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Integral Inequalities for Compact
Hypersurfaces with Constant Scalar
Curvature in the Euclidean Sphere

Luis J. Aĺıas and Josué Meléndez

Abstract. We study the rigidity of compact-oriented hypersurfaces with
constant scalar curvature isometrically immersed into the unit Euclidean
sphere S

n+1. In particular, we establish a sharp integral inequality for
the behavior of the norm of the total umbilicity tensor, equality char-
acterizing the totally umbilical hypersurfaces, and a certain family of
standard tori of the form S

1(
√

1 − r2) × S
n−1(r). Moreover, under an

appropriate constraint on the total umbilicity tensor, we are able to
extend this result for any integer k, with 2 ≤ k ≤ n − 1, equality char-
acterizing the totally umbilical hypersurfaces and a certain family of
standard product of spheres of the form S

k(
√

1 − r2) × S
n−k(r).
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1. Introduction and Statement of the Main Results

In the seminal paper [7], Cheng and Yau introduced a new operator, denoted
here by L, for the study of hypersurfaces with constant scalar curvature in
Riemannian space forms. In particular, when the ambient space is the Eu-
clidean sphere S

n+1, Cheng and Yau showed, as an application of the opera-
tor L, that the only compact hypersurfaces in S

n+1 with constant normalized
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Luis J. Aĺıas was partially supported by MINECO/FEDER project MTM2015-
65430-P, MICINN/FEDER project PGC2018-097046-B-I00, and Fundación Séneca project
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19901/GERM/15, Spain, and Programa Especial de Apoyo a la Investigación, Sis-
temas Hamiltonianos, Mecánica y Geometŕıa, México.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-020-1482-z&domain=pdf
http://orcid.org/0000-0002-8482-4888


61 Page 2 of 14 L. J. Alías , J. Meléndez MJOM

scalar curvature R ≥ 1 and non-negative sectional curvature are either to-
tally umbilical hypersurfaces or isometric to a standard product of spheres
S
m(

√
1 − r2)×S

n−m(r) ⊂ S
n+1, with 1 ≤ m ≤ n−1 and 0 < r < 1. After the

works of Cheng and Yau and following their approach, there have been many
other applications of the operator L, establishing different rigidity results for
hypersurfaces with constant scalar curvature (see, for instance, the recent
book [3] and the references therein). In particular, in Theorem 2 of [8], Li
characterized totally umbilical hypersurfaces and constant scalar curvature
tori of the form S

1(
√

1 − r2) × S
n−1(r) ⊂ S

n+1 in terms of a new estimate
for the squared norm of the second fundamental form of the hypersurface,
extending to the case of constant scalar curvature a previous and well-known
result due to Alencar and do Carmo [1] for the case of constant mean curva-
ture. Specifically, as a consequence of Li’s result, we can state the following
gap result for compact hypersurfaces with constant scalar curvature in S

n+1

in terms of the so-called total umbilicity tensor (see also Theorem 1 in [5] and
Theorem 1 in [2] for an extension of this gap result to the case of complete
hypersurfaces).

Theorem 1.1. Let Σn be a compact-oriented hypersurface isometrically im-
mersed into the unit Euclidean sphere S

n+1 (n ≥ 3) with constant normal-
ized scalar curvature R ≥ 1. Let Φ stand for the total umbilicity tensor of the
immersion. Assume that:

|Φ|2 ≤ αR, (1.1)

where

αR =
n(n − 1)R2

(n − 2)(n(R − 1) + 2)
> 0.

Then:

(1) either |Φ| = 0 and Σ is a totally umbilical hypersurface;
(2) or |Φ|2 = αR > 0 and Σ is a constant mean curvature torus S1(

√
1 − r2)

× S
n−1(r) ⊂ S

n+1, with r =
√

(n − 2)/nR.

In other words, for every compact-oriented hypersurface Σ isometrically
immersed in S

n+1 (n ≥ 3) with constant normalized scalar curvature R ≥ 1,
it follows that:

(1) either maxΣ |Φ| = 0 and Σ is a totally umbilical hypersurface;
(2) or maxΣ |Φ|2 ≥ αR > 0, with equality if and only if Σ is a constant mean

curvature torus S1(
√

1 − r2)×S
n−1(r) ⊂ S

n+1, with r =
√

(n − 2)/nR.

