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Existence of Ground State Solutions for
Fractional Schrödinger–Poisson Systems
with Doubly Critical Growth

Xiaojing Feng and Xia Yang

Abstract. This paper considers a class of fractional Schrödinger–Poisson
type systems with doubly critical growth{

(−Δ)su + V (x)u − φ|u|2∗
s−3u = K(x)|u|2∗

s−2u, in R
3,

(−Δ)sφ = |u|2∗
s−1, in R

3,

where s ∈ (3/4, 1), 2∗
s = 6

3−2s
, V ∈ L

3
2s (R3), K ∈ L∞(R3). By applying

the concentration-compactness principle and variational method, the
existence of ground state solutions to the systems is derived.
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1. Introduction and Main Results

In this paper, we are concerned with the existence of ground state solutions
for the following fractional Schrödinger–Poisson type systems with doubly
critical terms{

(−Δ)su + V (x)u − φ|u|2∗
s−3u = K(x)|u|2∗

s−2u, in R
3,

(−Δ)sφ = |u|2∗
s−1, in R

3,
(1.1)

where s ∈ (3/4, 1), 2∗
s = 6

3−2s . The operator (−Δ)s stands for the fractional
Laplacian of order s and can be defined by (−Δ)su = F−1(|ξ|2sFu), where F
is the usual Fourier transform in R

3. The fractional Schrödinger equation is of
particular interest in fractional quantum mechanics in the study of particles
on stochastic fields modeled by Lévy processes introduced by Laskin in Refs.
[10,11]. In recent years, there have been many works about the existence of
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solutions for fractional Schrödinger–Poisson type systems with critical non-
linearity term (see e.g. [6,16,21] and the references therein):{

(−Δ)su + V (x)u + K(x)φu = f(x, u), in R
3,

(−Δ)tφ = K(x)|u|2, in R
3,

(1.2)

where s ∈ (3/4, 1), t ∈ (0, 1) are two fixed constants. Using the Pohožaev-
Nehari manifold, monotonic trick and global compactness lemma, Teng [16]
obtained the existence of ground state solution for the system (1.2) with
f(x, u) = μ|u|q−1u + |u|2∗

s−2u, K(x) = 1. When f(x, u) = h(x)|u|q−1u +
|u|2∗

s−2u, V (x) = 1, Yu et al. [21] proved the existence of a positive and
a least energy sign-changing solution for system (1.2) via variational meth-
ods. Moreover, they showed that the energy of the sign-changing solution is
strictly larger than twice that of the ground state solutions. In Ref. [6], Gu,
Tang and Zhang considered the general nonlinearity term and showed that
the (1.2) has a positive solution in case of f(x, u) = K(x)g(u) + |u|2∗

s−2u
by applying variational method. In particular, by applying Nehari manifold
method and Ekeland variational principle, Guo et al. [7] obtained the exis-
tence and correlation results of the ground state solutions for a class of equa-
tions involving fractional Hardy Schrödinger operators and Hardy Sobolev
critical exponents. To overcome the lack of compactness, they considered the
subcritical auxiliary problem in bounded region, and the compact embedding
of the auxiliary problem was proved.

It is well known that (1.1) can be rewritten as a fractional Choquard
type equations

(−Δ)su + V (x)u =
(∫

R3

|u(y)|q
|x − y|μ dy

)
|u|q−2u + g(x, u), (1.3)

with q = 2∗
s − 1, μ = 3 − 2s and g(x, u) = K(x)|u|2∗

s−2u. When V is positive
constant, μ ∈ (0, 3), q ∈ ( 6−μ

3 , 6−μ
3−2s ) and g(x, u) = 0, d’Avenia, Siciliano and

Squassina [2] studied the existence, regularity and asymptotic of the solutions
for (1.3). Gao et al. [5] derived the existence of ground state solution of
Pohožaev-type to (1.3) with general nonlinearities via variational methods.
By employing the variational method, Ma and Zhang [15] investigated the
critical case and established the existence and multiplicity of weak solutions
for (1.3) with μ ∈ (0, 3), q = 6−μ

