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Abstract. In this paper, we first determine Bohr’s inequality for the
class of harmonic mappings f = h + g in the unit disk D, where either
both h(z) =

∑∞
n=0 apn+mzpn+m and g(z) =

∑∞
n=0 bpn+mzpn+m are ana-

lytic and bounded in D, or satisfies the condition |g′(z)| ≤ d|h′(z)| in
D\{0} for some d ∈ [0, 1] and h is bounded. In particular, we obtain
Bohr’s inequality for the class of harmonic p-symmetric mappings. Also,
we investigate the Bohr-type inequalities of harmonic mappings with a
multiple zero at the origin and that most of results are proved to be
sharp.

Mathematics Subject Classification. Primary 30A10, 30C45, 30C62;
Secondary 30C75.

Keywords. Bohr radius, harmonic and analytic functions, Quasi-regular
mappings.

1. Preliminaries and Some Basic Questions

The classical theorem of Bohr [14], examined a century ago, generates inten-
sive research activity—what is called Bohr’s phenomena. Determination of
the Bohr radius for analytic functions in a domain [21], as well as for analytic
functions from D into particular domains, such as the punctured unit disk,
the exterior of the closed unit disk, and concave wedge-domains, has been dis-
cussed in the literature [1–3,5]. See also the recent survey articles [9,23,29]
and [22, Chapter 8]. The interest in the Bohr phenomena was revived in
the 90s due to the extensions to holomorphic functions of several complex
variables and to more abstract settings. For example, Boas and Khavinson
[13] found bounds for Bohr’s radius in any complete Reinhard domains and
showed that the Bohr radius decreases to zero as the dimension of the domain
increases. This paper stimulated interests on Bohr-type questions in differ-
ent settings. For example, Aizenberg [6,7], Aizenberg et al. [8], Defant and
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Frerick [16], and Djakov and Ramanujan [18] have established further results
on Bohr’s phenomena for multidimensional power series. Several other aspects
and generalizations of Bohr’s inequality may be obtained from the litera-
ture. For instance, Defant [17] improved a version of the Bohnenblust–Hille
inequality and Paulsen [39] proved a uniform algebra analogue of the classical
inequality of Bohr concerning Fourier coefficients of bounded holomorphic
functions in 2004. In Refs. [38,40], the authors demonstrated the classical
Bohr inequality using different methods of operators. Abu Muhanna [1], and
Kayumov and Ponnusamy [25] investigated Bohr’s inequality for the class of
analytic functions that are subordinate to univalent functions and odd univa-
lent functions, respectively. On the other hand, Ali et al. [10] discussed Bohr’s
phenomenon for the classes of even and odd analytic functions and also for
alternating series. In Refs. [11,30,34,36], the authors considered the Bohr
radius for the family K-quasiconformal sense-preserving harmonic mappings
and the class of all sense-preserving harmonic mappings, separately. Recently,
the articles [35,41,42] presented a refined version of Bohr’s inequality along
with few other related improved versions of previously known results. In par-
ticular, after the appearance of the articles [9,26], several investigations and
new problems on Bohr’s inequality in the plane case appeared in the literature
(cf. [4,12,27,33,35,41,42]).

One of our aims in this article is to address the harmonic analog of
this question (see Problem 1) raised by Paulsen et al. [38] but with a refined
formulation as in Ref. [42] (see Theorem A).

1.1. Classical Inequality of H. Bohr

Let B be the Schur class of all analytic functions f on the open unit disk
D := {z ∈ C : |z| < 1}, such that ‖f‖∞ := supz∈D

|f(z)| ≤ 1. Then, the
classical inequality examined by Bohr [14] states that 1/3 is the largest value
of r ∈ [0, 1) for which the following inequality holds:

B(f, r) :=
∞∑

k=0

|ak|rk ≤ 1, (1.1)

for every analytic function f ∈ B with the Taylor series expansion f(z) =∑∞
k=0 akzk. Bohr actually obtained that (1.1) is true when r ≤ 1/6. Later,

Riesz, Schur, and Wiener independently established the Bohr inequality (1.1)
for r ≤ 1/3 and that 1/3 is the best possible constant. It is quite natural that
the constant 1/3 is called the Bohr radius for the space B. Moreover, for:

ϕa(z) =
a − z

1 − az
, a ∈ [0, 1),

it follows easily that B(ϕa, r) > 1 if and only if r > 1/(1 + 2a), which for
a → 1 shows that 1/3 is optimal. Bohr’s and Wiener’s proofs can be found in
Ref. [14]. Other proofs of Bohr’s inequality may be found from [44,45]. Then,
it is worth pointing out that there is no extremal function in B, such that
the Bohr radius is precisely 1/3 (cf. [22, Corollary 8.26]).
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1.2. The Bohr Radius for Functions Having Multiple Zeros at the Origin

Problem 1. In Ref. [38], the authors considered among others for k ∈ N the
classes Bk := zkB, that is:

Bk =
{

f ∈ B : f(0) = · · · = f (k−1)(0) = 0
}

:=
{
zkf : f ∈ B}

,

and asked for which rk ∈ (0, 1), and:

f(z) =
∞∑

n=k

anzn ∈ Bk, (1.2)

we have the inequality:
∞∑

n=k

|an|rn ≤ 1 for r ∈ [0, rk], (1.3)

and for each r ∈ (rk, 1), there exists a function fk(z) =
∑∞

n=k a
(k)
n zn in Bk

such that
∑∞

n=k |a(k)
n |rn > 1. Here, the constant rk is referred to as the Bohr

radius of order k.