Motivated by Theorem 1.1, in this paper, we establish an integral version
of it, which is given in terms of an integral inequality for the behavior of the
norm of the umbilicity tensor. Specifically, we obtain the following integral
inequality.

Theorem 1.2. Let Σn be a compact-oriented hypersurface isometrically im-
mersed into the unit Euclidean sphere S

n+1 (n ≥ 3) with constant normalized
scalar curvature R satisfying R ≥ 1. In the case where R = 1, assume further
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that the mean curvature function H does not change sign. Let Φ stand for
the total umbilicity tensor of the immersion. Then:

∫

Σ

|Φ|p+2QR(|Φ|) ≥ 0 (1.2)

for every real number p ≥ 2, where QR is the real function:

QR(x) = (n − 2)x2 + (n − 2)x
√

x2 + n(n − 1)(R − 1) − n(n − 1)R. (1.3)

Moreover, if R > 1 the equality holds in (1.2) if and only if:

(1) either |Φ| = 0 and Σ is a totally umbilical hypersurface,
(2) or

|Φ|2 = αR =
n(n − 1)R2

(n − 2)(n(R − 1) + 2)
> 0

and Σ is a torus S1(
√

1 − r2)×S
n−1(r) ⊂ S

n+1, with r =
√

(n − 2)/nR.

As an application of Theorem 1.2, we can give an alternative proof of
Theorem 1.1. Actually, since QR(x) ≤ 0 for every 0 ≤ x ≤ √

αR (see Remark
3.5), under assumption (1.1), we have QR(|Φ|) ≤ 0 on Σ, which gives the
equality in (1.2) and allows us to derive Theorem 1.1 as a direct consequence
of Theorem 1.2.

Finally, and under an appropriate constraint on the total umbilicity
tensor, we are able to extend Theorem 1.2 for any integer k, with 2 ≤ k ≤
n−1, equality characterizing the totally umbilical hypersurfaces and a certain
family of standard product of spheres of the form S

k(
√

1 − r2)×S
n−k(r) (see

Theorem 4.1).

2. Preliminaries

Let S
n+1 denote the Euclidean unit sphere:

S
n+1 = {x = (x0, x1, . . . , xn+1) ∈ R

n+2 : |x|2 = 1} ⊂ R
n+2.

Let Σn ↪→ S
n+1 be a connected compact isometrically immersed hyper-

surface which we assume to be orientable and oriented by a globally defined
unit normal vector field N . We set A for the second fundamental tensor of the
immersion (with respect to the normal direction N), and let H = (1/n)Tr(A)
be the mean curvature function. For our purposes, it will be more appropriate
to deal with the traceless part of A, which is given by Φ = A − HI, with I
the identity operator on X(Σ), the C∞(Σ)-module of smooth vector fields on
Σ. Then, Tr(Φ) = 0 and:

|Φ|2 = Tr(Φ2) = |A|2 − nH2 ≥ 0,

with equality at p ∈ Σ if and only if p is an umbilical point. Thus, Φ ≡ 0 is
equivalent to the fact that the immersion is totally umbilical. For that reason,
Φ is also called the total umbilicity tensor of Σ.
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The relation between the curvature tensor R of the hypersurface and the
curvature of Sn+1 is expressed via the Gauss equation, which can be written
in terms of A in the form:

R(X,Y )Z = 〈X,Z〉Y − 〈Y,Z〉X + 〈AX,Z〉AY − 〈AY,Z〉AX, (2.1)

for each X,Y,Z ∈ X(Σ). In particular, the Ricci and the scalar curvatures of
Σ are given, respectively, by:

Ric(X,X) = (n − 1)|X|2 + nH〈AX,X〉 − |AX|2 (2.2)

for X ∈ X(Σ), and

Scal = n(n − 1)R = n(n − 1) + n2H2 − |A|2 = n(n − 1)(1 + H2) − |Φ|2.
(2.3)

Here, with R, we indicate the normalized scalar curvature. From (2.3), we
obtain the identities:

nH2 =
1
n

|A|2 + (n − 1)(R − 1), (2.4)

and

|Φ|2 =
n − 1

n
|A|2 − (n − 1)(R − 1) = n(n − 1)H2 − n(n − 1)(R − 1).