3−2s and g(x, u) = 0.
When φ(x) = 0, systems (1.1) reduce to the following fractional Schrödinger

type equation

(−Δ)su + V (x)u = f(x, u), x ∈ R
3. (1.4)

In Ref. [17], by virtue of the harmonic extension techniques of Caffarelli and
Silvestre, Teng and He considered (1.4) and proved the existence of ground
state solution through using the concentration-compactness and methods of
Brézis and Nirenberg. In the case of f(x, u) = |u|2∗

s−2u + λg(x, u), Li, Teng
and Wu [12] proved that (1.4) has a ground state solution for large λ by
applying the Nehari method under the assumption that V and g are asymp-
totically periodic in x. Jin and Liu [9] considered (1.4) and obtained the
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existence of ground state solutions when the potential is not a constant and
not radial.

When s = 1, K(x) ≡ 1, systems (1.1) become the following Schrödinger–
Poisson systems{

−Δu + V (x)u − φ|u|3u = f(x, u), in R
3,

−Δφ = |u|5, in R
3.

(1.5)

Systems (1.5) describe quantum (nonrelativistic) particles interacting with
the electromagnetic field generated by the motion, see [1]. It is well known
that system (1.5) can be transformed into a Schrödinger equation with a
nonlocal term. Liu [13] considered the existence of positive solution for (1.5)
by using mountain pass theorem and the concentration-compactness princi-
ple. Using variational method, Wang, Xie and Guan in Ref. [19] studied the
existence of a positive ground state solution for the following Schrödinger–
Poisson systems{

−Δu + V (x)u + K(x)φu = f(x, u), in R
3,

−Δφ = K(x)|u|2, in R
3,

(1.6)

By introducing some new tricks, Tang and Chen [18] studied the existence of
a ground state solution of Nehari–Pohožaev type and derived a least energy
solution under mild assumptions on V and f for systems (1.6) with K(x) ≡ 1.
In the case of critical nonlinearity term, Liu and Guo [14] proved that systems
(1.6) has at least a positive ground state solution via variational method.

Motivated by the above papers, the main purpose of this paper is to
consider the existence of ground state solution for systems (1.1). From the
technical point of view, there are two difficulties to prove our result. First,
since the problem has two critical terms, it is difficult to estimate the mini-
mum energy level on the Nehari manifold. Second, the critical growth in the
system presents an obstacle when showing the convergence of the bounded
(PS) sequences. To overcome these difficulties, we employ the concentration-
compactness principle and variational method to obtain the existence of
ground state solutions to systems (1.1).

In Ref. [8], Guo et al. researched the equation (−Δ)su = |u|2∗
s−2u, u ∈

Ds,2
R

3 and obtained that, for any ε > 0 and y ∈ R
3, uε,y is its positive

solution, where

uε,y(x) = (Ss)
1

2∗
s−2 uε,y(x), uε,y(x) =

ũε,y(x)
‖ũε,y‖2∗

s

, ũ = κ(ε2 + |x − y|2)− 3−2s
2 ,

where k > 0, Ss is given in (2.1). Let, Π consist of all the positive solutions
for the equation (−Δ)su = |u|2∗

s−2u, u ∈ Ds,2
R

3 which satisy (2.2).
Define V +(x) = max{V (x), 0}, V −(x) = max{−V (x), 0}. On V and K,

we assume that

(f1) V ∈ L
3
2s (R3), |V −| 3

2s
< Ss;

(f2) K ∈ L∞(R3), and infx∈R3 K(x) = K0 > 0;
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(f3) when K0 = |K|∞, there exists u ∈ Π such that
∫
R3 V (x)u2dx < 0; when

K0 < |K|∞, there exists u ∈ Π such that T 2∗
s−2 ≤ −3

∫
R3 V (x)u2dx

(3−2s)
∫
R3 [|K|∞−K(x)]u2∗

s dx
,

where

T 2∗
s−2 =

√
(3 + 2s)2

36
K2

0 +
3 + 2s
3 − 2s

(
1 + |V +| 3

2s
S−1

s

)
− 3 + 2s

6
K0.

Now we give the main result of the paper.

