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Blow-Up Phenomena for a Class of
Parabolic or Pseudo-parabolic Equation
with Nonlocal Source

Gongwei Liu and Hongwei Zhang

Abstract. In this paper, we consider a class of parabolic or pseudo-
parabolic equation with nonlocal source term:

ut − ν�ut − div(ρ(|∇u|)2∇u) = up(x, t)

∫
Ω

k(x, y)up+1(y, t)dy,

where ν ≥ 0 and p > 0. Using some differential inequality techniques,
we prove that blow-up cannot occur provided that q > p, also, we obtain
some finite-time blow-up results and the lifespan of the blow-up solution
under some different suitable assumptions on the initial energy. In par-
ticular, we prove finite-time blow-up of the solution for the initial data
at arbitrary energy level. Furthermore, the lower bound for the blow-up
time is determined if blow-up does occur.
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1. Introduction

In this paper, we deal with the following the initial boundary value problem of
a class of parabolic or pseudo-parabolic equation with nonlocal source term:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut − ν�ut − div(ρ(|∇u|)2∇u)
= up(x, t)

∫
Ω

k(x, y)up+1(y, t)dy, (x, t) ∈ Ω × (0, T )
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, t) = u0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω ⊂ R
n(n ≥ 3) is a bounded domain with smooth boundary ∂Ω, ν ≥ 0,

p > 0, q > 0 and T ∈ (0,∞] is the maximal existence time of the solution,
k(x, y) is an integrable, real-valued function satisfying:

k(x, y) = k(y, x),
∫

Ω

∫
Ω

k2(x, y)dxdy < +∞,
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∫
Ω

∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy > 0.

This type of equations describes a variety of important physical and biological
phenomena, such as the analysis of heat conduction in materials with memory,
the aggregation of population [12], and so on (see [1] and the references
therein). In population dynamics theory, the nonlocal term indicates that
the individuals are competing not only with others at their own point in
space but also with individual at other points in the domain [11,12]. If ν = 0,
ρ = 1, Eq. (1.1) reduces to the following semilinear parabolic equation:

ut − �u = f(u). (1.2)

The global existence, asymptotic behavior, and finite-time blow-up for the
solutions to (1.2)(especially f(u) = |u|p−1u) have been studied by many
researchers, see [2,3,8]and the references therein. Recently, Eq. (1.2) with
the nonlocal source f(u) =

(
1

|x|n−2 ∗ |u|p)|u|p−2u was considered in [5,7].
If ν > 0 (for the sake of simplicity, ν = 1 in this paper), ρ = 1, Eq. (1.1)

reduces to the following semilinear pseudo-parabolic equation:

ut − �ut − �u = f(u). (1.3)

There are many works about Eq. (1.3) with f(u) being polynomial, such
as the existence and uniqueness in [16], blow-up in [10,17–19], asymptotic
behavior in [18], and so on.

Recently, Yang and Liang [20] considered a special case of (1.1), that
is:

ut − �ut − �u = up(x, t)
∫

Ω

k(x, y)up+1(y, t)dy. (1.4)

They proved the finite-time blow-up result provided the initial energy is neg-
ative, as well as a nonblow-up criterion. We also mention the paper [1], where
Di and Shang considered a four order pseudo-parabolic equation (i.e., an ex-
tra term �2u in RHS of (1.4)) and obtained a blow-up result of the solutions
under suitable initial energy.

For the gentle case ρ:

ut − ν�ut − div(ρ(|∇u|)2∇u) = f(u), (1.5)

where f(u) ≈ up, the initial boundary problem of (1.5) was investigated in
[14,15]. The blow-up results and the lifespan provided that the initial energy
is negative as well as the nonblow-up criterion were established by Payne et al.
[14] (parabolic case ν = 0), Liu et al [6], and Peng et al. [15](pseudo-parabolic
case ν = 1).

Recently, Long and Chen [9] considered the following pseudo-parabolic
equation with nonlocal source:

ut − �ut − div(|∇u|2q∇u) = up(x, t)
∫

Ω

k(x, y)up+1(y, t)dy. (1.6)

Under q → 0 and |∇u| �= 0, the limit equation of (1.6) is (1.4). When (i)
q < p and J(u0) ≤ 0 or (ii) q = p and J(u0) < 0, they proved that the
solutions blow up in finite time and the upper and the lower bound.
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To our knowledge, no results have been obtained about finite-time blow-
up and the lifespan for the solution of the gentle problem (1.1), especially,
when the solution with high energy level. Moreover, there is little information
about (1.1) under parabolic case (ν = 0) with nonlocal source term. The aim
of this paper is to present a comprehensive study for the finite blow-up and
nonblow-up criterion of problem (1.1).

2. Preliminaries

Throughout this paper, the Banach spaces Lp = Lp(Ω) and W 1,p
0 = W 1,p

0 (Ω)

are endowed with the norms by ‖ · ‖p =
( ∫

Ω
| · |pdx

) 1
p , and ‖ · ‖W 1,p

0
=( ∫

Ω
(| · |p + |∇ · |p)dx

) 1
p as usual. We assume that ρ is a positive C1 function

satisfying:

ρ(s) + 2sρ′(s) ≥ 0, s > 0, (2.1)

so that div(ρ(|∇·|)2∇·) is elliptic. We also claim that ρ satisfies the condition:

ρ(s) ≥ b1 + b2s
q, s > 0, (2.2)

where q > 0 and b1, b2 are positive constants. Furthermore, we assume that
u0 satisfies the compatibility condition u0(x) = 0 on ∂Ω.

We first state the local existence theorem for the weak solution to prob-
lem (1.1) as follow. See similar result in [1,9,15].

Theorem 2.1. Assume 0 < p ≤ 2
n−2 , u0 ∈ W 1,2q+2

0 (Ω), and (2.1) hold, there
exists a T > 0, such that the problem (1.1) has a unique local solution u ∈
L∞(0, T ;W 1,2q+2

0 (Ω)) with ut ∈ L2(0, T ;H1
0 (Ω)) (resp. ut ∈ L2(0, T ;L2(Ω))

) for the case of ν = 1 (resp. ν = 0),

(i) for a.e. t ∈ [0, T ], the following identity:

〈ut, v〉 + ν〈∇ut,∇v〉 + 〈ρ(|∇u|2∇u,∇v〉 = 〈up(x, t)
∫

Ω

k(x, y)up+1(y, t)dy, v〉
(2.3)

holds for all v ∈ W 1,2q+2
0 (Ω).

(ii) u(0) = u0.