(2.5)

We let P denote the first Newton transformation of A. That is, P :
X(Σ) → X(Σ) is the operator given by P = nHI−A. Observe that P is also a
self-adjoint linear operator which commutes with A, and Tr(P ) = n(n−1)H.
For u ∈ C2(Σ), set:

L(u) = Tr(P ◦ hess u) = div(P (∇u)). (2.6)

Thus, L defines a second-order differential operator which, in general, is not
elliptic. It is clear from the definition that L is elliptic if and only if P is
positive definite. Note that:

L(uv) = uLv + vLu + 2〈P (∇u),∇v〉 (2.7)

for every u, v ∈ C2(Σ). The operator L arises naturally as the linearized
operator of the scalar curvature for normal variations of the hypersurface
(see, for instance, [12]).

3. Proof of Theorem 1.2

For the proof of Theorem 1.2, we will need some other preliminary results.
One of them is the following result given in Lemma 5 in [2] (see also Lemma
6.6 in [3]).

Lemma 3.1. Let Σn ↪→ S
n+1 be an oriented isometrically immersed hyper-

surface. Assume that the mean curvature function H does not change sign,
so that, without loss of generality, we may assume H ≥ 0 on Σ. Let μ− and
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μ+ be, respectively, the minimum and the maximum of the eigenvalues of P
at every point p ∈ Σ. If R > 1 on Σ (resp., R ≥ 1 on Σ), then:

μ− > 0(resp., μ− ≥ 0)

and

μ+ < 2nH(resp., μ+ ≤ 2nH).

Remark 3.2. In particular, Lemma 3.1 implies that if Σ has constant normal-
ized scalar curvature R > 1 (resp., R = 1), the linear operator P is positive
definite (resp., positive semidefinite) and the differential operator L is elliptic
(resp., semielliptic).

Observe also that if R > 1 on Σ, it follows from (2.4) that H does not
vanish. Thus, connectedness of Σ implies that H does not change sign, and
without loss of generality, we may assume H > 0 on Σ.

We will also need the following auxiliary result, known as Okumura
lemma, which can be found in [10] and [1, Lemma 2.6].

Lemma 3.3. Let a1, . . . , an be real numbers, such that
∑n

i=1 ai = 0. Then:

− n − 2
√

n(n − 1)

(
n∑

i=1

a2
i

)3/2

≤
∑

i

a3
i ≤ n − 2

√
n(n − 1)

(
n∑

i=1

a2
i

)3/2

.

Moreover, equality holds in the right-hand (resp., left-hand) side if and only
if (n − 1) of the ai’s are non-positive (resp. non-negative) and equal.

The proof of Theorem 1.2 is based on the following inequality for the
operator L acting on the function |Φ|2.
Lemma 3.4. Let Σn ↪→ S

n+1 be an oriented isometrically immersed hyper-
surface with constant normalized scalar curvature R ≥ 1. In the case where
R > 1, choose the orientation, such that H > 0 on Σ. In the case where
R = 1, assume further that the mean curvature function H does not change
sign, and choose the orientation, such that H ≥ 0 on Σ. Then:

1
2
L(|Φ|2) ≥ − 1

√
n(n − 1)

|Φ|2QR(|Φ|)
√

|Φ|2 + n(n − 1)(R − 1), (3.1)

where

QR(x) = (n − 2)x2 + (n − 2)x
√

x2 + n(n − 1)(R − 1) − n(n − 1)R. (3.2)

Moreover, if R > 1 and equality holds in (3.1), then Σ is an open piece of a
constant mean curvature torus of the form S

1(
√

1 − r2) × S
n−1(r) ⊂ S

n+1,
with r =

√
(n − 2)/nR.

Remark 3.5. It is direct to see that the function QR(x) given in (3.2) is strictly
increasing for x ≥ 0, with QR(0) = −n(n − 1)R < 0 and QR(x) = 0 has a
unique positive root at:

x =
√

αR =

√
n(n − 1)R2

(n − 2)(n(R − 1) + 2)
.
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The inequality in the first part of Lemma 3.4 was given in [2, Lemma 7]
(see also Lemma 6.8 of [3]). Observe that in this paper, there is a change in
the sign of the function QR(x) with respect to the definition of QR(x) in [2]
and [3]. For the sake of completeness, we include here the characterization of
the equality when R > 1, not given in [2].