Theorem 1.1. Assume that (f1)−(f3) hold. Then, the systems (1.1) possesses
a ground state solution.

Remark 1.2. Throughout the paper, we denote by Ci > 0 various positive
constants which may vary from line to line and are not essential to the prob-
lem.

The paper is organized as follows: in Sect. 2, some preliminary results
are presented. Section 3 is dedicated to the proof of Theorem 1.1.

2. Preliminary

In this section, we will give some notations and Lemmas that will be used
throughout this paper. Let Lp(R3), 1 ≤ p ≤ ∞ be the usual Lebesgue space
with the norm |u|p = (

∫
R3 |u|pdx)

1
p . We denote the completion of C∞

0 (R3)
with respect to the norm

‖u‖2 =
∫
R3

|(−Δ)
s
2 u|2dx =

∫
R3

|ξ|2s|u(ξ)|2dξ

by Ds,2 = Ds,2(R3). Let ((Ds,2)−1, ‖ · ‖(Ds,2)−1) be the dual space of (Ds,2,

‖ · ‖). It is well known that Ds,2 is continuously embedded into L2∗
s (R3), and

for any s ∈ (0, 1), there exists a best constant Ss > 0 such that

Ss = inf
u∈Ds,2\{0}

∫
R3 |(−Δ)

s
2 u(x)|2dx(∫

R3 |u(x)|2∗
sdx

) 2
2∗
s

. (2.1)

For any u ∈ Π,

‖u‖2 = |u|2∗
s

2∗
s

= S
3
2s
s . (2.2)

We observe that by the Lax–Milgram theorem, for given u ∈ L2∗
s (R3),

there exists a unique solution φ = φu ∈ Ds,2 satisfying (−Δ)sφ = |u|2∗
s−1 in

a weak sense. The function φu is represented by

φu(x) = Cs

∫
R3

|u|2∗
s−1

|x − y|3−2s
dy, x ∈ R

3,

where Cs = Γ( 3−2s
2 )

22sπ
3
2 Γ(s)

, and it has the following properties:

Lemma 2.1. [4] The following properties hold:
(i) φu ≥ 0 for all u ∈ Ds,2;
(ii) φtu = t2

∗
s−1φu for all t > 0 and u ∈ Ds,2;
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(iii) for any u ∈ Ds,2,∫
R3

φu|u|2∗
s−1dx ≤ S−1

s |u|2(2∗
s−1)

2∗
s

; (2.3)

(iv) if un ⇀ u in Ds,2, then, up to a subsequence, φun
⇀ φu in Ds,2.

Moreover, the system (1.1) is variational and its solutions are the critical
points of the functional defined in Ds,2 by

J(u) =
1
2

∫
R3

(|(−Δ)
s
2 u|2 + V (x)u2)dx − 1

2(2∗
s − 1)

∫
R3

φu|u|2∗
s−1dx

− 1
2∗

s

∫
R3

K(x)|u|2∗
sdx.

Obviously, J ∈ C1(Ds,2,R) and for any u, v ∈ Ds,2,

J ′(u)v =
∫
R3

((−Δ)
s
2 u(−Δ)

s
2 v + V (x)uv)dx

−
∫
R3

φu|u|2∗
s−3uvdx −

∫
R3

K(x)|u|2∗
s−2uvdx.

To obtain the ground state solution, we introduce the Nehari manifold

N = {u ∈ Ds,2\{0} : I(u) = 0},

where

I(u) =
∫
R3

|(−Δ)
s
2 u|2dx +

∫
R3

V (x)u2dx

−
∫
R3

φu|u|2∗
s−1dx −

∫
R3

K(x)|u|2∗
sdx.

3. Proof of Theorem 1.1

To prove that the main theorem, we give some lemmas.