Before processing our main results, we will make some calculations on
the nonlocal term:

F (u) =
∫ 1

0

(f(su), u)ds

=
∫ 1

0

∫
Ω

spup(x, t)
( ∫

Ω

k(x, y)sp+1up+1(y, t)dy
)
u(x, t)dxds

=
1

2p + 2

∫
Ω

∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy. (2.4)
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Differentiating (2.4) with respect to t, using the symmetry of k(x, y), we
have:

d

dt
F (u) =

1
2p + 2

d

dt

∫

Ω

∫

Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy

=
∫

Ω

∫

Ω

k(x, y)up(x, t)up+1(y, t)ut(x, t)dxdy. (2.5)

Now, we give some useful inequalities which will be used throughout the
paper. Let λ1 be the principal eigenvalue of the problem:

�w + λw = 0 in Ω,

w = 0 on ∂Ω,

w > 0 in Ω; (2.6)

then we have:

λ1‖u‖2
2 ≤ ‖∇u‖2

2, ‖∇u‖2
2 ≥ λ1

1 + λ1
‖u‖2

H1
0
, u ∈ H1

0 (Ω). (2.7)

Using of Hölder’s inequality and (2.7) , we get:

‖∇u(t)‖2q+2
2q+2 ≥ |Ω|−q

( λ1

1 + λ1

)q+1‖u(t)‖2q+2
H1

0
, (2.8)

where |Ω| denotes the volume of Ω.

3. Nonblow-Up Case

In this section, we prove that the solution u(t) of problem (1.1) cannot blow-
up at any finite time provided that q > p > 0.

We define the auxiliary function:

ϕ(t) = ϕν(t) = ‖u(t)‖2
2 + ν‖∇u(t)‖2

2, ν = 0, 1. (3.1)

Differentiating (3.1) with respect to t, and using (1.1), (2.2) and (2.3), we
obtain:

ϕ′(t) = 2
∫

Ω

uutdx + 2ν

∫
Ω

∇u · ∇utdx

= −2
∫

Ω

ρ(|∇u|2)|∇u|2dx + 2
∫

Ω∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy

≤ −2b1

∫
Ω

|∇u|2dx − 2b2

∫
Ω

|∇u|2q+2dx + 2
∫

Ω∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy. (3.2)
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Using the Hölder and Sobolev inequalities, we estimate the last term in the
right-hand side of (3.2) as:∫

Ω

∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy

≤
∫

Ω

up+1(x, t)
(∫

Ω

k2(x, y)dy

) 1
2

(∫
Ω

u2p+2(y, t)dy

) 1
2

dx

= ‖u‖p+1
2p+2

∫
Ω

up+1(x, t)
(∫

Ω

k2(x, y)dy

) 1
2

dx

≤ ‖u‖2p+2
2p+2

(∫
Ω

∫
Ω

k2(x, y)dydx

) 1
2

≤ κ‖u‖2p+2
2p+2 ≤ κC2p+2

∗ ‖u‖2p+2
H1

0
, (3.3)

where κ =
( ∫

Ω

∫
Ω

k2(x, y)dydx
) 1

2 < ∞, and C∗ is the best embedding con-
stant: ‖u‖2p+2 ≤ C∗‖u‖H1

0
.

Now, we will process our calculations in two cases: ν = 1 and ν = 0
respectively.

Pseudo-parabolic case: ν = 1. It follows from (2.7), (2.8),(3.2), and (3.3)
that:

ϕ′
1(t) ≤ −A1ϕ1(t) − B1[ϕ1(t)]q+1 + C1[ϕ1(t)]p+1, (3.4)

where:

A1 =
2b1λ1

1 + λ1
, B1 = 2b2|Ω|−q

(
λ1

1 + λ1

)q+1

, C1 = 2κC2p+2
∗ .

We conclude from (3.4) and q > p > 0 that the solution cannot blow-up
in finite time. In fact, Let h1(s) = −A1s − B1s

q+1 + C1s
p+1, and then,

h1(0) = 0 and lims→+∞h(s) = −∞, since q > p. By the continuity of ϕ1(t)
and the properties of polynomials, we can deduce that (1) if h1(s) ≤ 0 for
all s ≥ 0, then ϕ1(t) ≤ ϕ1(0); (2) if there exists some finite time t1, such
that h1(t1) > 0, we denote S1 to be the largest positive root of h1(s) = 0,
then ϕ1(t) could not be larger than the value S1; otherwise, ϕ′

1(t) would be
negative which is impossible. Moreover:

ϕ1(t) ≤ max
{
ϕ1(0), S1

}
.

Parabolic case: ν = 0. Since

|∇uq+1|2 = (q + 1)2u2q|∇u|2,
it follows from Hölder’s inequality that:

∫
Ω

|∇uq+1|2dx ≤ (q + 1)2
(∫

Ω

|∇u|2q+2dx

) 1
q+1

(∫
Ω

u2q+2dx

) q
q+1

.

Letting w = uq+1 in the Poincaré’s inequality λ1‖w‖2
2 ≤ ‖∇w‖2

2, we obtain
that: ∫

Ω

u2q+2dx ≤
[
(q + 1)2

λ1

]q+1 ∫
Ω

|∇u|2q+2dx.
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Using q > p and Hölder’s inequality again, we have:
∫

Ω

u2p+2dx ≤
(∫

Ω

u2q+2dx

) p+1
q+1

|Ω| q−p
q+1 .

and
∫

Ω

u2dx ≤
(∫

Ω

u2p+2dx

) 1
p+1

|Ω| p
p+1 .

It follows from (2.7),(3.2),(3.3) and the above inequalities that:

ϕ′
0(t) ≤ −2b1

∫
Ω

|∇u|2dx − 2b2

[
λ1

(q + 1)2

]q+1 ∫
Ω

u2q+2dx + 2κ

∫
Ω

u2p+2dx

≤ −2b1λ1ϕ0(t) − 2b2

[
λ1

(q + 1)2

]q+1 (∫
Ω

u2p+2dx

)

(∫
Ω

u2p+2dx

) q−p
p+1

|Ω|− q−p
p+1 + 2κ

∫
Ω

u2p+2dx

≤ −2b1λ1ϕ0(t) − 2b2

[
λ1

(q + 1)2

]q+1 (∫
Ω

u2p+2dx

)

(∫
Ω

u2dx

)q−p

|Ω|p−q + 2κ

∫
Ω

u2p+2dx

= −2b1λ1ϕ0(t)+2
∫

Ω

u2p+2dx

(
κ−b2

[
λ1

(q + 1)2

]q+1

|Ω|p−q[ϕ0(t)]q−p

)
.

