ≥ 0 in Xp satisfying

‖Xn+1 − AnXn − Bn‖∞ ≤ ε, n ∈ N,

such that for every sequence (Yn)n≥0 given by the recurrence

Yn+1 = AnYn + Bn, n ∈ N, y0 ∈ Xp,

we have

sup
n∈N

‖Xn − Yn‖∞ = +∞,

i.e., Eq. (2.14) is not Ulam stable.

3. The Ulam Stability of a p-Order Linear Difference Equation
with Variable Coefficients

In the sequel, we will investigate the Ulam stability of the following p-order
linear recurrence with variable coefficients

xn+p = ap−1(n)xn+p−1 + · · · + a0(n)xn + bn, (3.1)

where (ak(n))n≥0, 0 ≤ k ≤ p−1 are sequences in K and (bn)n≥0 is a sequence
in X. If the recurrence has constant coefficients, we have a characterization
of its Ulam stability. Namely, the equation is Ulam stable if and only if the
characteristic equation has no roots on the unit circle (see [8]). Moreover,
for p = 1, 2, 3, the best Ulam constant was obtained. But for equations with
variable coefficients, there are few results on Ulam stability (see e.g., [23,30]).
Let us remark that Eq. (3.1) can be rewritten as

Xn+1 = AnXn + Bn, n ∈ N,
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where, for some k ∈ (0,∞),

An =

⎛

⎜⎜⎜⎜⎝

ap−1(n) kap−2(n) . . . kp−2a1(n) kp−1a0(n)
1
k 0 · · · 0 0
0 1

k · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1

k 0

⎞

⎟⎟⎟⎟⎠
∈ K

p×p,

Xn = (kp−1xn+p−1, . . . , kxn+1, xn)T ∈ Xp (3.2)

and

Bn = (kp−1bn, 0, . . . , 0)T ∈ Xp.

Remark that the usual matriceal form for Eq. (3.1) is obtained for k = 1
(see [30]). The form considered in this paper for arbitrary k > 0 is more
convenient to obtain good conditions under which the stability of Eq. (3.1)
holds.

Suppose that a0(n) �= 0, n ∈ N, and let

en =
1

kp−1|a0(n)| +
|ap−1(n)|

kp−2|a0(n)| + · · · +
|a1(n)|
|a0(n)|

and

fn = |ap−1(n)| + · · · + kp−1|a0(n)|.
Corollary 3.1. Suppose that there exists k ∈ (0, 1) such that

lim sup en < 1.

Then for every ε > 0 and every sequence (xn)n≥0 in X satisfying

‖xn+p − (ap−1(n)xn+p−1 + · · · + a0(n)xn + bn)‖ ≤ ε, n ∈ N,

there exists a unique sequence (yn)n≥0 in X such that

yn+p = ap−1(n)yn+p−1 + · · · + a0(n)yn + bn, n ∈ N

and

‖xn − yn‖ ≤ Lε, n ≥ 0,

where

L = sup
n∈N

∞∑

j=0

enen+1 . . . en+j .

Proof. Consider the induced submultiplicative matrix norm ‖ · ‖∞, An, Bn

and Xn as in relation (3.2) and observe that, since

A−1
n =

⎛

⎜⎜⎜⎜⎝

0 k 0 · · · 0
0 0 k · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · k
1

kp−1a0(n) − ap−1(n)
kp−2a0(n) − ap−2(n)

kp−3a0(n) · · · −a1(n)
a0(n)

⎞

⎟⎟⎟⎟⎠
,
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the property lim sup ‖A−1
n ‖∞ < 1 is equivalent to lim sup en < 1. Further,

take an arbitrary ε > 0 and consider ε1 := kp−1ε. Then
‖Xn+1 − AnXn − Bn‖∞ = ‖(kp−1(xn+p − ap−1(n)xn+p−1 − · · · − bn), . . . , 0)

T ‖∞

= kp−1‖xn+p − (ap−1(n)xn+p−1 + · · · + a0(n)xn + bn)‖
≤ ε1,

i.e.,

‖xn+p − (ap−1(n)xn+p−1 + · · · + a0(n)xn + bn)‖ ≤ ε.