Lemma 3.1. Under the assumptions of Theorem 1.1, for any u ∈ Ds,2\{0},
there exists a unique tu > 0 such that tuu ∈ N . Moreover, J(tuu) = maxt>0

J(tu).

Proof. For any u ∈ Ds,2\{0}, by the Hölder inequality and (2.1), we have

‖u‖2 +
∫
R3

V (x)u2dx ≥ ‖u‖2 +
∫
R3

V +(x)u2dx −
|V −| 3

2s

Ss
‖u‖2

≥
(

1 −
|V −| 3

2s

Ss

)
‖u‖2. (3.1)

Let u ∈ Ds,2\{0} be fixed and define the function f : (0,∞) → R by f(t) =
J(tu). Note that f ′(t) = 〈J ′(tu), u〉 = 0 if and only if tu ∈ N , by simple
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calculation, we see that

f ′(t) = t

∫
R3

|(−Δ)
s
2 u|2dx + t

∫
R3

V (x)|u|2dx − t2·2∗
s−3

×
∫
R3

φu|u|2∗
s−1dx − t2

∗
s−1

∫
R3

K(x)|u|2∗
sdx

= t

(∫
R3

|(−Δ)
s
2 u|2dx +

∫
R3

V (x)|u|2dx − t2(2
∗
s−2)

×
∫
R3

φu|u|2∗
s−1dx − t2

∗
s−2

∫
R3

K(x)|u|2∗
sdx

)

= th(t).

It is obvious that h is a non-increasing function for t > 0 and from (3.1)
limt→0+ h(t) = ‖u‖2 +

∫
R3 V (x)u2dx > 0, limt→+∞ h(t) = −∞. Hence, there

exists a unique tu > 0 such that f ′(tu) = 0, that is tuu ∈ N . Furthermore,
J(tuu) = maxt>0 J(tu). The proof is completed. �

For any u ∈ N , in view of (2.3), (3.1) and Sobolev embedding theorem,
one has

0 = I(u) = ‖u‖2 +
∫
R3

V (x)u2dx −
∫
R3

φu|u|2∗
s−1dx −

∫
R3

K(x)|u|2∗
sdx

≥
(

1 −
|V −| 3

2s

Ss

)
‖u‖2 − C1|u2|(2∗

s−1)
2∗
s

− |K|∞|u|2∗
s

2∗
s

≥
(

1 −
|V −| 3

2s

Ss

)
‖u‖2 − C2‖u2‖(2∗

s−1) − C3‖u‖2∗
s ,

which implies that there exists α > 0 such that

‖u‖ ≥ α. (3.2)

By virtue of (3.1), we see that for any u ∈ N ,

J(u) = J(u) − 1
2∗

s

I(u)

=
(

1
2

− 1
2∗

s

)
‖u‖2 +

(
1
2

− 1
2∗

s

)∫
R3

V (x)u2dx

−
(

1
2(2∗

s − 1)
− 1

2∗
s

)∫
R3

φu|u|2∗
s−1dx

≥ s

3

(
1 −

|V −| 3
2s

Ss

)
‖u‖2. (3.3)

Therefore, N is nonempty and bounded below, we can define m = infu∈N J(u),
by (3.2) and (3.3), m > 0.

Lemma 3.2. Under the assumptions of Theorem 1.1, for any u ∈ N , I ′(u) �=
0.
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Proof. For any u ∈ N , it follows from (3.1) and (3.2) that

〈I ′(u), u〉 = 〈I ′(u), u〉 − 2∗
sI(u)

= (2 − 2∗
s)‖u‖2 + (2 − 2∗

s)
∫
R3

V (x)u2dx + (2 − 2∗
s)

∫
R3

φu|u|2∗
s−1dx

≤ − 4s

3 − 2s

(
1 −

|V −| 3
2s

Ss

)
‖u‖2

≤ − 4s

3 − 2s

(
1 −

|V −| 3
2s

Ss

)
α2 < 0. (3.4)

Then for any u ∈ N , I ′(u) �= 0. The proof is completed. �

Lemma 3.3. Under the assumptions of Theorem 1.1, there exists a bounded
sequence {un} ⊂ N satisfying J(un) → m and J ′(un) → 0 in (Ds,2)−1.