Proof of Lemma 3.4. Inequality (3.1) was already proved in [2, Lemma 7].
Moreover, a detailed analysis of its proof shows that if equality holds in (3.1),
then all the inequalities in the proof of Lemma 7 in [2] must be equalities.
Hence, let us assume that equality holds and R > 1. Then, inequality (10) in
[2] must be an equality; that is:

n

2(n − 1)
L(|Φ|2) = nHL(nH),

and therefore:

gP (∇H)∇H = 0. (3.3)

Since R > 1, P is positive definite and (3.3) implies that H is constant. Be-
sides, (12) in [2] must be also an equality or, equivalently, |∇A|2−n2|∇H|2 =
0. Since we already know that H is constant, this means that ∇A = 0. That
is, the second fundamental form is parallel. Finally, (15) in [2] must be also
an equality, so that we obtain the equality in Okumura lemma. This implies
that Σ is an isoparametric hypersurface of Sn+1 with exactly two constant
principal curvatures with multiplicities (n− 1) and 1. By the classical results
on isoparametric hypersurfaces in S

n+1 [6] (see also Chapter 3 in [11] for a
more modern reference on the topic), we conclude that Σ must be an open
piece of a standard torus S

1(
√

1 − r2) × S
n−1(r) ⊂ S

n+1, with 0 < r < 1,
with principal curvatures:

λ1 = − r√
1 − r2

and λ2 = · · · = λn =
√

1 − r2

r
.

A simple computation gives:

|Φ|2 =
n − 1

nr2(1 − r2)
and R = (n − 2)/nr2 > 0.

In particular, R > 1 if and only if r <
√

(n − 2)/n. Obviously, in this case
r =

√
(n − 2)/nR <

√
(n − 2)/n, with:

|Φ|2 = constant = αR =
n(n − 1)R2

(n − 2)(n(R − 1) + 2)
,

and QR(|Φ|) = 0, so that (3.1) holds trivially. �

Now, we are ready to give the proof of our Theorem 1.2.

Proof of Theorem 1.2. Let u = |Φ|2. By Lemma 3.4, we have:

1
2
L(u) ≥ − 1

√
n(n − 1)

uQR(
√

u)
√

u + n(n − 1)(R − 1),
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where QR(x) is given by (3.2). Taking into account that R ≥ 1 and u ≥ 0,
we obtain:

√
n(n − 1)

2
up/2

√
u + n(n − 1)(R − 1)

L(u) ≥ −u
p+2
2 QR(

√
u),

for every p ≥ 2. In other words:

u
p+2
2 QR(

√
u) ≥ −

√
n(n − 1)

2
up/2

√
u + n(n − 1)(R − 1)

L(u). (3.4)

By the compactness of Σ, we can integrate both sides of (3.4), yielding:
∫

Σ

u
p+2
2 QR(

√
u) ≥ −

√
n(n − 1)

2

∫

Σ

up/2

√
u + n(n − 1)(R − 1)

L(u). (3.5)

On the other hand, from the definition of the operator L, we obtain:

f(u)L(u) = div(f(u)P (∇u)) − f ′(u)〈P (∇u),∇u〉
for every smooth function f : R → R. Integrating both sides of the above
equality, and using Stokes’ theorem and the compactness of Σ, we deduce
that:

−
∫

Σ

f(u)L(u) =
∫

Σ

f ′(u)〈P (∇u),∇u〉 (3.6)

for every smooth function f . In our case, choose:

f(t) =
t
p
2

√
t + n(n − 1)(R − 1)

, t ≥ 0. (3.7)

Hence, as R ≥ 1:

f ′(t) =
(p − 1)t

p
2 + n(n − 1)(R − 1)p t

p−2
2

2(t + n(n − 1)(R − 1))
3
2

≥ 0 (3.8)

for every real number p ≥ 2. Using (3.6) and (3.8) in (3.5), we can estimate:
∫

Σ

u
p+2
2 QR(

√
u) ≥

√
n(n − 1)

2

∫

Σ

f ′(u)〈P (∇u),∇u〉 ≥ 0, (3.9)

since we know that the operator P is positive semidefinite (see Remark 3.2).
In other words:

∫

Σ

|Φ|p+2QR(|Φ|) ≥ 0. (3.10)

This proves the inequality of Theorem 1.2.
Now, let us suppose that R > 1 and the equality holds in (3.10). By the

inequality (3.9), we obtain:
∫

Σ

f ′(u)〈P (∇u),∇u〉 = 0, (3.11)

where

f ′(u) =
(p − 1)u

p
2 + n(n − 1)(R − 1)p u

p−2
2

2(u + n(n − 1)(R − 1))
3
2

≥ 0,
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with equality if and only if p > 2 and u = 0. Since R > 1 we also know that:

〈P (∇u),∇u〉 ≥ 0

with equality if and only if ∇u = 0. Therefore, it follows from (3.11) that:

f ′(u)〈P (∇u),∇u〉 = 0 on Σ, (3.12)

which implies that the function u = |Φ|2 must be constant, either u ≡ 0 or
u ≡ u0 > 0.

The case where |Φ|2 = u ≡ 0 corresponds to the case where Σ is a
totally umbilical hypersurface. In the case where |Φ|2 = u ≡ u0 > 0, the
equality in (3.10) implies QR(|Φ|) = 0, and hence:

|Φ|2 = constant = αR.

Thus, (3.1) in Lemma 3.4 becomes trivially an equality:
1
2
L(|Φ|2) = 0 = − 1

√
n(n − 1)

|Φ|2QR(|Φ|)
√

|Φ|2 + n(n − 1)(R − 1),

and the proof finishes by applying the characterization of the equality given
in the last part of Lemma 3.4. �

4. Some Extensions of Theorem 1.2.

In this section, we introduce an appropriate constraint on the total umbilicity
tensor Φ to extend Theorem 1.2, obtaining integral inequalities similar to
(1.2) for every integer k, 2 ≤ k ≤ n − 1. Specifically, we will prove the
following result. Notice that, in the notation of Theorem 4.1, Theorem 1.2
corresponds to the case k = 1, where the additional hypothesis (4.1) is always
satisfied because of Okumura lemma.

Theorem 4.1. Let Σn be a compact-oriented hypersurface isometrically im-
mersed into a unit sphere S

n+1 (n ≥ 3) with constant normalized scalar
curvature R satisfying R ≥ 1. In the case where R > 1, choose the orien-
tation, such that H > 0. In the case where R = 1, assume further that the
mean curvature function H does not change sign, and choose the orientation,
such that H ≥ 0. Let k a integer with 2 ≤ k ≤ n − 1. Assume that:

Tr(Φ3) ≥ − n − 2k
√

nk(n − k)
|Φ|3 (4.1)

on Σ, where Φ is the total umbilicity tensor of the immersion. Then:
∫

Σ

|Φ|p+2QR,k(|Φ|) ≥ 0 (4.2)

for every real number p ≥ 2, where QR,k is the real function:

QR,k(x) = (n − 2)x2

+

√
n − 1

k(n − k)
(n − 2k)x

√
x2 + n(n − 1)(R − 1) − n(n − 1)R.

(4.3)
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Moreover, if R > 1 the equality holds in (4.2) if and only if:
(1) either |Φ| = 0 and Σ is a totally umbilical hypersurface,
(2) or

|Φ|2 = αR,k > 0,

where αR,k is the square of the only positive root of QR,k(x) = 0 (see
Remark 4.2) and Σ is a product of spheres S

k(
√

1 − r2) × S
n−k(r) ⊂

S
n+1, with r = r(R) <

√
n−k
n − 1

n

√
k(n−k)
n−1 .

Remark 4.2. Observe that QR,k(0) = −n(n − 1)R < 0. When k = n − 1,
a direct computation shows that QR,n−1(x) has a unique positive root at
x = √

αR,n−1, where:

αR,n−1 =
n(n − 1)R2

(n − 2)(n(R − 1) + 2)
= αR.