Then, in view of Corollary 2.6, there exists a unique sequence Yn ∈ Xp,
Yn+1 = AnYn + Bn, such that

‖Xn − Yn‖∞ ≤ Lε1 ≤ Lε

with L = supn∈N

∑∞
j=0 enen+1 . . . en+j . Finally, if we take yn := p1(Yn),

where p1 : Xp → X is given by p1(z1, z2, . . . , zp) = zp, one can easily check
that yn is a solution of (3.1) and that ‖xn − yn‖ ≤ Lε, n ∈ N. �

Remark 3.2. In particular, if en = k ∈ (0, 1) for every n ∈ N, then L = 1
1−k

in Corollary 3.1.

Example 3.3. Consider the recurrence

xn+2 =
3n

2n + 1
xn+1 +

7n + 9
n + 1

xn + bn. (3.3)

Then for every ε > 0 and every sequence (xn)n≥0 in X satisfying

‖xn+2 − 3n

2n + 1
xn+1 − 7n + 9

n + 1
xn − bn‖ ≤ ε, n ∈ N

there exists a solution (yn)n≥0 of (3.3) such that

‖xn − yn‖ ≤ 2ε, n ∈ N.

Proof. If we choose k = 1
2 , then

en = max
{

1
2
,
2(n + 1)
7n + 9

+
3n(n + 1)

(2n + 1)(7n + 9)

}
,

which implies that en = 1
2 , for every n ∈ N. Further, taking into account

Remark 3.2, we get the desired conclusion, i.e.

‖xn − yn‖ ≤ 2ε, n ∈ N.

�

Corollary 3.4. Suppose that there exists k > 1 such that

lim inf
1
fn

> 1.

Then there exists a positive constant L such that for every ε > 0 and every
sequence (xn)n≥0 in X satisfying

‖xn+p − (ap−1(n)xn+p−1 + · · · + a0(n)xn + bn)‖ ≤ ε, n ∈ N

there exists a sequence (yn)n≥0 in X satisfying (3.1) such that

‖xn − yn‖ ≤ Lε.
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Proof. Consider the induced submultiplicative matrix norm ‖ · ‖∞ and An,
Bn and Xn given by (3.2) with k replaced by k1 := 1

k . Observe also that
the property lim inf 1

fn
> 1 is equivalent to the condition lim inf 1

‖An‖∞
> 1.

Then applying Corollary 2.7 we get the desired conclusion. �

4. Other Applications

Consider first the Volterra operator, which is a bounded linear operator on the
space L2[0, 1] of complex-valued square-integrable functions on the interval
[0,1]. The Volterra operator V is defined for a function f ∈ L2[0, 1] by

V (f)(t) =
∫ t

0

f(s) ds, t ∈ [0, 1].

It is worth mentioning here that V is a quasinilpotent operator (that
is, the spectral radius ρ(V ), is zero), but it is not nilpotent and the operator
norm of V is exactly ‖V ‖ = 2

π (see [16]).
Taking into account Remark 2.4 we get the following stability result for

the linear difference equation

xn+1 = V xn + an, x0 ∈ L2[0, 1], n ∈ N,

where (an)n≥0 is a sequence in L2[0, 1].