Proof. Making use of the Ekeland’s variational principle [3,20], we get that
there exists {un} ⊂ N and {λn} ⊂ R such that J(un) → m and J ′(un) −
λnI ′(un) → 0 in (Ds,2)−1. Thanks to (3.3), one has

J(un) = J(un) − 1
2∗

s

I(un) ≥ s

3

(
1 −

|V −| 3
2s

Ss

)
‖un‖2,

which implies {un} is bounded in Ds,2. Thus, 0 = 〈J ′(un), un〉 = λn〈I ′(un),
un〉 + o(1). Combining this with (3.4), there holds λn → 0. We deduce from
Hölder inequality and the boundedness of {un} in Ds,2 that for any ϕ ∈ Ds,2,

|〈I ′(un), ϕ〉| =
∣∣∣∣
∫
R3

((−Δ)
s
2 un(−Δ)

s
2 ϕ + V (x)unϕ)dx

−
∫
R3

φun
|un|2∗

s−3unϕdx −
∫
R3

K(x)|un|2∗
s−2unϕdx

∣∣∣∣
≤ ‖un‖‖ϕ‖ + |V | 3

2s
|un|2∗

s
|ϕ|2∗

s
+ |φun

|2∗
s
|un|2∗

s−2
2∗
s

|ϕ|2∗
s

+|K|∞|un|2∗
s−1

2∗
s

|ϕ|2∗
s
,

which ensures that

‖I ′(un)‖(Ds,2)−1 = sup
‖ϕ‖=1,ϕ∈Ds,2

|〈I ′(un), ϕ〉| ≤ C.

Therefore, we conclude

‖J ′(un)‖(Ds,2)−1 ≤ ‖J ′(un) − λnI ′(un)‖(Ds,2)−1 + |λn|‖I ′(un)‖(Ds,2)−1 = o(1).

The proof is completed. �



41 Page 8 of 14 X. Feng, X. Yang MJOM

Lemma 3.4. Assume that the assumptions of Theorem 1.1 hold. Then, we
have

m <

(√|K|2∞ + 4 − |K|∞
2

) 3−2s
2s

⎛
⎝

(
12 + 3|K|2∞ − 3|K|∞

√|K|2∞ + 4
)

s

6(3 + 2s)

+

(
2|K|∞

√|K|2∞ + 4 − 2|K|2∞
)

s2

6(3 + 2s)

⎞
⎠ S

3
2s
s

=: Λ.

Proof. For u ∈ Π satisfying condition (f3), define

g(t) =
t2

2

∫
R3

|(−Δ)
s
2 u|2dx − t2(2

∗
s−1)

2(2∗
s − 1)

∫
R3

φu|u|2∗
s−1dx

− t2
∗
s

2∗
s

∫
R3

|K|∞|u|2∗
sdx, t ≥ 0.

Since (−Δ)sφu = |u|2∗
s−1, we find

∫
R3

|u|2∗
sdx =

∫
R3

(−Δ)
s
2 φu(−Δ)

s
2 |u|dx

≤ 1
2

∫
R3

|(−Δ)
s
2 |u||2dx +

1
2

∫
R3

|(−Δ)
s
2 φu|2dx

≤ 1
2

∫
R3

|(−Δ)
s
2 u|2dx +

1
2

∫
R3

φu|u|2∗
s−1dx. (3.5)

Hence, invoking (2.2) and (3.5), there holds
∫
R3

φu|u|2∗
s−1dx ≥ 2

∫
R3

|u|2∗
sdx −

∫
R3

|(−Δ)
s
2 u|2dx

= 2|u|2∗
s

2∗
s

− ‖u‖2 = S
3
2s
s .