It follows from the above inequality that the solution u(t) cannot blow-up in
finite time. In fact, if ϕ0(t) were to be sufficiently large at some time t0, then
ϕ′

0(t) would be negative, so that ϕ0(t) could not be larger than that value.
Moreover:

ϕ0(t) ≤ max

⎧⎨
⎩ϕ0(0),

[
κ(q + 1)2q+2|Ω|q−p

b2λ
q+1
1

] 1
q−p

⎫⎬
⎭ .

We summarize the above discussions in the following theorem.

Theorem 3.1. If 0 < p < q and u is the nonnegative solution of problem (1.1),
then u cannot blow-up at finite time in H1

0 -norm for ν = 1 (resp. L2-norm
for ν = 0).

4. Criterions of Blow-Up

In this section, we consider a specific class of problem (1.1), for which we can
obtain the finite-time blow-up results provided that the initial energy satisfies
different conditions. We also establish the lower and the upper bounds for
the blow-up time. Let u be the nontrivial solution of:
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⎧⎪⎪⎨
⎪⎪⎩

ut − ν�ut − b1�u − b2div(|∇u|2q∇u)
= up(x, t)

∫
Ω

k(x, y)up+1(y, t)dy, (x, t) ∈ Ω × (0, T ),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(4.1)

where b1 and b2 are positive constants and the parameters p and q satisfy the
condition 0 ≤ q ≤ p.

To obtain the blow-up results, we introduce the functions:

J(u(t)) =
b1

2
‖∇u‖2

2 +
b2

2q + 2
‖∇u‖2q+2

2q+2

− 1
2p + 2

∫
Ω

∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy (4.2)

and

I(u(t)) = b1‖∇u‖2
2 + b2‖∇u‖2q+2

2q+2 −
∫

Ω

∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy,

where we have used (2.4).

Lemma 4.1. Let u be the solution of the problem (4.1), and then, J(u(t)) is
non-increasing function, that is, d

dtJ(u(t)) ≤ 0. Moreover, it holds that:

J(u(t)) +
∫ t

0

(‖ut‖2 + ν‖∇ut‖2)dt = J(u0).

Proof. Similar to the proof of Lemma 2.1 in [1] and using (2.4) and (2.5), we
can obtain the proof. �

4.1. Finite-Time Blow-Up for Nonpositive Initial Energy

In this subsection, we will establish the blow-up results for J(u0) ≤ 0 and
the upper bounds for the maximal existence time T .

Theorem 4.1. Let 0 ≤ q ≤ p, u be the nonnegative solution of (4.1) with
J(u0) < 0, and then, u blows up in finite time T with:

T ≤ T11 =
‖u0‖2

H1
0

−4p(p + 1)J(u0)
, for ν = 1,

T ≤ T10 =
‖u0‖2

2

−4p(p + 1)J(u0)
, for ν = 0.

Proof. Given ϕ(t) be the function defined in (3.1), since 0 ≤ q ≤ p, we
compute:

ϕ′(t) = 2
∫

Ω

uutdx + 2ν

∫
Ω

∇u · ∇utdx

= −2b1‖∇u‖2
2 − 2b2‖∇u‖2q+2

2q+2 + 2
∫

Ω

∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy

≥ ψ(t), (4.3)

where:

ψ(t) = −4(p + 1)J(u(t))
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= −2(p + 1)b1‖∇u‖2
2 − 2(p + 1)b2

q + 1
‖∇u‖2q+2

2q+2

+2
∫

Ω

∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy.

In view of Lemma 4.1, it holds that:

ψ′(t) = −4(p + 1)
d

dt
J(u(t)) = 4(p + 1)

∫
Ω

(|ut|2 + ν|∇ut|2)dx ≥ 0.

It follows from J(u0) < 0 that ψ(t) > 0 for any t ≥ 0. In view of Hölder’s and
Schwarz’s inequalities and ψ(t) > 0, we conclude from the above inequalities
that:

ϕ(t)ψ′(t) = 4(p + 1)
( ∫

Ω

(|u|2 + ν|∇u|2)dx
) (∫

Ω

(|ut|2 + ν|∇ut|2)dx

)

≥ 4(p + 1)
(∫

Ω

(uut + ν∇u · ∇ut)dx

)2

= (p + 1)[ϕ′(t)]2 ≥ (p + 1)ϕ′(t)ψ(t),

which can be rewritten as:
ψ′(t)
ψ(t)

≥ (p + 1)
ϕ′(t)
ϕ(t)

. (4.4)

Integrating (4.4) on [0, t], noticing ϕ′(t) ≥ ψ(t), we have:

ψ(t)
[ϕ(t)]p+1

≥ ψ(0)
[ϕ(0)]p+1

⇒ ϕ′(t)
[ϕ(t)]p+1

≥ ψ(0)
[ϕ(0)]p+1

. (4.5)

Then, a further integration results in:

1
ϕp(t)

≤ 1
ϕp(0)

− p
ψ(0)

[ϕ(0)]p+1
t. (4.6)

It is obvious that (4.6) cannot holds for all time t and u blows up at some
finite T , i.e., limt→T −ϕ(t) = +∞, where:

T ≤ T1 =
ϕ(0)
pψ(0)

,

which implies the conclusions of this theorem for both ν = 1 and ν = 0 cases.
�

Moreover, integrating the second inequality of (4.5) from t to T , we can
obtain the following blow-up rate:

ϕ(t) ≤
[

pψ(0)
[ϕ(0)]p+1

]− 1
p

(T − t)− 1
p ,

that is:

‖u(t)‖H1
0

≤
[

−4p(p + 1)J(u0)
[‖u0‖2p+2

H1
0

]

]− 1
2p

(T − t)− 1
2p , ν = 1;



MJOM Blow-Up Phenomena for a Class of Parabolic Page 9 of 22 85

‖u(t)‖2 ≤
[

−4p(p + 1)J(u0)
[‖u0‖2p+2

2 ]

]− 1
2p

(T − t)− 1
2p , ν = 0.

Now, we will give the blow-up result for the case J(u0) = 0. Moreover,
it is also valid for J(u0) ≤ 0 from the proof of the theorem.

Theorem 4.2. Let 0 < q < p and u be the nonnegative solution of (4.1) with
J(u0) ≤ 0, and then, u blows up in finite time T with:

T ≤ T21 =
∫ +∞

‖u0‖2
H1

0

dη

A2η + B2ηq+1
, for ν = 1,

T ≤ T20 =
∫ +∞

‖u0‖2
2

dη

A3η + B3ηq+1
, for ν = 0,

where the positive constants A2, B2 and A3, B3 are defined in (4.9) and
(4.10), respectively.