Clearly, B0 = B, and B1 = {f ∈ B : f(0) = 0}. For f ∈ B1 (i.e., for
k = 1), Tomić [45] proved that (1.3) holds for 0 ≤ r ≤ 1/2 (also obtained
by Landau independently, see [31]). Later, Ricci [43] established that this
holds for 0 ≤ r ≤ 3/5, and the largest value of r for which (1.3) holds
would lie in the interval (3/5, 1/

√
2]. Later, Bombieri [15] found that the

inequality (1.3) holds for r ∈ [0, 1/
√

2], where the upper bound cannot be
improved. An alternate proof of this result may be found from a recent paper
of Kayumov and Ponnusamy [28] in which they solved an open problem of
Djakov and Ramanujan on powered Bohr inequality. However, Problem 1
for k ≥ 2 remains open. On the other hand, in connection with Problem 1,
Ponnusamy and Wirths [42] proved the following sharp inequalities for k ≥ 2,
while the case k = 1 has been proved in Ref. [41]:

Theorem A. For k ≥ 1, let f ∈ Bk have an expansion (1.2) and:

M1
k (f, r) =

∞∑

n=k

|an| rn +
(

1
1 + |ak| +

r

1 − r

) ∞∑

n=k+1

|an|2 r2n−k

and

Mk(f, r) =
∞∑

n=k

|an| rn +
(

1
1 + |ak| +

r

1 − r

) ∞∑

n=k

|an|2 r2n−k.

Then, we have the following inequalities:

(1) M1
k (f, r) ≤ 1 is valid for r ∈ [0, Rk] , where Rk is the unique root in

(0, 1) of the equation:

4(1 − r) − rk−1
(
1 − 2r + 5r2

)
= 0.

The upper bound Rk cannot be improved.
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(2) Mk(f, r) ≤ 1 is valid for r ∈ [0, Sk], where Sk is the unique root in (0, 1)
of the equation:

2(1 − r) − rk(3 − r) = 0.
The upper bound Sk cannot be improved. Also, as M1

k (f, r) ≤ Mk(f, r),
it follows that Sk ≤ Rk.

(3) With |ak| = a ∈ (0, 1] being fixed, Mk(f, r) ≤ 1 is valid for r ∈ [0, ρk(a)],
where ρk(a) is the unique root in (0, 1) of the equation:

(1 + a)(1 − r) − rk
[
2a2 + a + r

(
1 − 2a2

)]
= 0.

The upper bound ρk(a) cannot be improved.

Remark 1. We note that ρk(1) = Sk. As M1
k (f, r) ≤ Mk(f, r), it follows that

Sk ≤ Rk.

1.3. The Bohr Radius for p-Symmetric Functions

Recently, Kayumov et al. [26] have obtained the following general result. As a
corollary to this, an open problem raised by Ali et al. [10] about the determi-
nation of Bohr radius for odd functions from B has been settled affirmatively.

Theorem B. [26] Let m, p ∈ N, m ≤ p, and f ∈ B with f(z) =∑∞
k=0 apk+mzpk+m. Then:

B(f, r) =
∞∑

k=0

|apk+m|rpk+m ≤ 1 for r ≤ rp,m,

where rp,m is the maximal positive root of the equation −6rp−m + r2(p−m) +
8r2p+1 = 0. The extremal function has the form zm(zp−a)/(1−azp), where:

a =

⎛

⎝1 −
√

1 − r2p
p,m√

2

⎞

⎠ 1
rp
p,m

.

Remark 2. We note that the case m = 0 is trivial as it follows from the
classical theorem of H. Bohr with a change of variable ζ = zp. This gives the
condition r ≤ rp,0 = 1/ p

√
3. The case p = 2 and m = 1 corresponds to the

question raised by Ali et al. [10].

1.4. The Bohr Radius for Harmonic Functions

In Ref. [30], the authors initiated the discussion on Bohr radius for the class
of complex-valued function f = u + iv harmonic in D, where u and v are
real-valued harmonic functions of D. It follows that f admits the canonical
representation f = h + g, where h and g are analytic in D, such that f(0) =
0 = g(0). The Jacobian Jf (z) of f is given by Jf (z) = |h′(z)|2 − |g′(z)|2,
and we say that a locally univalent harmonic function f in D is said to be
sense-preserving if Jf (z) > 0 in D; or equivalently, its dilatation ω = g′/h′ is
an analytic function in D which maps D into itself (cf. [19] or [32]).

If a locally univalent and sense-preserving harmonic mapping f = h+ g
satisfies the condition |ω(z)| ≤ d < 1 in D, then f is called K-quasi-regular
harmonic mapping on D, where K = 1+d

1−d ≥ 1 (cf. [24,37]). Obviously, d → 1
corresponds to the case K → ∞.
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For a harmonic function f = h + g in D, where h and g admit power
series expansions of the form h(z) =

∑∞
n=0 anzn and g(z) =

∑∞
n=0 bnzn, we

denote the classical Bohr sum by:

BH(f, r) := B(h, r) + B(g, r) =
∞∑

n=0

(|an| + |bn|)rn.

A harmonic function f = h + g in D is said to be p-symmetric if h and g
have the form h(z) =

∑∞
n=0 anzpn+m and g(z) =

∑∞
n=0 bnzpn+m for some

m ∈ N0 = N ∪ {0}. Harmonic extension of the classical Bohr theorem was
established first in Ref. [30]. For example, they proved the following result
(Theorem C). Furthermore, the Bohr radii for harmonic and starlike log har-
monic mappings in D were investigated, for example, in Refs. [20,26,30,36],
and in some cases in improved form.

Theorem C. [30] Let p ∈ N and p ≥ 2. Suppose that f(z) = h(z) + g(z) =
∑∞

n=0 anzpn+1 +
∑∞

n=0 bnzpn+1 is a harmonic p-symmetric function in D,
where h and g are bounded functions in D. Then:

BH(f, r) =
∞∑

n=0

(|an| + |bn|)rpn+1 ≤ max{‖h‖∞, ‖g‖∞} for r ≤ 1/2.

The number 1/2 is sharp.

It is natural to raise the following.

Problem 2. Whether Theorem C holds under a weaker hypotheses, namely,
by replacing the condition “boundedness of h and g” by “|g′(z)| ≤ |h′(z)|
and h is bounded.”

In Theorem 1, we present an affirmative answer to this question in a
more general setting.

The paper is organized as follows. In Sect. 2, we present the main results
of this paper. In Theorem 1, we present an affirmative answer to Problem 2
in a general form, and Corollary 2 answers Problem 2. As consequence, gen-
eralization Theorem C (with of higher order zero at the origin) is established
(see Theorem 2). In Sect. 3, we state and prove several lemmas. In addition,
we present the proof of Bohr’s inequalities for the class of harmonic map-
pings, which improve the first two items in Theorems A and Theorem C. In
Sect. 4, we state and prove three theorems which extend three recent results
of Ponnusamy et al. [42] from the case of analytic functions to the case of
sense-preserving harmonic mappings.