On the other hand, when 2 ≤ k ≤ n − 2 (and hence n > 3), by Lemma
2.7 and Remark 2.8 in [4], we know that the function QR,k(x) has a unique
positive root at:

x =
√

αR,k,

where in this case:

αR,k =
(n − 1)

[
(n − 1)(R − 1)(n − 2k)2 + 2k(n − k)(n − 2)R

] − (n − 2k)
√

Δ

2n(k − 1)(n − k − 1)

(4.4)

with

Δ = (n − 1)4
[
(n(R − 1) + 2k)2 − 4nRk(k − 1)

n − 1

]
.

Observe that, in particular, when n = 2m and k = n/2 = m, expression (4.4)
reduces to:

αR,m =
m(2m − 1)R

m − 1
=

n(n − 1)R
n − 2

.

Remark 4.3. The explicit value of r = r(R) in Theorem 4.1 (and also in
Lemma 4.4 and Corollary 4.6 below) can be computed by solving Eq. (4.9)
under the constraint (4.10), and it is given by the following expression:

r = r(R) =

√
n − k

nR
+

R − 1
2R

− 1
nR

√
n2(R − 1)2

4
+

k(n − k)(n(R − 1) + 1)
n − 1

.

The proof of Theorem 4.1 parallels that of Theorem 1.2, replacing
Lemma 3.4 by the following auxiliary result.

Lemma 4.4. Let Σn ↪→ S
n+1 be an oriented isometrically immersed hyper-

surface (n ≥ 3) with constant normalized scalar curvature R ≥ 1. In the case
where R > 1, choose the orientation, such that H > 0 on Σ. In the case where
R = 1, assume further that the mean curvature function H does not change
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sign, and choose the orientation such that H ≥ 0 on Σ. Let 2 ≤ k ≤ n − 1
and assume that:

Tr(Φ3) ≥ − n − 2k
√

nk(n − k)
|Φ|3 (4.5)

on Σ, where Φ = A − HI. Then:
1
2
L(|Φ|2) ≥ − 1

√
n(n − 1)

|Φ|2QR,k(|Φ|)
√

|Φ|2 + n(n − 1)(R − 1). (4.6)

Moreover, if R > 1 and equality holds in (4.6), then Σ is an open piece of a
standard product of spheres of the form S

k(
√

1 − r2) × S
n−k(r) ⊂ S

n+1, with

r = r(R) <

√
n−k
n − 1

n

√
k(n−k)
n−1 .

For the proof of Lemma 4.4, we need the following extension of Okumura
lemma for the case 2 ≤ k ≤ n − 1 (see Lemma 2.2 in [9]).

Lemma 4.5. Let a1, · · · , an be real numbers, such that
∑n

i=1 ai = 0. Then,
the equation:

n∑

i=1

a3
i = − n − 2k

√
nk(n − k)

(
n∑

i=1

a2
i

)3/2

holds if and only if (n− k) of the ais are non-negative and equal and the rest
k of the ai’s are non-positive and equal.

Proof of Lemma 4.4. Inequality (4.6) was already proved in [4, Lemma 2.6].
It is worth pointing out two important facts. First, there is a change in the
sign of our function QR,k(x) with respect to the definition of the function
denoted by QR(x) in equation (2.11) of [4]. Second, although the statement
of Lemma 2.6 in [4] assumes 2 ≤ k ≤ n−2, the proof works also for k = n−1.
There is no difference at all.

On the other hand, a detailed analysis of the proof of Lemma 2.6 in
[4] shows that if equality holds in (4.6), then all the inequalities in the proof
must be equalities. Hence, let us assume that equality holds and R > 1. Then,
inequality (2.12) in [4] must be an equality; that is:

n

2(n − 1)
L(|Φ|2) = nHL(nH),

and therefore:

〈P (∇H),∇H〉 = 0. (4.7)

Since R > 1, P is positive definite and (4.7) implies that H is constant.
Besides, (2.13) in [4] must be also an equality or, equivalently, |∇A|2 −
n2|∇H|2 = 0. Since we already know that H is constant, this means that
∇A = 0. That is, the second fundamental form is parallel. Finally, (2.9) in
[4] [that is, (4.5)] must be also an equality, and using Lemma 4.5, we know
that Σ is an isoparametric hypersurface of Sn+1 with exactly two constant
principal curvatures with multiplicities (n−k) and k. By the classical results
on isoparametric hypersurfaces in S

n+1, we know that Σ must be an open
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piece of a standard product of spheres S
k(

√
1 − r2) × S

n−k(r) ⊂ S
n+1, with

0 < r < 1, with principal curvatures given by:

λ1 = · · · = λk = − r√
1 − r2

and λk+1 = · · · = λn =
√

1 − r2

r
.