Corollary 4.1. For every ε > 0 and every sequence (xn)n ≥ 0 in L2[0, 1]
satisfying

‖xn+1 − V xn − an‖ ≤ ε, n ∈ N,

there exists a sequence (yn)n≥0 in L2[0, 1] such that

yn+1 = V yn + an, y0 ∈ L2[0, 1], n ∈ N

and

‖xn − yn‖ ≤ πε

π − 2
, n ≥ 0. (4.1)

Further, given a domain Ω in Rm, we consider a sequence of Hilbert–
Schmidt kernels, that is, a sequence of functions (kn)n≥0, kn : Ω × Ω → C

with ∫

Ω

∫

Ω

|kn(x, y)|2 dx dy < ∞, n ≥ 0,

which means that the L2(Ω×Ω;C) norm of each kn is finite. Further, we asso-
ciated the following sequence of Hilbert–Schmidt integral operators (Kn)n≥0,
Kn : L2(Ω;C) → L2(Ω;C) defined by

(Knu)(x) =
∫

Ω

kn(x, y)u(y) dy, u ∈ L2(Ω;C).

Then Kn is a Hilbert–Schmidt operator for every n ∈ N and its Hilbert–
Schmidt norm is

‖Kn‖HS = ‖kn‖L2 .
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Hilbert–Schmidt integral operators are continuous (and hence bounded) and
compact (see [28]).

Taking into account Theorem 2.3, we get the following stability result
for the linear difference equation

xn+1 = Knxn + an, x0 ∈ L2(Ω;C), n ∈ N,

where (an)n≥0 is a sequence in L2(Ω;C).

Corollary 4.2. Suppose that (Kn)n≥0 is a sequence of nonzero Hilbert–
Schmidt integral operators and

lim inf
1

‖kn‖L2
> 1.

Then, there exists a constant L ≥ 0, such that for every ε > 0 and every
sequence (xn)n ≥ 0 in L2(Ω;C) satisfying

‖xn+1 − Knxn − an‖ ≤ ε, n ∈ N,

there exists a sequence (yn)n≥0 in L2(Ω;C) with the property

yn+1 = Knyn + an, y0 ∈ L2(Ω;C), n ∈ N

and

‖xn − yn‖ ≤ Lε, n ≥ 0. (4.2)

Remark 4.3. An example of nonstable equation is given below. Take now
the Bernstein operator (see [1]) which assigns to each continuous, real-valued
function f ∈ C[0, 1] (where C[0, 1] is endowed with the supremum norm) the
polynomial function Bnf defined by

Bnf(t) =
n∑

k=0

(
n

k

)
tk(1 − t)n−kf

(
k

n

)
, n ∈ N.

It is well known that Bn preserves affine functions.
Further, we consider the sequence (xn)n≥0 defined by the recurrence

xn+1 = Bnxn + an, n ∈ N, (4.3)

and we show that Eq. (4.3) is not Ulam stable. Indeed, choosing u0(t) = 1, t ∈
[0, 1], one can easily observe that ‖u0‖ = 1 and ‖Bn−1 . . . B0u0‖ = 1, ∀n ≥ 1.
Using now Theorem 2.5, one gets the desired conclusion.

Another example concerns the Ulam stability of Eq. (1.1) for operators
Tn, n ≥ 0, acting on a finite dimensional Banach space X.

Suppose in what follows that a vector norm ‖ · ‖ on X = K
p is given.

Then any square matrix A of order p with entries in K induces a linear
operator T : Kp → K

p, Tx = Ax, with respect to the standard basis, and
one defines the corresponding induced norm on the space K

p×p of all p × p
matrices as follows:

‖A‖ = sup{‖Ax‖ : x ∈ K
p with ‖x‖ = 1}

=
{‖Ax‖

‖x‖ : x ∈ K
p with x �= 0

}
.
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If we consider K
p to be endowed with the Euclidean norm (i.e. ‖x‖ =√|x1|2 + · · · + |xn|2, where x = (x1, . . . , xn) ∈ K

p), then the induced matrix
norm is the spectral norm. Let us recall also here that the spectral norm of a
matrix A is the largest singular value of A, i.e., the square root of the largest
eigenvalue of the matrix A∗A, where A∗ denotes the conjugate transpose of
A.