Consequently,

g(t) ≤ t2

2
S

3
2s
s − t2(2

∗
s−1)

2(2∗
s − 1)

S
3
2s
s − t2

∗
s

2∗
s

|K|∞S
3
2s
s

=
(

t2

2
− t2(2

∗
s−1)

2(2∗
s − 1)

− t2
∗
s

2∗
s

|K|∞
)

S
3
2s
s

= h(t)S
3
2s
s .

Thereby, we obtain that

t2
∗
s−2 =

√|K|2∞ + 4 − |K|∞
2
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is the maximum point of h. Substituting it into h, it follows

sup
t≥0

h(t)

=

(√|K|2∞ + 4 − |K|∞
2

) 2
2∗
s−2

⎡
⎣1

2
− 1

2(2∗
s − 1)

(√|K|2∞ + 4 − |K|∞
2

)2

− 1
2∗

s

(√|K|2∞ + 4 − |K|∞
2

)
|K|∞

]

=

(√|K|2∞ + 4 − |K|∞
2

) 2
2∗
s−2

⎛
⎝

(
12 + 3|K|2∞ − 3|K|∞

√|K|2∞ + 4
)

s

6(3 + 2s)

+

(
2|K|∞

√|K|2∞ + 4 − 2|K|2∞
)

s2

6(3 + 2s)

⎞
⎠ .

Thus one has g(t) ≤ Λ, for all t ≥ 0. When K0 = |K|∞, there exists a unique
tu > 0 such that tuu ∈ N follows from Lemma 3.1. Then, according to the
assumption of Theorem 1.1, J(tuu) = g(tu) + t2u

2

∫
R3 V (x)u2dx < Λ. When

K0 < |K|∞, let

ξ(t) =
t2

2
S

3
2s
s +

t2

2
|V +| 3

2s
S

3−2s
2s

s − t2(2
∗
s−1)

2(2∗
s − 1)

S
3
2s
s − t2

∗
s

2∗
s

K0S
3
2s
s ,

we have ξ(T ) = 0, where T is given in (f3). From the Hölder inequality, it
is easy to verify that J(tu) ≤ ξ(t) ≤ ξ(T ) = 0 for t ≥ T . Combining with
Lemma 3.1, there exists a unique tu ∈ (0, T ) such that tuu ∈ N and

J(tuu) = g(tu) + t2u

{
t
2∗
s−2

u

2∗
s

∫
R3

[|K|∞ − K(x)]|u|2∗
sdx +

1
2

∫
R3

V (x)u2dx

}

< Λ + t2u

{
T 2∗

s−2

2∗
s

∫
R3

[|K|∞ − K(x)]|u|2∗
sdx +

1
2

∫
R3

V (x)u2dx

}

≤ Λ.

In a word, we obtain m < Λ. The proof is completed. �

Lemma 3.5. Assume that hypothesis (f1) holds. Then the functional F : Ds,2

(R3) → ∫
R3 V (x)u2dx is weakly continuous.

Proof. By the Hölder inequality and Sobolev embedding theorem, we know
that the functional F is well defined. Let {un} ⊂ Ds,2 and there exists u ∈
Ds,2 such that un ⇀ u in Ds,2, un → u in Lq

loc(R
3) for any q ∈ [1, 2∗

s),
un(x) → u(x), a.e. in R

3. By the boundedness of {un} in L2∗
s (R3), we get

{u2
n} is bounded in L

3
3−2s (R3), that is |u2

n| 3
3−2s

≤ M . From Fatou’s lemma,
it is easy to obtain |u2| 3

3−2s
≤ M . For any ε > 0, it follows from the integral

absolute continuity and Levi theorem that, there exists δ > 0 and R > 0, such
that when e ⊂ R