Proof. Given ϕ(t) be the function defined in (3.1), in view of(4.2) and Lemma
4.1, we have: ∫

Ω

∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy

= 2(p + 1)
( ∫ t

0

(‖ut‖2
2 + ν‖∇ut‖2

2)dt +
b1

2
‖∇u‖2

2

+
b2

2q + 2
‖∇u‖2q+2

2q+2 − J(u0)
)

. (4.7)

Substituting (4.7) into ϕ′(t) (see (4.3)), in view of J(u0) ≤ 0, we deduce
that:

ϕ′(t) ≥ 2pb1‖∇u‖2
2 +

2(p − q)b2

q + 1
‖∇u‖2q+2

2q+2. (4.8)

Pseudo-parabolic case: ν = 1. It follows from (2.7) and (2.8), (4.8)
reduces to:

ϕ′
1(t) ≥ A2ϕ1(t) + B2[ϕ1(t)]q+1,

where:

A2 =
2pb1λ1

1 + λ1
, B2 =

2(q − p)b2

(q + 1)|Ω|q
(

λ1

1 + λ1

)q+1

. (4.9)

On integrating the above inequality on [0, t], we have:

t ≤
∫ ϕ1(t)

ϕ1(0)

dη

A2η + B2ηq+1
≤

∫ +∞

ϕ1(0)

dη

A2η + B2ηq+1
< +∞.

It follows from that the solution u blows up at some finite time in H1
0 -norm,

since the above inequality cannot hold for all time t.
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Parabolic case: ν = 0. It follows from (2.7), (2.8) and Hölder’s inequality
, (4.8) reduces to:

ϕ′
0(t) ≥ 2pb1‖∇u‖2

2 +
2(p − q)b2

(q + 1)|Ω|q ‖∇u‖2q+2
2

≥ A3ϕ0(t) + B3[ϕ0(t)]q+1,

where:

A3 = 2pb1λ1, B3 =
2(p − q)b2

(q + 1)|Ω|q λq+1
1 . (4.10)

Similarly, we have

t ≤
∫ ϕ0(t)

ϕ0(0)

dη

A3η + B3ηq+1
≤

∫ +∞

ϕ0(0)

dη

A3η + B3ηq+1
< +∞.

It follows from that the solution u blows up at some finite time in L2-norm,
since the above inequality cannot hold for all time t. �

Remark 4.1. (1) The similar result of Theorem 4.2 was obtained in [9] for
the case b1 = 0, ν = 1.

(2) For the case q = 0 (assume b2 = 0 for convenience), from the proof
of Theorem 4.2, we can obtain that the solution u(x, t) increases at least
exponentially, that is:

‖u‖H1
0

≥ ‖u0‖H1
0
e

pb1λ1
1+λ1

t, for ν = 1;

‖u‖2 ≥ ‖u0‖2e
pb1λ1t, for ν = 0.

4.2. Finite-Time Blow-Up for Arbitrary Initial Energy

In this subsection, we will establish the blow-up results for arbitrary initial
energy and the upper bounds for the maximal existence time T for both
pseudo-parabolic case ν = 1 and parabolic case ν = 0.

Theorem 4.3. Let 0 ≤ q < p and u be the nonnegative solution of (4.1) with
the initial energy satisfies:

(1)

J(u0) <
pb1λ1

2(p + 1)(1 + λ1)
‖u0‖2

H1
0
, for ν = 1; (4.11)

then, u blows up at some finite in H1
0 -norm. Moreover, the upper bound

can be estimated by:

T ≤ T31 =
2(p + 1)(1 + λ1)‖u0‖2

H1
0

p3b1λ1‖u0‖2
H1

0
− 2p2(p + 1)(1 + λ1)J(u0)

. (4.12)

(2)

J(u0) <
pb1λ1

2(p + 1)
‖u0‖2

2, for ν = 0; (4.13)
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then, u blows up at some finite in L2-norm. Moreover, the upper bound
can be estimated by:

T ≤ T30 =
2(p + 1)‖u0‖2

2

p3b1λ1‖u0‖2
2 − 2p2(p + 1)J(u0)

. (4.14)

Proof. Let u(t) be the solution of the problem (4.1) with the initial energy
satisfying (4.11) when ν = 1 (resp. (4.13) when ν = 0). We may assume
J(u(t)) ≥ 0; otherwise, there exists some t0 ≥ 0, such that J(u(t0)) < 0, then
u(t) will blow up at some finite time by Theorem 4.1, the proof is complete.
Therefore, in the following, we give our proof by contradiction, and assume
that u(t) exists globally and J(u(t)) ≥ 0 for all t ≥ 0.

In view of (4.1) and Lemma 4.1, we have the following equalities:

d

dt
J(u(t)) = −‖ut‖2

2 − ν‖∇ut‖2
2,

ϕ′(t) =
d

dt
(‖u‖2

2 + ν‖∇u‖2
2) = −2I(u(t).

Pseudo-parabolic case: ν = 1. Since:
∫ t

0

‖us(s)‖H1
0
ds

≥ ‖
∫ t

0

us(s)ds‖H1
0

= ‖u(t) − u0‖H1
0

≥ ‖u(t)‖H1
0

− ‖u0‖H1
0
, t ≥ 0,

by Hölder’s inequality and J(u0) ≥ J(u(t)) ≥ 0, we obtain that:

‖u(t)‖H1
0

≤ ‖u0‖H1
0

+ t
1
2 [

∫ t

0

‖us(s)‖2
H1

0
ds]

1
2

= ‖u0‖H1
0

+ t
1
2 [J(u0) − J(u(t))]

1
2

≤ ‖u0‖H1
0

+ t
1
2 (J(u0))

1
2 , t ≥ 0.

(4.15)

On other hand, in view of (2.7), (4.3), and 0 ≤ q < p, we have:

d

dt

(‖u(t)‖2
H1

0

)
= 2pb1‖∇u‖2

2 +
2(p − q)b2

q + 1
‖∇u‖2q+2

2q+2 − 4(p + 1)J(u(t))

≥ 2pb1λ1

1 + λ1
‖u‖2

H1
0

− 4(p + 1)J(u(t))

=
2pb1λ1

1 + λ1

[‖u‖2
H1

0
− 2(p + 1)(1 + λ1)

pb1λ1
J(u(t))

]
.