2. Main Results

We now state a generalization of Theorem C in a general setting and the next
result (Theorem 2) is a direct generalization of Theorem C.

Theorem 1. Let m, p ∈ N, p ≥ 2. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akzpk+m +
∑∞

k=0 bkzpk+m is harmonic and p-symmetric in D, such
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that |h(m)(0)| = |g(m)(0)| and |g′(z)| ≤ d|h′(z)| in D\{0} for some d ∈ [0, 1],
where h is bounded. Then, the following holds:
(1) If p

m > log2(2 + d), then:

BH(f, r) =
∞∑

k=0

(|ak| + |bk|)rpk+m ≤ ‖h‖∞ for r ≤ m

√
1
2
.

When d = 1, the extremal mapping has the form f(z) = h(z) + λh(z)
with h(z) = zm and |λ| = 1.

(2) If 1 ≤ p
m ≤ log2(2 + d), then:

BH(f, r) ≤ ‖h‖∞ for r ≤ rp,m,d,

where rp,m,d is the maximal positive root of the equation:

r2(p−m) − (8 + 4d)rp−m + 4(1 + d)(3 + d)r2p + 4 = 0. (2.1)

When d = 1, the extremal function is given by f(z) = h(z) + λh(z),
|λ| = 1, where:

h(z) = zm

(
zp − a

1 − azp

)

, with a =

⎛

⎝1 −
√

1 − r2p
p,m,1√

2

⎞

⎠ 1
rp
p,m,1

.

Corollary 1. Suppose that m, p ∈ N, and f(z) =
∑∞

k=0 apk+mzpk+m ∈
Bpk+m.
(1) If 1 ≤ p

m ≤ log2 3 ≈ 1.58496, then:

B(f, r) ≤ 1
2

for r ≤ rp,m,

where rp,m is the maximal positive root of the equation:

− 12rp−m + r2(p−m) + 32r2p + 4 = 0. (2.2)

The extremal function is given by:

f(z) = zm

(
zp − a

1 − azp

)

, with a =

⎛

⎝1 −
√

1 − r2p
p,m√

2

⎞

⎠ 1
rp
p,m

. (2.3)

(2) If p
m > log2 3, then:

B(f, r) ≤ 1
2

for r ≤ m

√
1
2
.

The extremal function has the form zm.

Proof. Apply the method of the proof of Theorem 1 (by setting d = 1, g(z) ≡
0). �

We now state a direct generalization of Theorem C.

Theorem 2. Let m, p ∈ N, p ≥ 2. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 apk+mzpk+m +
∑∞

k=0 bpk+mzpk+m is harmonic in D, where h and g
are bounded. The following holds:
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(1) If p
m > log2 3 ≈ 1.58496, then:

BH(f, r) ≤ max{‖h‖∞, ‖g‖∞} for r ≤ m

√
1
2
.

The extremal function is given by f(z) = zm + λzm, |λ| = 1.
(2) If 1 ≤ p

m ≤ log2 3, then:

BH(f, r) ≤ max{‖h‖∞, ‖g‖∞} for r ≤ rp,m,

where rp,m is the maximal positive root in (0, 1) of the Eq. (2.2).

The extremal function is given by f(z) = h(z) + λh(z), |λ| = 1,
where:

h(z) = zm

(
zp − a

1 − azp

)

, with a =

⎛

⎝1 −
√

1 − r2p
p,m√

2

⎞

⎠ 1
rp
p,m

.

Remark 3. If we set m = 1 in Theorem 2(1), then we get Theorem C.

Note that the following corollary generalizes Theorem 2 under the con-
ditions “|h′(0)| = |g′(0)| and |g′(z)| ≤ |h′(z)| in D\{0}” instead of “h and g
being bounded in D.”

Corollary 2. Let m, p ∈ N, p ≥ 2. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akzpk+m +
∑∞

k=0 bkzpk+m is harmonic and p-symmetric in D, such
that |h′(0)| = |g′(0)| and |g′(z)| ≤ |h′(z)| in D\{0}, where h is bounded.
Then, the conclusions (1) and (2) of Theorem 2 continue to hold.

Proof. Set d = 1 in Theorem 1 and let rp,m := rp,m,1. �

Because of its independent interest, let us next state the following result
as a corollary to Theorems A. Indeed, applying the analogous methods as in
the proofs of the three cases of Theorems A, we have the following. Therefore,
we omit the details.

Corollary 3. For k ≥ 1, m, p ∈ N and m ≤ p, we let f(z) =∑∞
n=k apn+mzpn+m ∈ Bpk+m and:

M1
pk+m(f, r) =

∞∑

n=k

|apn+m| rpn+m +
(

1
1 + |apk+m| +

rp

1 − rp

)

×
∞∑

n=k+1

|apn+m|2 rp(2n−k)+m

and

Mpk+m(f, r) =
∞∑

n=k

|apn+m| rpn+m +
(

1
1 + |apk+m| +

rp

1 − rp

)

×
∞∑

n=k

|apn+m|2 rp(2n−k)+m.

Then, we have the following inequalities:
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(1) M1
pk+m(f, r) ≤ 1 is valid for r ∈ [0, vk], where vk is the unique root in

(0, 1) of the equation:

4 (1 − rp) − rp(k−1)+m
(
5r2p − 2rp + 1

)
= 0.

The upper bound vk cannot be improved.
(2) Mpk+m(f, r) ≤ 1 is valid for r ∈ [0, ωk], where ωk is the unique root in

(0, 1) of the equation:

2 (1 − rp) − rpk+m (3 − rp) = 0.

The upper bound ωk cannot be improved.
(3) With |apk+m| = a ∈ (0, 1] being fixed, Mpk+m(f, r) ≤ 1 is valid for

r ∈ [0, ηk], where ηk is the unique root in (0, 1) of the equation:

(1 + a) (1 − rp) − rpk+m
[
2a2 + a + rp

(
1 − 2a2

)]
= 0.

The upper bound ηk cannot be improved.