Take now a sequence (An)n≥0 of p × p matrices, Tn : Kp → K
p, Tnx =

Anx and denote by λ
(n)
1 , . . . , λ

(n)
p and Λ(n)

1 , . . . ,Λ(n)
p the eigenvalues of An

and A∗
nAn, respectively. If we suppose that

|λ(n)
1 | ≤ |λ(n)

2 | ≤ · · · ≤ |λ(n)
p | and Λ(n)

1 ≤ Λ(n)
2 ≤ · · · ≤ Λ(n)

p ,

then (see [19]) ‖Tn‖ =
√

Λ(n)
p and, if An are additionally invertible matrices,

then ‖T−1
n ‖ = 1√

Λ
(n)
1

. Moreover, if An are normal and invertible matrices,

then ‖Tm‖ = |λ(m)
p | and ‖T−1

m ‖ = 1

|λ(m)
1 | .

The following results on Ulam stability follow easily, if we take also into
account Theorems 2.2 and 2.3.

Theorem 4.4. Let (an)n≥0 be a sequence in X and suppose that An are invert-
ible matrices and that there exist q > 1 and n0 ∈ N such that

Λ(n)
1 ≥ q > 1, n ≥ n0. (4.4)

Then for every ε > 0 and every sequence (xn)n≥0 in K
p with

‖xn+1 − Anxn − an‖ ≤ ε, n ∈ N,

there exists a unique sequence (yn)n≥0 in K
p such that

yn+1 = Anyn + an, n ∈ N

and

‖xn − yn‖ ≤ sup
n∈N

∞∑

k=0

1√
Λ(n)

1 . . . Λ(n+k)
1

ε, n ∈ N.

Theorem 4.5. Suppose that An are nonzero matrices and that there exist q <
1 and n0 ∈ N such that

Λ(n)
p ≤ q < 1, n ≥ n0. (4.5)

Then, there exists L ≥ 0 such that for every ε > 0 and every sequence
(xn)n ≥ 0 in K

p satisfying

‖xn+1 − Anxn − an‖ ≤ ε, n ∈ N,

there exists a sequence (yn)n≥0 in K
p with the property

yn+1 = Anyn + an, n ∈ N

and

‖xn − yn‖ ≤ Lε, n ≥ 1.
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Remark 4.6. In case An are normal and invertible matrices, the above results

hold with |λ(n)
1 | and |λ(n)

p | instead of
√

Λ(n)
1 and

√
Λ(n)

p , respectively.

Remark 4.7. If we consider now K
p to be endowed with the Taxicab norm

(i.e. ‖x‖1 =
∑p

i=1 |xi|, where x = (x1, . . . , xp) ∈ K
p) or with the maxi-

mum norm (i.e. ‖x‖∞ = max
1≤i≤p

|xi|) then the induced matrix norms are

‖A‖1 = max1≤j≤p

∑p
i=1 |aij | and ‖A‖∞ = max1≤i≤p

∑p
j=1 |aij |, respectively.

Further, take An = (a(n)
ij ) ∈ K

p×p, for all n ∈ N. Then the condition (4.5)
above can be replaced by

max
1≤j≤p

p∑

i=1

|a(n)
ij | ≤ q < 1, for all n ≥ n0,

or by

max
1≤i≤p

p∑

j=1

|a(n)
ij | ≤ q < 1, for all n ≥ n0,

in order to obtain the desired conclusion, since the following inequalities
1√
p
‖A‖1 ≤ ‖A‖2 ≤ √

p‖A‖1

and
1√
p
‖A‖∞ ≤ ‖A‖2 ≤ √

p‖A‖∞

hold always true for any square matrix A of order p. It is worth mentioning
also that neither the following implications

lim inf
1

‖A‖1
> 1 =⇒ lim inf

1
‖A‖2

> 1

and

lim inf
1

‖A‖∞
> 1 =⇒ lim inf

1
‖A‖2

> 1

nor the opposite ones seam to be valid.

The results obtained in this section generalize the results obtained in
[5,12].

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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