Since d
dt (J(u(t))) ≤ 0, then we can deduce that

d

dt
H1(t) ≥ 2pb1λ1

1 + λ1
H1(t)

for all t ≥ 0, where:

H1(t) = ‖u‖2
H1

0
− 2(p + 1)(1 + λ1)

pb1λ1
J(u(t)).
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Using Gronwall’s inequality, we obtain that:

‖u‖2
H1

0
≥ 2(p + 1)(1 + λ1)

pb1λ1
J(u(t)) + e

2pb1λ1
1+λ1

tH1(0),

where H1(0) = ‖u0‖2
H1

0
− 2(p+1)(1+λ1)

pb1λ1
J(u0) > 0 due to (4.11). By the as-

sumption J(u(t)) ≥ 0 for all t ≥ 0, we get:

‖u‖H1
0

≥
√

H1(0)e
pb1λ1
1+λ1

t,

which contradicts (4.15) for t sufficiently large. Hence, u(t) blows up at some
finite time, i.e., T < ∞.

Next, we establish an upper bound estimate of T . To this end, we first
claim that:

I(u(t)) = b1‖∇u‖2
2 + b2‖∇u‖2q+2

2q+2

−
∫

Ω

∫
Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy < 0, t ∈ [0, T ).

Indeed, in view of the definitions of J(u(t)) and I(u(t)), after a simple cal-
culation, we obtain:

J(u(t)) =
pb1

2(p + 1)
‖∇u(t)‖2

2 +
(p − q)b2

2(q + 1)(p + 1)
‖∇u(t)‖2q+2

2q+2

+
1

2(p + 1)
I(u(t)), t ∈ [0, T ). (4.16)

It follows from (2.7), (4.11), and (4.16) that:

pb1λ1

2(p + 1)(1 + λ1)
‖u0‖2

H1
0

> J(u0) ≥ pb1

2(p + 1)
λ1

1 + λ1
‖u0‖2

H1
0

+
1

2(p + 1)
I(u0),

where we use 0 ≤ q < p, which implies I(u0) < 0. We assume there exists
a t0 ∈ (0, T ), such that I(u(t0)) = 0, I(u(t)) < 0, for t ∈ [0, t0). Hence,
‖u(t)‖2

H1
0

is strictly increasing on [0, t0). Then, it follows from (4.11) that:

J(u0) <
pb1λ1

2(p + 1)(1 + λ1)
‖u0‖2

H1
0

<
pb1λ1

2(p + 1)(1 + λ1)
‖u(t0)‖2

H1
0
. (4.17)

On the other hand, since J(u(t)) is non-increasing with respect to t, and
combining 0 ≤ q < p and (4.16), we get:

J(u0) ≥ J(u(t0)) =
pb1

2(p + 1)
‖∇u(t0)‖2

2

+
(p − q)b2

2(q + 1)(p + 1)
‖∇u(t0)‖2q+2

2q+2 +
1

2(p + 1)
I(u(t0))

≥ pb1λ1

2(p + 1)(1 + λ1)
‖u(t0)‖2

H1
0
,

which contradicts (4.17). Hence, I(u(t) < 0 and ‖u(t)‖2
H1

0
is strictly increasing

on [0, T ).
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For any T̃ ∈ (0, T ), we define the functional:

F (t) =
∫ t

0

‖u(s)‖2
H1

0
ds + (T − t)‖u0‖2

H1
0

+ β(t + γ)2, t ∈ [0, T̃ ],

with two positive constants β, γ to be chosen later. Since ‖u(t)‖2
H1

0
is strictly

increasing, we have:

F ′(t) = ‖u(t)‖2
H1

0
− ‖u0‖2

H1
0

+ 2β(t + γ)

=
∫ t

0

d

ds
‖u(s)‖2

H1
0
ds + 2β(t + γ) > 0.

(4.18)

In view of (2.7), Lemma 4.1, and 0 ≤ q < p, we have:

F ′′(t) =
d

dt
‖u(t)‖2

H1
0

+ 2β

= 2pb1‖∇u‖2
2 +

2(p − q)b2

q + 1
‖∇u‖2q+2

2q+2 − 4(p + 1)J(u(t)) + 2β

≥ 2pb1λ1

1 + λ1
‖u(t)‖2

H1
0

+ 4(p + 1)
∫ t

0

‖us‖2
H1

0
ds − 4(p + 1)J(u0).

(4.19)

By the definition of F (t), we have F (0) = T‖u0‖2
H1

0
+βγ2 > 0. Since ‖u(t)‖2

H1
0

is strictly increasing on [0, T ), it follows from (4.18) that F ′(t) > 0 for all
t ∈ [0, T̃ ], which implies that F (t) > 0 and F (t) is strictly increasing for any
t ∈ [0, T̃ ].

Now, for any t ∈ [0, T̃ ], we define:

ξ(t) :=
(∫ t

0

‖u(s)‖2
H1

0
ds

+β(t + γ)2
) (∫ t

0

‖us‖2
H1

0
ds + β

)

−
(∫ t

0

1
2

d

ds
‖u(s)‖2

H1
0
ds + β(t + γ)

)2

.

Using Hölder’s inequality and the element algebraic inequality:

ab + cd ≤
√

a2 + c2
√

b2 + d2,

we can deduce:
1
2

d

ds
‖u(s)‖2

H1
0

=
∫

Ω

(uus + ∇u · ∇us)dx

≤‖u‖2‖us‖2 + ‖∇u‖2‖∇us‖2

≤ (‖u‖2
2 + ‖∇u‖2

2

) 1
2

(‖us‖2
2 + ‖∇us‖2

2

) 1
2

=‖u‖H1
0
‖us‖H1

0
.

It follows from Hölder’s inequality that:
∫ t

0

1
2

d

ds
‖u(s)‖2

H1
0
ds ≤

(∫ t

0

‖u‖2
H1

0
ds

) 1
2

(∫ t

0

‖us‖2
H1

0
ds

) 1
2

.
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In view of the above inequalities and the definition of ξ(t) that:

ξ(t) ≥
(∫ t

0

‖u‖2
H1

0
ds + β(t + γ)2

) (∫ t

0

‖us‖2
H1

0
ds + β

)

−
(

[
∫ t

0

‖u‖2
H1

0
ds]

1
2 [

∫ t

0

‖us‖2
H1

0
ds]

1
2 + β(t + γ)

)

= β

(
[
∫ t

0

‖u‖2
H1

0
ds]

1
2 − [

∫ t

0

‖us‖2
H1

0
ds]

1
2 (t + γ)

)2

≥ 0.