Proof. The desired conclusion follows if we write f(z) as f(z) = zmt(zp),
where t(z) =

∑∞
n=k apn+mzn ∈ Bk, and apply the proof of Theorem A. �

Next, we generalize Theorem A or Corollary 3 by establishing Bohr-type
inequalities for harmonic mappings with multiple zero at the origin.

Theorem 3. Let k ≥ 1, m, p ∈ N, and m ≤ p. Suppose that f = h + g is
harmonic in D, where h and g are given by:

h(z) =
∞∑

n=k

apn+mzpn+m and g(z) =
∞∑

n=k

bpn+mzpn+m. (2.4)

In addition, let |g′(z)| ≤ d|h′(z)| in D\{0} for some d ∈ [0, 1] and h ∈ Bpk+m.
Define:

Mpk+m(h, r) =
∞∑

n=k

|apn+m| rpn+m +
(

1
1 + |apk+m| +

rp

1 − rp

)

×
∞∑

n=k

|apn+m|2 rp(2n−k)+m, (2.5)

and

Npk+m(g, r) =
∞∑

n=k

|bpn+m| rpn+m +
(

1
1 + |apk+m| +

rp

1 − rp

)

×
∞∑

n=k

|bpn+m|2 rp(2n−k)+m.

Then, the inequality:

Mpk+m(h, r) + Npk+m(g, r) ≤ 1 (2.6)

is valid for r ∈ [0, rk], where rk = min{r′
k, 1/ p

√
3}, and r′

k is the unique root
in (0, 1) of the equation tk(r) = 0, where:

tk(r) =
2

d + 1
(1 − rp) − rpk+m (3 − rp) . (2.7)
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Theorem 4. Let k ≥ 2, m, p ∈ N, and m ≤ p. Suppose that f = h + g is
harmonic in D, where h and g are given by (2.4), In addition, let h, g ∈
Bpk+m and define:

M1
pk+m(h, r) =

∞∑

n=k

|apn+m| rpn+m +
(

1
1 + |apk+m| +

rp

1 − rp

)

×
∞∑

n=k+1

|apn+m|2 rp(2n−k)+m.

Then, the inequality

M1
pk+m(h, r) + M1

pk+m(g, r) ≤ 1 (2.8)

is valid for r ∈ [0, τk], where τk is the unique root in (0, 1) of the equation:

2 (1 − rp) − rp(k−1)+m
(
5r2p − 2rp + 1

)
= 0.

The upper bound τk cannot be improved.

Theorem 5. Let k ≥ 2, m, p ∈ N and m ≤ p. Suppose that f = h + g is
harmonic in D, where h and g are given by (2.4), and h, g ∈ Bpk+m. Then,
the inequality:

Mpk+m(h, r) + Mpk+m(g, r) ≤ 1 (2.9)

is valid for r ∈ [0, θk], where Mpk+m(h, r) is given by (2.5) and θk is the
unique root in (0, 1) of the equation:

(1 − rp) − rpk+m (3 − rp) = 0.

The upper bound θk cannot be improved as f(z) = h(z)+λh(z) shows, where
h(z) = zpk+m and |λ| = 1.

Our next result is similar to Theorem 4, but for fixed initial coefficients
apk+m and bpk+m having same modulus value.

Theorem 6. Let k ≥ 2, m, p ∈ N, and m ≤ p. Suppose that f = h + g is
harmonic in D, where h and g are given by (2.4), and h, g ∈ Bpk+m. Let
|apk+m| = |bpk+m| = a ∈ (0, 1] be fixed. Then, the inequality:

Mpk+m(h, r) + Mpk+m(g, r) ≤ 1 (2.10)

is valid for r ∈ [0, ςk], where ςk = ςk(a) is the unique root in (0, 1) of the
equation:

(1 + a) (1 − rp) − 2rpk+m
[
2a2 + a + rp

(
1 − 2a2

)]
= 0.

The upper bound ςk cannot be improved.

Remark 4. Clearly, ςk(1) = θk. Also, it is possible to fix both |apk+m| and
|bpk+m| separately and obtain an analogous general result than Theorem 6.
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3. Key Lemmas and Their Proofs

To establish our main results, we need the following lemmas.

Lemma 1. Suppose that m, p ∈ N, m ≤ p, d ∈ (0, 1], and r = rp,m,d is as in
Theorem 1, i.e., the root of (2.1) in (0, 1). Then:

rp+m ≤ 1
3 + d

.

Proof. Let y = rp+m
p,m,d. Then, (2.1) becomes a quadratic equation in y of the

form:
(

4(1 + d)(3 + d) +
1

r2m
p,m,d

)

y2 − (8 + 4d)y + 4r2m
p,m,d = 0,

which has two solutions:

y =
4 + 2d ± 2

√
(1 + d)(3 + d)

√
1 − 4r2m

p,m,d

4(1 + d)(3 + d) + 1
r2m
p,m,d

≤
4 + 2d + 2

√
(1 + d)(3 + d)

√
1 − 4r2m

p,m,d

4(1 + d)(3 + d) + 1
r2m
p,m,d

≤ 1
2

⎛

⎝sup
2 + d +

√
(1 + d)(3 + d)

√
1 − 4r2m

p,m,d

(1 + d)(3 + d) + 1
4r2m

p,m,d

⎞

⎠ ,

and therefore, it is a simple exercise to see that:

rp+m
p,m,d ≤ 1

2

(

sup
t∈(0,1]

2 + d +
√

(1 + d)(3 + d)
√

1 − t

(1 + d)(3 + d) + 1
t

)

=
1
2

(
2 + d +

√
(1 + d)(3 + d)

√
1 − t

(1 + d)(3 + d) + 1
t

)∣
∣
∣
∣
∣
t= 2

3+d

=
1

3 + d
,

which completes the proof of the lemma. �

Lemma 2. Suppose that m, p ∈ N, m ≤ p, d ∈ (0, 1], and r = rp,m,d is as in
Theorem 1, i.e., the root of (2.1) in (0, 1). Then:

1
rp−m

(2 + d −
√

(1 + d)(3 + d)
√

1 − r2p) =
1
2
.