3 and m(e) < δ, we have
∫

e
|V | 3

2s dx < ε
3
2s and

∫
Bc

R
|V | 3

2s dx <
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ε
3
2s . Hence, there exists A ⊂ BR, m(BR\A) < δ, such that {u2

n} uniformly
converges to u2 in A, hence, there exists n0 such that n > n0, for any x ∈ A,
we have |u2

n(x) − u2(x)| < ε|A|− 3−2s
3 , furthermore,

∫
A

|u2
n − u2| 3

3−2s dx <

ε
3

3−2s |A|−1|A| = ε
3

3−2s . Therefore, for any n > n0, we have
∣∣∣∣
∫
R3

V u2
ndx −

∫
R3

V u2dx

∣∣∣∣ =
∣∣∣∣
∫
R3

(u2
n − u2)V dx

∣∣∣∣
≤

∫
Bc

R

|u2
n − u2||V |dx +

∫
BR\A

|u2
n − u2||V |dx +

∫
A

|u2
n − u2||V |dx

≤
(∫

R3
|u2

n − u2| 3
3−2s dx

) 3−2s
3

(∫
Bc

R

|V | 3
2s dx

) 2s
3

+
(∫

R3
|u2

n − u2| 3
3−2s dx

) 3−2s
3

(∫
BR\A

|V | 3
2s dx

) 2s
3

+
(∫

A

|u2
n − u2| 3

3−2s dx

) 3−2s
3

(∫
A

|V | 3
2s dx

) 2s
3

≤ 4Mε + ε|V | 3
2s

.

Hence, limn→∞
∫
R3 V (x)u2

ndx =
∫
R3 V (x)u2dx. The proof is completed. �

Proof of Theorem 1.1. From Lemmas 3.3 and 3.4, there exists a bounded
sequence {un} ⊂ N satisfying J(un) → m ∈ (0,Λ) and J ′(un) → 0 in
(D1,2)−1. Up to a subsequence, there exists u ∈ Ds,2 such that un ⇀ u in
Ds,2, un → u in Lq

loc(R
3) for any q ∈ [1, 2∗

s), and un(x) → u(x), a.e. in R
3.

For any ϕ ∈ C∞
0 (R3), we have

〈J ′(un)ϕ〉 =
∫
R3

((−Δ)
s
2 un(−Δ)

s
2 ϕ + V (x)unϕ)dx −

∫
R3

φun
|un|2∗

s−3unϕdx

−
∫
R3

K(x)|un|2∗
s−2unϕdx.

It follows from Lemma 2.1 that φun
⇀ φu in Ds,2, which implies φun

⇀ φu

in L2∗
s (R3). Then

∫
R3

(φun
− φu)|u|2∗

s−3uϕdx → 0, n → ∞. (3.6)

Since un(x) → u(x), a.e. in R
3 and

∫
R3

|φun

(
|un|2∗

s−3un − |u|2∗
s−3u

)
|

2∗
s

2∗
s−1 dx ≤ C

(
|φun

|
2∗
s

2∗
s−1

2∗
s

|un|
2∗
s (2∗

s−2)
2∗
s−1

2∗
s

+ |φun
|

2∗
s

2∗
s−1

2∗
s

|u|
2∗
s (2∗

s−2)
2∗
s−1

2∗
s

)

≤ C,
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we have φun
(|un|2∗

s−3un − |u|2∗
s−3u) ⇀ 0 in L

2∗
s

2∗
s−1 (R3) and thus∫

R3
φun

(|un|2∗
s−3un − |u|2∗

s−3u)ϕdx → 0, n → ∞,

which together with (3.6) implies∫
R3

φun
|un|2∗

s−3unϕdx →
∫
R3

φu|u|2∗
s−3uϕdx, n → ∞. (3.7)

By applying un(x) → u(x), a.e. in R
3 again and∫

R3
|K(x)

(
|un|2∗

s−2un − |u|2∗
s−2u

)
|

2∗
s

2∗
s−1 dx

≤ C

(
|K|

2∗
s

2∗
s−1

∞ |un|2∗
s

2∗
s

+ |K|
2∗
s

2∗
s−1

∞ |u|2∗
s

2∗
s

)

≤ C,

we get that K(x)(|un|2∗
s−2un − |u|2∗

s−2u) ⇀ 0 in L
2∗
s

2∗
s−1 (R3), and thus∫

R3
K(x)(|un|2∗

s−2un − |u|2∗
s−2u)ϕdx → 0, n → ∞.