Hence, using the above inequality and (4.18), we have:

−(F ′(t))2 = −4
[
1
2

∫ t

0

d

ds
‖u(s)‖2

H1
0
ds + β(t + γ)

]2

= 4
(

ξ(t) −
(
F (t) − (T − t)‖u0‖2

H1
0

)
(∫ t

0

‖us(s)‖2
H1

0
ds + β

) )

≥ −4F (t)
(∫ t

0

‖us(s)‖2
H1

0
ds + β

)
.

It follows from the above inequality and (4.19) that:

F (t)F ′′(t) − (p + 1)(F ′(t))2 ≥ F (t)

(
F ′′(t) − 4(p + 1)

∫ t

0

‖us(s)‖2
H1

0
ds − 4(p + 1)β

)

≥ F (t)

(
2pb1λ1

1 + λ1
‖u(t)‖2

H1
0

− 4(p + 1)J(u0) − 4(p + 1)β

)

= F (t)

[
4(p + 1)

(
pb1λ1

2(p + 1)(1 + λ1)
‖u(t)‖2

H1
0

− J(u0)

)

−4(p + 1)β

]
.

In view of (4.11), letting β sufficiently small, such that:

0 < β ≤ β0 :=
pb1λ1

2(p + 1)(1 + λ1)
‖u0‖2

H1
0

− J(u0), (4.20)

we get:

F (t)F ′′(t) − (p + 1)(F ′(t))2 ≥ 0, t ∈ [0, T̃ ].

Define G(t) = F−p(t) for t ∈ [0, T̃ ]. After a simple calculation, by F (t) > 0,
F ′(t) > 0, and p > 0, we obtain:

G′(t) = −pF−p−1(t)F ′(t) < 0,

G′′(t) = −pF−p−2[F (t)F ′′(t) − (p + 1)(F ′(t))2] ≤ 0,

holds for all t ∈ [0, T̃ ], which means that G(t) is concave on [0, T̃ ]. Hence, it
holds that:

G(T̃ ) ≤ G(0) + G′(0)T̃ . (4.21)
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By the definition of G(t), we obtain:

G′(0) = −pF−p−1(0)F ′(0) = −pG(0)
F ′(0)
F (0)

< 0.

Hence, it follows from (4.21) that:

T̃ ≤ − G(0)
G′(0)

=
T‖u‖2

H1
0

+ βγ2

2pβγ
=

‖u‖2
H1

0

2pβγ
T +

γ

2p

for any T̃ ∈ [0, T ). Letting T̃ → T−, we get:

T ≤
‖u‖2

H1
0

2pβγ
T +

γ

2p
. (4.22)

Fixing an arbitrary β satisfying (4.20), then let γ be sufficiently large, such
that:

‖u0‖2
H1

0

2pβ
< γ < +∞.

Then, in view of (4.22), we have:

T ≤ βγ2

2pβγ − ‖u0‖2
H1

0

. (4.23)

Define a function Tβ(γ) by:

Tβ(γ) =
βγ2

2pβγ − ‖u0‖2
H1

0

, γ ∈
(‖u0‖2

H1
0

2pβ
,+∞

)
.

It is easy to verify that the function Tβ(γ) has a unique minimum at:

γβ :=
‖u0‖2

H1
0

pβ
∈ (

‖u0‖2
H1

0

2pβ
,+∞).

Then, it follows from (4.23) that:

T ≤ inf

γ∈
⎛
⎝ ‖u0‖2

H1
0

2pβ ,+∞
⎞
⎠

Tβ(γ) = Tβ(γβ) =
‖u0‖2

H1
0

p2β
,

for any β satisfying (4.20). Hence, it holds that:

T ≤ inf
β∈(0,β0]

‖u0‖2
H1

0

p2β
=

‖u0‖2
H1

0

p2β0
=

2(p + 1)(1 + λ1)‖u0‖2
H1

0

p3b1λ1‖u0‖2
H1

0
− 2p2(p + 1)(1 + λ1)J(u0)

.

This completes the proof of Theorem 4.3 for the pseudo-parabolic (ν = 1)
case.

Parabolic case: ν = 0. In this case, we need to replace the norm H1
0

by the norm L2, and the inequality ‖∇u‖2
2 ≥ λ1

1+λ1
‖u‖2

H1
0

by the inequality
‖∇u‖2

2 ≥ λ1‖u‖2
2. By modifying the previous proof, we can easily deduce the

proof. �



85 Page 16 of 22 G. Liu and H. Zhang MJOM

Corollary 4.1. For 0 ≤ q < p and any M ∈ R, then there exist initial data
u0M ∈ W 1,2q+2

0 (Ω) satisfying J(u0M ) = M , such that the weak solution for
the corresponding problem (4.1) will blows up at finite time in H1

0 -norm for
ν = 1 (resp. L2-norm for ν = 0).

Proof. According to Theorem 4.1, it is easy to see that the result is valid for
M < 0. We only need to verify the result for the case of M ≥ 0. In view
of Theorem 4.3, it is sufficiently to check that there exists u0 ∈ W 1,2q+2

0 (Ω)
satisfying (4.11) for ν = 1 (resp. (4.13) for ν = 0).

Let Ω1 and Ω2 be two arbitrary disjoint open subdomains of Ω. We
assume v ∈ W 1,2q+2

0 (Ω1) ⊂ W 1,2q+2
0 (Ω) ⊂ H1

0 (Ω) be an arbitrary nonzero
function, and then, we can take α1 > 0 sufficiently large, such that:

α2
1

(∫
Ω

v2dx +
∫

Ω

ν|∇v|2dx

)
= α2

1

(∫
Ω1

v2dx +
∫

Ω1

ν|∇v|2dx

)
>

M

C
,

where C = pb1λ1
2(p+1)(1+λ1)

when ν = 1, and C = pb1λ1
2(p+1) when ν = 0.

We claim that there exists w ∈ W 1,2q+2
0 (Ω2) ⊂ W 1,2q+2

0 (Ω) and α0 > α1

such that J(w) = M − J(α0v). Indeed, we choose a function wk ∈ C1
0 (Ω2),

such that ‖∇wk‖2 ≥ k and ‖wk‖∞ ≤ c0. In view of (3.3), we have:

b1

2

∫
Ω2

|∇wk|2dx +
b2

2q + 2

∫
Ω2

|∇wk|2q+2dx − 1
2p + 2∫

Ω2

∫
Ω2

k(x, y)wp+1
k (x, t)wp+1

k (y, t)dxdy

≥ b1

2

∫
Ω2

|∇wk|2dx +
b2

2q + 2
|Ω2|−q

( ∫
Ω2

|∇wk|2dx
)q+1 − κ

2p + 2
c2p+2
0 |Ω2|.