Proof. Suppose that m < p and let y = rp−m. Then, (2.1) reduces to a
quadratic equation in y:

y2 − (8 + 4d)y + 4(1 + d)(3 + d)r2p + 4 = 0,

which has two solutions:

y1 = 4 + 2d + 2
√

(1 + d)(3 + d)
√

1 − r2p > 1 and

y2 = 4 + 2d − 2
√

(1 + d)(3 + d)
√

1 − r2p.
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The solution y = y1 is impossible, because all positive roots of the initial
equation must be less than 1. Therefore:

y = y2 = 2
(
2 + d −

√
(1 + d)(3 + d)

√
1 − r2p

)
.

Now, consider the case m = p. In this case:

rm,m,d =
(

3 + 4d
4(1 + d)(3 + d)

) 1
2m

,

so that:
1

rp−m

(
2 + d −

√
(1 + d)(3 + d)

√
1 − r2m

)

= 2 + d −
√

(1 + d)(3 + d)

√

1 − 3 + 4d
4(1 + d)(3 + d)

= 2 + d −
(

2d + 3
2

)

=
1
2
,

and the proof is complete. �

Lemma 3. [25]. Let 0 < R ≤ 1. If g(z) =
∑∞

k=0 bkzk is analytic and satisfies
the inequality |g(z)| ≤ 1 in D. Then, the following sharp inequality holds:

∞∑

k=1

|bk|2Rpk ≤ Rp (1 − |b0|2)2
1 − |b0|2Rp

. (3.1)

Lemma 4. [41]. If f ∈ B has the expansion f(z) =
∑∞

n=0 anzn, then:
∞∑

n=0

|an| rn +
(

1
1 + |a0| +

r

1 − r

) ∞∑

n=1

|an|2 r2n ≤ |a0| +
r

1 − r
(1 − |a0|2).

4. Bohr’s Inequality for the Class of Harmonic Mappings

4.1. Proof of Theorem 1

Given that |g′(z)| ≤ d|h′(z)| for some d ∈ (0, 1], where:

h(z) =
∞∑

k=0

akzpk+m and g(z) =
∞∑

k=0

bkzpk+m.

We integrate inequality |g′(z)|2 ≤ d2|h′(z)|2 over the circle |z| = r and get:
∞∑

k=0

(pk + m)2|bk|2r2(pk+m−1) ≤ d2
∞∑

k=0

(pk + m)2|ak|2r2(pk+m−1).

We integrate the last inequality with respect to r2 and obtain:
∞∑

k=0

(pk + m)|bk|2r2(pk+m) ≤ d2
∞∑

k=0

(pk + m)|ak|2r2(pk+m).
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One more integration (after dividing by r2) gives:

∞∑

k=0

|bk|2r2(pk+m) ≤ d2
∞∑

k=0

|ak|2r2(pk+m),

which (since |a0| = |b0| by hypothesis) yields:

∞∑

k=1

|bk|2rpk ≤ d2
∞∑

k=1

|ak|2rpk for r < 1. (4.1)

For simplicity, we suppose that ‖h‖∞ = 1.
Following the idea from [25] (see also [26, Proof of Theorem 1]), one can

obtain first that:

B(h, r) = rm
∞∑

k=1

|ak|rpk ≤ rp+m(1 − a2)
√

1 − a2rpρp

1
√

1 − ρ−prp
, (4.2)

where a = |a0|, and for any ρ > 1, such that ρr ≤ 1. Indeed, we may let
h(z) = zmt(zp), where t(z) =

∑∞
k=0 akzk ∈ B. Also, let r = rp,m,d and

|a0| = a. Then, as in Ref. [26, Proof of Theorem 1], it follows easily that:

∞∑

k=1

|ak|rpk ≤
√
√
√
√

∞∑

k=1

|ak|2ρpkrpk

√
√
√
√

∞∑

k=1

ρ−pkrpk

≤
√

rpρp
(1 − a2)2

1 − a2rpρp

√
ρ−prp

1 − ρ−prp

=
rp(1 − a2)

√
1 − a2rpρp

1
√

1 − ρ−prp
, (4.3)

for any ρ > 1, such that ρr ≤ 1. In the first and the second steps above, we
have used the classical Cauchy–Schwarz inequality, and (3.1) with R = ρr in
Lemma 3, respectively. Hence, (4.2) follows.

Second, using the classical Cauchy–Schwarz inequality and (4.1), we see
that:

∞∑

k=1

|bk|rpk ≤
√
√
√
√

∞∑

k=1

|bk|2ρpkrpk

√
√
√
√

∞∑

k=1

ρ−pkrpk

≤ d

√
√
√
√

∞∑

k=1

|ak|2ρpkrpk

√
ρ−prp

1 − ρ−prp
(by (4.1)),

and thus, by (4.3), we have:

B(g, r) = rm
∞∑

k=1

|bk|rpk ≤ drp+m(1 − a2)
√

1 − a2rpρp

1
√

1 − ρ−prp
, (4.4)
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for any ρ > 1, such that ρr ≤ 1. Consequently, by combining the inequalities
(4.2) and (4.4), we get:

BH(f, r) = rm

(

|a0| + |b0| +
∞∑

k=1

|ak|rpk +
∞∑

k=1

|bk|rpk

)

≤ 2rm

(

a +
1 + d

2
rp(1 − a2)

√
1 − a2rpρp

1
√

1 − ρ−prp

)

. (4.5)

We wish to maximize the right-hand side of above. For this, we need to
consider the cases a ≥ rp and a < rp, separately. Note that our choice of ρ is
such that ρr ≤ 1.

Case 1. Assume that a ≥ rp.

In this case, we set ρ = 1
p
√

a
and obtain from (4.5) that:

BH(f, r) ≤ 2rmψ(a) for a ≥ rp, (4.6)

where we let α = rp and:

ψ(x) = x +
α(1 + d)

2
· 1 − x2

1 − αx
, x ∈ [0, 1].