A direct computation gives:

nH =
(n − k) − nr2

r
√

1 − r2
and |Φ|2 =

k(n − k)
nr2(1 − r2)

. (4.8)

Observe that we always have the equality:

Tr(Φ3) = − n − 2k
√

nk(n − k)
|Φ|3

for all the values of r but H > 0 if and only if r <
√

(n − k)/n. Moreover,
the constant scalar curvature, which is given by (2.3), is:

R =
(n − k)(n − k − 1) − (n − 1)(n − 2k)r2

n(n − 1)r2(1 − r2)
. (4.9)

Therefore, since r <
√

(n − k)/n, we have R > 1 if and only if:

r2 <
n − k

n
− 1

n

√
k(n − k)

n − 1
. (4.10)

Substituting the second equation of (4.8) and (4.9) into (4.3) and using r2 <
(n−k)/n it follows that QR,k(|Φ|) = 0, so that equality holds trivially in (4.6).
This finishes the proof. See Remark 4.3 for the explicit value of r = r(R).

�

Once we have established Lemma 4.4, the proof of Theorem 4.1 follows
exactly as the proof of Theorem 1.2, replacing Lemma 4.4, QR and αR in
the proof of Theorem 1.2 by Lemma 4.4, QR,k and αR,k, respectively, in the
proof of Theorem 4.1.

As an application, we get the next result whose proof is similar to that
of Theorem 1.1, using Theorem 4.1.

Corollary 4.6. Let Σn be a compact-oriented hypersurface isometrically im-
mersed into the unit Euclidean sphere S

n+1 (n ≥ 3) with constant normalized
scalar curvature R > 1. Let Φ stand for the total umbilicity tensor of the im-
mersion. Assume that:

Tr(Φ3) ≥ − n − 2k
√

nk(n − k)
|Φ|3

for an integer 2 ≤ k ≤ n − 1 and:

|Φ|2 ≤ αR,k. (4.11)

Then:
(1) either |Φ| = 0 and Σ is a totally umbilical hypersurface,
(2) or |Φ|2 = αR,k > 0 and Σ is a product of spheres S

k(
√

1 − r2) ×
S
n−k(r) ⊂ S

n+1, with r = r(R) <

√
n−k
n − 1

n

√
k(n−k)
n−1 .
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Finally, in the particular case where n is even, say n = 2m, and k =
n/2 = m, the real function QR,m(x) simplifies to:

QR,m(x) = 2(m − 1)
(

x2 − m(2m − 1)R
m − 1

)
,

so that we can compute explicitly the value of:

αR,m =
m(2m − 1)R

m − 1
.

Besides, (4.9) simplifies to:

R =
m − 1

2(2m − 1)r2(1 − r2)
,

which yields:

r =

√√√√1
2

− 1
2

√

1 − 2(m − 1)
(2m − 1)R

.

Therefore, in this case, Theorem 4.1 becomes as follows.

Corollary 4.7. Let Σ2m be a compact-oriented hypersurface isometrically im-
mersed into a unit sphere S

2m+1 (m ≥ 2) with constant normalized scalar
curvature R satisfying R > 1. In the case where R = 1, assume further that
the mean curvature function H does not change sign. Assume that:

Tr(Φ3) ≥ 0

on Σ, where Φ is the total umbilicity tensor of the immersion. Then:
∫

Σ

|Φ|p+2

(
|Φ|2 − m(2m − 1)R

m − 1

)
≥ 0 (4.12)

for every real number p ≥ 2. Moreover, if R > 1, the equality holds in (4.12)
if and only if:
(1) either |Φ| = 0 and Σ is a totally umbilical hypersurface,
(2) or

|Φ|2 =
m(2m − 1)R

m − 1
> 0,

and Σ is a product of spheres S
m(

√
1 − r2) × S

m(r) ⊂ S
2m+1 with:

r =

√√
√√1

2
− 1

2

√

1 − 2(m − 1)
(2m − 1)R

<

√
1
2

− 1
2

√
1

2m − 1
.
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