On the other hand, since 0 ≤ q < p, it holds that:

M − J(αv)

= M − b1α
2

2

∫
Ω1

|∇v|2dx − b2α
2q+2

2q + 2

∫
Ω1

|∇v|2q+2dx

+
α2p+2

2p + 2

∫
Ω2

∫
Ω2

k(x, y)wp+1
k (x, t)wp+1

k (y, t)dxdy → +∞, as α → +∞.

Therefore, there exist k0 > 0 and α0 > α1, such that both are sufficiently
large, such that:

M − J(α0v) =
b1

2

∫
Ω2

|∇wk0 |2dx +
b2

2q + 2

∫
Ω2

|∇wk0 |2q+2dx

− 1
2p + 2

∫
Ω2

∫
Ω2

k(x, y)wp+1
k0

(x, t)wp+1
k0

(y, t)dxdy.

Then, choosing w = wk0 , and denoting u0M := α0v + w, we obtain:∫
Ω

|u0M |2dx + ν

∫
Ω

|∇u0M |2dx = α2
0

∫
Ω1

v2dx + να2
0

∫
Ω1

|∇v|2dx >
M

C
,

and

M = J(α0v) + J(w) = J(u0M ),
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which implies that:

J(u0M ) < C

(∫
Ω

|u0M |2dx + ν

∫
Ω

|∇u0M |2dx

)
.

In view of Theorem 4.3, the proof is complete. �

Remark 4.2. For the case J(u0) < 0, the initial condition given in (4.11)
(resp. (4.13)) is obviously satisfied. However, we obtain the upper bounds
T11 and T31 (resp. T10 and T30) for the blow-up time T in Theorem 4.1 and
Theorem 4.3 using different methods. In fact, T11 is more accurate provided

that J(u0) <
p2b1λ1‖u0‖

H1
0

2p(p+1)(3p+4)(1+λ1)
, and T31 is more accurate provided that

p2b1λ1‖u0‖
H1

0
2p(p+1)(3p+4)(1+λ1)

≤ J(u0) < 0; Resp. T10 is more accurate provided that

J(u0) <
p2b1λ1‖u0‖L2

2p(p+1)(3p+4) , and T30 is more accurate provided that p2b1λ1‖u0‖L2

2p(p+1)(3p+4) ≤
J(u0) < 0;

4.3. Lower Bound for the Blow-Up Time

First, we consider problem (1.1) with ν = 1, and determine a lower bound
for T if the solution u blows up at finite time t = T in H1

0 -norm.

Theorem 4.4. Let 0 < q ≤ p ≤ 2
n−2 , and u be the nonnegative solution of the

problem (1.1)(ν = 1) which blows up at finite time T in H1
0 -norm, and then,

T is bounded from below as:

T ≥ C
−2(p+1)
∗

2κp‖u0‖2p
H1

0

.

Proof. The proof is similar as that of Theorem 3.1 in [9]. It follows from (3.1)
to (3.3) that:

ϕ′
1(t) ≤ 2κC

−2(p+1)
∗ [ϕ1(t)]p+1,

which is equivalent to:

[ϕ−p
1 (t)]′ ≥ −2κpC

−2(p+1)
∗ .

Integrating the above inequality from 0 to t leads to:

ϕ−p
1 (t) ≥ ϕ−p

1 (0) − 2κpC
−2(p+1)
∗ t.

Passing to the limit as t → T−, we obtain that the conclusion of Theorem
4.4 holds. �

Then, using the technique of differential inequality (see [13,14]), we
obtain a lower bound for the blow-up time if the blow-up does occurs for the
problem (1.1) with ν = 0.

We define the auxiliary function χ(t):

χ(t) =
∫

Ω

umpdx, (4.24)

for some positive constant m to be chosen later.
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Theorem 4.5. Let 0 < q < p, m > 2
p + 2, and u(x, t) be the nonnegative

solution of the problem (1.1)(ν = 0) which blows up at finite time T in the
measure χ given in (4.24), and then T is bounded from below by:

T ≥
∫ ∞

χ(0)

dχ

K1χ
2p+2
mp + K2χ

(n−2)θ1
nθ1−2 + K3χ

(n−2)θ2
nθ2−2

, (4.25)

where K1,K2 and K3 are positive constants that will be determined in (4.36).

Proof. In view of (1.1) and (2.2), we compute:

χ′(t) =
∫

Ω

ump−1[div(ρ(|∇u|2)∇u) + up(x, t)
∫

Ω

k(x, y)up+1(y, t)dy]dx

= −mp(mp − 1)
∫

Ω

ump−2ρ(|∇u2)|∇u|2dx + mp

∫
Ω

∫
Ω

k(x, y)ump−1+p(x, t)up+1(y, t)dxdy

≤ −mp(mp − 1)
∫

Ω

ump−2[b1 + b2|∇u|2q]|∇u|2dx

+mp

∫
Ω

∫
Ω

k(x, y)ump−1+p(x, t)up+1(y, t)dxdy.

By the similar argument as (3.3), we have:∫
Ω

∫
Ω

k(x, y)ump−1+p(x, t)up+1(y, t)dxdy

≤ κ

(∫
Ω

u2p+2(y, t)dy

) 1
2

(∫
Ω

u2mp−2+2p(x, t)dx

) 1
2

≤ κ

2

(∫
Ω

u2p+2dx +
∫

Ω

u2mp−2+2pdx

)
.

It follows from Hölder’s inequality and m > 2
p + 2 that:

∫
Ω

u2p+2dx ≤ |Ω|mp−2−2p
mp

(∫
Ω

umpdx

) 2p+2
mp

. (4.26)

Noticing that:

|∇uα|2(q+1) = |αuα−1∇u|2(q+1) = α2(q+1)ump−2|∇u|2(q+1),

where α = mp+2q
2(q+1) . Denoting δ = mp−2+2(p−q)

α > 0 and v = uα, we obtain:
∫

Ω

u2mp−2+2pdx =
∫

Ω

v2(q+1)+δdx,

Using Hölder’s and Schwarz’s inequalities, we have:
∫

Ω

|∇vq+1|2dx ≤ (q + 1)2
(∫

Ω

|∇v|2(q+1)dx

) 1
q+1

(∫
Ω

v2(q+1)dx

) q
q+1

≤ (q + 1)
∫

Ω

|∇v|2(q+1)dx + q(q + 1)
∫

Ω

v2(q+1)dx.
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Hence, in view of (4.26), by dropping the b1 term, then we obtain:

χ′(t) ≤ − mp(mp − 1)b2

(q + 1)α2(q+1)

∫
Ω

|∇vq+1|2dx +
mpκ

2
|Ω|mp−2−2p

mp [χ(t)]
2p+2
mp

+
qmp(mp − 1)b2

α2(q+1)

∫
Ω

v2(q+1)dx +
mpκ

2

∫
Ω

v2(q+1)+δdx.