Simple computation shows that, when α ≥ 1
2+d , ψ(x) attains its maximum

at x = x1, where:

x1 =

(

1 −
√

1 + d

3 + d

√
1 − α2

)
1
α

,

and thus, ψ(x) ≤ ψ(x1). On the other hand, when α < 1
2+d , ψ(x) is mono-

tonically increasing for x ∈ [0, 1], so that ψ(x) ≤ ψ(1) = 1. Consequently, for
the r = rp,m,d defined as in Theorem 1 and α ≥ 1

2+d , it follows from (4.6)
that:

BH(f, r) ≤ 2rmψ(x1) =
2

rp−m

(
2 + d −

√
(1 + d)(3 + d)

√
1 − r2p

)
= 1,

(4.7)
where we have used Lemma 2 for the equality sign on the right. When α <
1

2+d , we have ψ(x) ≤ ψ(1) = 1 and thus:

BH(f, r) ≤ 2rmψ(1) = 2rm.

Case 2. Assume that a < rp.

In this case, we set ρ = 1
r and obtain from (4.5) that:

BH(f, r) ≤ 2rm

(

a +
1 + d

2
· rp

√
1 − a2

√
1 − r2p

)

≤ (3 + d)rp+m ≤ 1. (4.8)

Here, the second inequality on the right follows from the argument that we
omitted the critical point:

a =
√

1 − r2p

√

1 +
(

(1+d)2

4 − 1
)

r2p

,
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because it is less than rp only in the case r2p > 2
3+d ≥ 1

2 , which contra-
dicts with Lemma 1. The third inequality on the right in (4.8) follows from
Lemma 1.

Therefore, in both cases, for all a ∈ [0, 1), we have:
(i) when α = rp ≥ 1

2+d :

BH(f, r) ≤ 1 for r ≤ rp,m,d,

where rp,m,d is defined as in Theorem 1.
(ii) when α = rp < 1

2+d , since max{2rm, (3 + d)rp+m} = 2rm, we have:

BH(f, r) ≤ 2rm.

In summary, if rm = 1
2 and rp < 1

2+d , that is, if p
m > log2(2 + d), we have by

the second case above:

BH(f, r) ≤ 2rm ≤ 1, for r ≤ m

√
1
2
.

The extremal function for the case d = 1 is f(z) = h(z) + λh(z) with h(z) =
zm and |λ| = 1.

When 1 ≤ p
m ≤ log2(2 + d), we apply the first case above to obtain:

B(f, r) ≤ 1
2

for r ≤ rp,m,d,

where rp,m,d is defined as in Theorem 1.
For the case d = 1, sharpness follows if we consider f(z) = h(z)+λh(z)

with |λ| = 1:

h(z) = zm

(
zp − a

1 − azp

)

, a =

⎛

⎝1 −
√

1 − r2p
p,m,1√

2

⎞

⎠ 1
rp
p,m,1

,

and then calculate the Bohr radius for it. It coincides with r. �
4.2. Proof of Theorem 2

Without loss of generality, we may assume that:

max{‖h‖∞, ‖g‖∞} = 1.

Case 3. Assume that 1 ≤ p
m ≤ log2 3.

It follows from Corollary 1(1) and the hypothesis that B(h, r) ≤ 1
2 and

B(g, r) ≤ 1
2 for r ≤ rp,m, where rp,m is as in Theorem 2. Adding these two

inequalities shows that:

BH(f, r) = B(h, r) + B(g, r) ≤ 1 for r ≤ rp,m.

Case 4. Assume that p
m > log2 3.

Applying the method of the previous case, Corollary 1(2) gives:

BH(f, r) = B(h, r) + B(g, r) ≤ 1, for r ≤ m

√
1
2
.

The extremal functions given in the statement are easy to verify. �
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5. Bohr-Type Inequalities for Harmonic Mappings with a
Multiple Zero at the Origin

5.1. Proof of Theorem 3

By assumption, |g′(z)| ≤ d|h′(z)| for some d ∈ [0, 1). Then, ωf = g′

h′ is
analytic in the punctured disk 0 < |z| < 1 and has removable singularity at
the origin with:

lim
z→0

ωf (z) =
bpk+m

apk+m
,

so that |bpk+m| ≤ d|apk+m| < |apk+m|.
Since h ∈ Bpk+m, by applying Lemma 4 to the function H(z) =∑∞

n=0 Anzpn, An = ap(n+k)+m, one has:
∞∑

n=0

|An|rpn+
(

1
1 + |A0| +

rp

1 − rp

) ∞∑

n=1

|An|2r2pn ≤ |A0|+
(
1 − |A0|2

) rp

1 − rp
.

(5.1)
Multiplying both sides of the inequality (5.1) by the number rpk+m, and then
adding the term rpk+m|A0|2

(
1

1+|A0| + rp

1−rp

)
to both sides, we have:

Mpk+m(h, r) ≤ rpk+m

[

|A0| +
rp

1 − rp
+

|A0|2
1 + |A0|

]

= rpk+m

(
rp

1 − rp
+ G(|A0|)

)

, (5.2)

where G(t) = t + t2(1 + t)−1. Since G′(t) > 0 on [0, 1], it follows that G(t) ≤
G(1) = 3/2, and thus, (5.2) implies:

Mpk+m(h, r) ≤ rpk+m

(
rp

1 − rp
+

3
2

)

= rpk+m

(
3 − rp

2(1 − rp)

)

. (5.3)

Next, since |g′(z)| ≤ d|h′(z)| for z ∈ D, we have (cf. [11]):
∞∑

n=k

|bpn+m| rpn+m ≤ d
∞∑

n=k

|apn+m| rpn+m for r ≤ 1/
p
√

3, (5.4)

and, as in the proof of Theorem 1:
∞∑

n=k

|bpn+m|2 rp(2n−k)+m ≤ d2
∞∑

n=k

|apn+m|2 rp(2n−k)+m. (5.5)

Thus, we conclude from (5.2), (5.4), and (5.5) that:

Npk+m(g, r) ≤ d

∞∑

n=k

|apn+m| rpn+m + d2
(

1
1 + |apk+m| +

rp

1 − rp

)

×
∞∑

n=k

|apn+m|2 rp(2n−k)+m,

which by combining with (5.2) gives:

Mpk+m(h, r) + Npk+m(g, r)
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≤ (1 + d)
∞∑

n=k

|apn+m| rpn+m + (1 + d2)
(

1
1 + |apk+m| +

rp

1 − rp

)

×
∞∑

n=k

|apn+m|2 rp(2n−k)+m

= (d − d2)
∞∑

n=k

|apn+m| rpn+m + (1 + d2)Mpk+m(h, r)

≤ (d − d2)Mpk+m(h, r) + (1 + d2)Mpk+m(h, r) = (d + 1)Mpk+m(h, r),

which, by (5.3), is less than or equal to 1 if:

rpk+m

(
3 − rp

2(1 − rp)

)

≤ 1
1 + d

, i.e., tk(r) ≥ 0,

where tk(r) is given by (2.7); that is:

tk(r) =
2

d + 1
(1 − rp) − rpk+m (3 − rp) .