That is,∫
R3

K(x)|un|2∗
s−2unϕdx →

∫
R3

K(x)|u|2∗
s−2uϕdx, n → ∞. (3.8)

It is clear that ∫
R3

V (x)unϕdx →
∫
R3

V (x)uϕdx, n → ∞. (3.9)

Combining (3.7), (3.8) with (3.9), we derive

〈J ′(u), ϕ〉 = lim
n→∞〈J ′(un), ϕ〉 = 0.

Therefore, we derive that u is a critical point of J .
In what follows, we will show that u �= 0. Assume by contradiction that

u = 0. It is clear that

0 = 〈J ′(un), un〉 = ‖un‖2 +
∫
R3

V (x)u2
ndx −

∫
R3

φun
|un|2∗

s−1dx

−
∫
R3

K(x)|un|2∗
sdx. (3.10)

For convenience, let dn = ‖un‖2, an =
∫
R3 φun

|un|2∗
s−1dx, bn =

∫
R3 |un|2∗

sdx.
Without loss of generality, we may assume dn → d, an → a and bn → b, as
n → ∞. Notice that∫

R3
|un|2∗

sdx =
∫
R3

(−Δ)
s
2 φun

(−Δ)
s
2 |un|dx

≤ ε2

2

∫
R3

|(−Δ)
s
2 |un||2dx +

1
2ε2

∫
R3

|(−Δ)
s
2 φun

|2dx

≤ ε2

2

∫
R3

|(−Δ)
s
2 un|2dx +

1
2ε2

∫
R3

φun
|un|2∗

s−1dx,
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thus, as n → ∞, we derive

b ≤ 1
2ε2

a +
ε2

2
d.

From (3.10) and Lemma 3.5, we have

a ≥ ε2(2 − |K|∞ε2)
2ε2 + |K|∞ d.

Taking ε2 =
√

|K|2∞+4−|K|∞
2 , we arrive at

a ≥ 2 + |K|2∞ − |K|∞
√|K|2∞ + 4

2
d.

It follows from J(un) → m, (3.10) and Lemma 3.5 that

m =
s

3
d+

s(3 − 2s)

3(3 + 2s)
a

≥
(
12 + 3|K|2∞ − 3|K|∞

√|K|2∞ + 4
)
s+

(
2|K|∞

√|K|2∞ + 4 − 2|K|2∞
)
s2

6(3 + 2s)
d.

(3.11)

On the other hand, combining (2.3) with (3.10), we obtain

d ≤ S
−2∗

s
s d2∗

s−1 + |K|∞S
− 2∗

s
2

s d
2∗
s
2 .

Therefore we get either (i) d = 0 or (ii) d
2s

3−2s =
(√

|K|2∞+4−|K|∞
2

)
S

2∗
s
2

s .

By substituting it into (3.11), it will come to a contradiction in each case.
Thereby, we have u �= 0.

Thus, we show that u ∈ N . According to the weakly lower semi-conti-
nuity of norm and Fatou’s Lemma,

m ≤ J(u) = J(u) − 1
2∗

s

I(u)

=
s

3
‖u‖2 +

s(3 − 2s)
3(3 + 2s)

∫
R3

φu|u|2∗
s−1dx +

s

3

∫
R3

V (x)u2dx

≤ lim inf
n→∞

[
s

3
‖un‖2 +

s(3 − 2s)
3(3 + 2s)

∫
R3

φun
|un|2∗

s−1dx +
s

3

∫
R3

V (x)u2
ndx

]

= lim inf
n→∞

(
J(un) − 1

2∗
s

I(un)
)

= m,

which yields that J(u) = m. Therefore, we conclude that u is a ground state
solution of system (1.1). The proof is completed. �
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