(4.27)

To estimate the last two terms in (4.27), we will use the following Hölder’s
inequality:

∫
Ω

vr+sdx ≤
(∫

Ω

v
r
θ dx

)θ (∫
Ω

v
s

1−θ dx

)1−θ

, (4.28)

where 0 < θ < 1 and r, s are positive constants.
We choose r1, s1 and θ1, such that

r1 + s1 = 2(q + 1),
r1

θ1
=

mp

α
,

s1

1 − θ1
= (q + 1)

2n

n − 2
,

that is:

r1 =
mp

α

2(q + 1) 2
n−2

2(q + 1) n
n−2 − mp

α

,

s1 = 2(q + 1) − mp

α

2(q + 1) 2
n−2

2(q + 1) n
n−2 − mp

α

,

θ1 =
2(q + 1) 2

n−2

2(q + 1) n
n−2 − mp

α

.

Then, it follows from (4.28) that:
∫

Ω

v2(q+1)dx ≤
(∫

Ω

v
mp
α dx

)θ1
(∫

Ω

v(q+1) 2n
n−2 dx

)1−θ1

. (4.29)

By the same argument, we choose r2, s2 and θ2, such that:

r2 + s2 = 2(q + 1) + δ,
r2

θ2
=

mp

α
,

s2

1 − θ2
= (q + 1)

2n

n − 2
,

that is:

r2 =
mp

α

2(q + 1) 2
n−2 − δ

2(q + 1) n
n−2 − mp

α

,

s2 = 2(q + 1) + δ − mp

α

2(q + 1) 2
n−2 − δ

2(q + 1) n
n−2 − mp

α

,

θ2 =
2(q + 1) 2

n−2 − δ

2(q + 1) n
n−2 − mp

α

,

and obtain:∫
Ω

v2(q+1)+δdx ≤
(∫

Ω

v
mp
α dx

)θ2
(∫

Ω

v(q+1) 2n
n−2 dx

)1−θ2

. (4.30)
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Letting c∗ be the best embedding constant: ‖w‖ 2n
n−2

≤ c∗‖∇w‖2, we obtain:

‖vq+1‖
2n

n−2 (1−θ1)
2n

n−2
≤ c

2n
n−2 (1−θ1)
∗ ‖∇vq+1‖

2n
n−2 (1−θ1)

2 , (4.31)

and

‖vq+1‖
2n

n−2 (1−θ2)
2n

n−2
≤ c

2n
n−2 (1−θ2)
∗ ‖∇vq+1‖

2n
n−2 (1−θ2)

2 . (4.32)

Combining (4.29) and (4.31), using Schwarz’s inequality, we get:
∫

Ω

v2(q+1)dx ≤ c
2n

n−2 (1−θ1)
∗

( ∫
Ω

v
mp
α dx

)θ1

(∫
Ω

|∇vq+1|2dx

) n
n−2 (1−θ1)

≤ nθ1 − 2
n − 2

(c2
∗ε

−1
1 )

n(1−θ1)
nθ1−2

(∫
Ω

v
mp
α

) (n−2)θ1
nθ1−2

+
n(1 − θ1)

n − 2
ε1

∫
Ω

|∇vq+1|2dx, (4.33)

where ε1 is a positive constant to be chosen later. Similarly, it follows from
(4.30) and (4.32) that:∫

Ω

v2(q+1)+δdx ≤ nθ2 − 2
n − 2

(c2
∗ε

−1
2 )

n(1−θ2)
nθ2−2

(∫
Ω

v
mp
α

) (n−2)θ2
nθ2−2

+
n(1 − θ2)

n − 2
ε2

∫
Ω

|∇vq+1|2dx, (4.34)

where ε1 is a positive constant to be chosen later.
Combining (4.33) and (4.34) with (4.27) gives:

χ′(t) ≤ −
[
mp(mp − 1)b2

(q + 1)α2(q+1)
− qmp(mp − 1)b2

α2(q+1)

n(1 − θ1)
n − 2

ε1 − mpκ

2
n(1 − θ2)

n − 2
ε2

] ∫
Ω

|∇vq+1|2dx

+
mpκ

2
|Ω|mp−2−2p

mp [χ(t)]
2p+2
mp

+
qmp(mp − 1)b2

α2(q+1)

nθ1 − 2
n − 2

(c2
∗ε

−1
1 )

n(1−θ1)
nθ1−2 [χ(t)]

(n−2)θ1
nθ1−2

+
mpκ

2
nθ2 − 2
n − 2

(c2
∗ε

−1
2 )

n(1−θ2)
nθ2−2 [χ(t)]

(n−2)θ2
nθ2−2 .

By choosing ε1 and ε2 sufficiently small, such that:

mp(mp − 1)b2

(q + 1)α2(q+1)
− mp(mp − 1)b2

α2(q+1)

n(1 − θ1)
n − 2

ε1 − mpκ

2
n(1 − θ2)

n − 2
ε2 ≥ 0,

then, we can obtain the differential inequality:
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χ′(t) ≤ K1[χ(t)]
2p+2
mp + K2[χ(t)]

(n−2)θ1
nθ1−2 + K3[χ(t)]

(n−2)θ2
nθ2−2 ,

or equivalently:
dχ

K1χ
2p+2
mp + K2χ

(n−2)θ1
nθ1−2 + K3χ

(n−2)θ2
nθ2−2

≤ dt, (4.35)

where:

K1 =
mpκ

2
|Ω|mp−2−2p

mp ; K2 =
mp(mp − 1)b2

α2(q+1)

nθ1 − 2
n − 2

(c2
∗ε

−1
1 )

n(1−θ1)
nθ1−2 ;

K3 =
mpκ

2
nθ2 − 2
n − 2

(c2
∗ε

−1
2 )

n(1−θ2)
nθ2−2 .

(4.36)

Integrating of the differential inequality (4.35) from 0 to t leads to:∫ χ(t)

χ(0)

dχ

K1χ
2p+2
mp + K2χ

(n−2)θ1
nθ1−2 + K3χ

(n−2)θ2
nθ2−2

≤ t.

Passing to the limit as t → T−, we obtain:∫ ∞

χ(0)

dχ

K1χ
2p+2
mp + K2χ

(n−2)θ1
nθ1−2 + K3χ

(n−2)θ2
nθ2−2

≤ T.

Thus, the proof is complete. �
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