This proves the first part of the assertion.
Now, we prove the uniqueness of the solution in (0, 1) of tk(r) = 0, we

compute that tk(0) = 2/(d + 1) > 0, tk(1) = −2 < 0, and:

t′k(r) = − 2p

d + 1
rp−1 − 3(pk + m)rpk+m−1 + (p(k + 1) + m)rp(k+1)+m−1

= −p

(
2

d + 1
rp−1 − rp(k+1)+m−1

)

− (pk + m)rpk+m−1 (3 − rp)

≤ −p
(
rp−1 − rp(k+1)+m−1

)
− (pk + m)rpk+m−1 (3 − rp) < 0,

showing that tk(r) is a decreasing function of r in (0, 1), and thus, tk(r) = 0
has a unique root in (0, 1). �

5.2. Proof of Theorem 4

By assumption h ∈ Bpk+m. Therefore, as in the proof of Theorem 3, we can
apply Lemma 4 to the function H(z) =

∑∞
n=0 Anzpn, An = ap(n+k)+m. Thus,

(5.1) holds. Multiplying the inequality (5.1) by rpk+m gives:

M1
pk+m(h, r) ≤ rpk+m

[

|A0| +
(
1 − |A0|2

) rp

1 − rp

]

.

Now, we can maximize the right-hand side with respect to |A0| by fix-
ing r. A simple calculation shows that we arrive at the maximum value
rpk+mM(r) which is achieved at |A0| = 1, if r ∈

[
0, 1

p√3

]
, and at |A0| = 1−rp

2rp

in the remaining cases. Thus, we have the maximum value:

rp(k−1)+m
(
5r2p − 2rp + 1

)

4 (1 − rp)
,

and therefore:

M1
pk+m(h, r) ≤ rpk+m

[

|A0| +
(
1 − |A0|2

) rp

1 − rp

]
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≤ rp(k−1)+m
(
5r2p − 2rp + 1

)

4 (1 − rp)
.

Again, as g ∈ Bpk+m, we have similarly the inequality:

M1
pk+m(g, r) ≤ rpk+m

[

|B0| +
(
1 − |B0|2

) rp

1 − rp

]

≤ rp(k−1)+m
(
5r2p − 2rp + 1

)

4 (1 − rp)
,

where B0 = bpk+m. Adding the two resulting inequalities yields that:

M1
pk+m(h, r) + M1

pk+m(g, r) ≤ rp(k−1)+m
(
5r2p − 2rp + 1

)

2 (1 − rp)
.

Hence, the desired inequality (2.8), i.e., M1
pk+m(h, r) + M1

pk+m(g, r) ≤ 1,
holds whenever Lk(r) ≥ 0, where:

Lk(r) = 2 (1 − rp) − rp(k−1)+m
(
5r2p − 2rp + 1

)
.

This proves the first part of the assertion.
Next, we prove the uniqueness of the solution in (0, 1) of Lk(r) = 0. In

fact, note that Lk(0) = 2 > 0, Lk(1) = −4 < 0, and:

L′
k(r) = −prp−1

(
2 − rp(k−2)+m

)
− rp(k−1)+m−1Q(rp),

where Q(x) = 5(p(k + 1) + m)x2 − 2(pk + m)x + pk + m. It follows that
Q(x) > 0, because the discriminant of the function Q is less than 0. This
gives that L′

k(r) < 0, and hence, Lk(r) = 0 has a unique root τk in (0, 1).
Finally, we verify the sharpness of the upper bound τk for the Bohr

radius. We consider the function f(z) = h(z) + λh(z), |λ| = 1, where:

h(z) = zpk+m

(
a − zp

1 − azp

)

, a ∈ (0, 1).

For this function, we obtain that:

M1
pk+m(h, r) + M1

pk+m(g, r) = 2rpk+m

[

a +
(1 − a2)rp

1 − rp

]

,

which equals 1 for r = τk and a = 1−τp
k

2τp
k

. This completes the proof of Theo-
rem 4 �

5.3. Proof of Theorem 5

Let h ∈ Bpk+m. Then, (5.2) holds, that is:

Mpk+m(h, r) ≤ rpk+m

[

|A0| +
rp

1 − rp
+

|A0|2
1 + |A0|

]

≤ rpk+m

[
3
2

+
rp

1 − rp

]

,

(5.6)
where A0 = apk+m. The second inequality holds, because the function T
defined by:

T (x) = x +
x2

1 + x



75 Page 18 of 22 Y. Huang et al. MJOM

is a monotonically increasing function of x ∈ [0, 1], so that: T (x) ≤ T (1) =
3/2.

Similarly, with B0 = bpk+m, we have:

Mpk+m(g, r) ≤ rpk+m

[

|B0| +
rp

1 − rp
+

|B0|2
1 + |B0|

]

≤ rpk+m

[
3
2

+
rp

1 − rp

]

,

(5.7)
where |B0| ∈ [0, 1].

Combining (5.6) and (5.7) leads to:

Mpk+m(h, r) + Mpk+m(g, r) ≤ rpk+m

(

3 +
2rp

1 − rp

)

, (5.8)

if and only if wk(r) ≥ 0, where:

wk(r) = (1 − rp) − rpk+m (3 − rp) .

This proves the first part of the assertion of the theorem.
Next, to prove the uniqueness of the solution in (0, 1) of wk(r) = 0, it

is sufficient to observe that wk(0) = 1 > 0, wk(1) = −2 < 0, and:

w′
k(r) = −prp−1

(
1 − rpk+m

) − (pk + m)rpk+m−1 (3 − rp) < 0.

Finally, it is easy to verify that the extremal function has the form
f(z) = h(z) + λh(z), where h(z) = zpk+m and |λ| = 1. This completes the
proof of Theorem 5. �

5.4. Proof of Theorem 6

The proof is essentially similar to the proof of Theorem 5. At first, from (5.8)
and the assumption that |A0| = |B0| = a, it is obvious that the required
inequality (2.10) is true if:

2rpk+m

(

a +
rp

1 − rp
+

a2

1 + a

)

= 2rpk+m

[
a + 2a2 + rp

(
1 − 2a2

)

(1 + a) (1 − rp)

]

≤ 1,

(5.9)
which holds if and only if Vk,a(r) ≥ 0, where:

Vk,a(r) := (1 + a) (1 − rp) − 2rpk+m
[
2a2 + a + rp(1 − 2a2)

]
.

This proves the first part of the assertion of the theorem.
Next, we can prove the uniqueness of the solution of Vk,a(r) = 0 in

(0, 1). It is obvious that Vk,a(0) = 1 + a > 0 and Vk,a(1) = −2(1 + a) < 0.
Furthermore:

V ′
k,a(r) = −prp−1

[
1 + a + 2

(
1 − 2a2

)
rpk+m

]

−2rpk+m−1(pk + m)
[
2a2 + a +

(
1 − 2a2

)
rp
]
,

and it is easy to obtain that V ′
k,a(r) < 0, and thus, Vk,a(r) = 0 has the unique

root ςk = ςk(a) in the interval (0, 1).
Finally, we verify the sharpness of the upper bound ςk for the Bohr

radius. Consider f(z) = h(z) + λh(z), where:

h(z) = zpk+m

(
a − zp

1 − azp

)

, a ∈ [0, 1],
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|λ| = 1 and a ∈ [0, 1] is fixed. In this case, we get for the left hand side of
(2.10) (for simplicity, call it as W (r) ) takes the form:

W (r) = 2rpk+m

[

a +
(1 − a2)rp

1 − rp

]

+ 2
(

1
1 + a

+
rp

1 − rp

)

a2rpk+m

= 2rpk+m

[
a + 2a2 + rp

(
1 − 2a2

)

(1 + a) (1 − rp)

]

.

Comparison of this expression with the right-hand side of the equation in
formula (5.9) delivers the asserted sharpness. The proof of Theorem 6 is
complete. �

Acknowledgements

This research of the first two authors is partly supported by Guangdong
Natural Science Foundations (Grant No. 2021A030313326). The work of the
third author was supported by Mathematical Research Impact Centric Sup-
port (MATRICS) of the Department of Science and Technology (DST), India
(MTR/2017/000367).

Data Availability Statement The authors declare that this research is purely
theoretical and does not associate with any data.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest,
regarding the publication of this paper.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Abu-Muhanna, Y.: Bohr’s phenomenon in subordination and bounded har-
monic classes. Complex Var. Elliptic Equ. 55(11), 1071–1078 (2010)

[2] Abu-Muhanna, Y., Ali, R.M.: Bohr’s phenomenon for analytic functions into
the exterior of a compact convex body. J. Math. Anal. Appl. 379(2), 512–517
(2011)

[3] Abu-Muhanna, Y., Ali, R.M.: Bohr’s phenomenon for analytic functions and
the hyperbolic metric. Math. Nachr. 286(11–12), 1059–1065 (2013)

[4] Abu-Muhanna, Y., Ali, R.M., Lee, S.K.: Bohr operator on analytic functions.
arXiv:1912.11787

[5] Abu-Muhanna, Y., Ali, R.M., Ng, Z.C., Hasni, S.F.M.: Bohr radius for sub-
ordinating families of analytic functions and bounded harmonic mappings. J.
Math. Anal. Appl. 420(1), 124–136 (2014)

[6] Aizenberg, L.: Multidimensional analogues of Bohr’s theorem on power series.
Proc. Am. Math. Soc. 128, 1147–1155 (2000)

http://arxiv.org/abs/1912.11787


75 Page 20 of 22 Y. Huang et al. MJOM

[7] Aizenberg, L.: Generalization of Caratheodory’s inequality and the Bohr radius
for multidimensional power series. Oper. Theory Adv. Appl. 158, 87–94 (2005)

[8] Aizenberg, L., Aytuna, A., Djakov, P.: Generalization of a theorem of Bohr for
basis in spaces of holomorphic functions of several complex variables. J. Math.
Anal. Appl. 258(2), 429–447 (2001)

[9] Ali, R.M., Abu-Muhanna, Y., Ponnusamy, S.: On the Bohr inequality. In: Govil,
N.K. et al. (eds.) Progress in Approximation Theory and Applicable Complex
Analysis, Springer Optimization and its Applications, vol. 117, pp. 265–295.
Springer, Cham (2017)

[10] Ali, R.M., Barnard, R.W., Solynin, AYu.: A note on the Bohr’s phenomenon
for power series. J. Math. Anal. Appl. 449(1), 154–167 (2017)

[11] Alkhaleefah, S.A., Kayumov, I.R., Ponnusamy, S.: On the Bohr inequality with
a fixed zero coefficient. Proc. Am. Math. Soc. 147(12), 5263–5274 (2019)

[12] Bhowmik, B., Das, N.: Bohr phenomenon for subordinating families of certain
univalent functions. J. Math. Anal. Appl. 462(2), 1087–1098 (2018)

[13] Boas, H.P., Khavinson, D.: Bohr’s power series theorem in several variables.
Proc. Am. Math. Soc. 125, 2975–2979 (1997)

[14] Bohr, H.: A theorem concerning power series. Proc. Lond. Math. Soc. 2(13),
1–5 (1914)

[15] Bombieri, E.: Sopra un teorema di H.Bohr e G.Ricci sulle funzioni maggioranti
delle serie di potenze. Mat. Ital. 17(3), 276–282 (1962)

[16] Defant, A., Frerick, L.: A logarithmic lower bound for multi-dimensional Bohr
radii. Isr. J. Math. 152(1), 17–28 (2006)

[17] Defant, A., Frerick, L., Ortega-Cerdà, J., Ounäıes, M., Seip, K.: The
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