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Abstract. We consider a variant of the Bernstein–Chlodovsky polyno-
mials approximating continuous functions on the entire real line and
study its rate of convergence. The main result is a complete asymptotic
expansion. As a special case we obtain a Voronovskaja-type formula
previously derived by Karsli [11].
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1. Introduction

Let f be a real function on R which is bounded on each finite interval.
For a, b ∈ R with a < b, define the function fa,b on [0, 1] by fa,b (t) =
f (a + (b − a) t). Furthermore, put

‖f‖a,b = sup
a≤t≤b

|f (t)| .

Obviously, f0,1 is the restriction of f to [0, 1] and we have ‖f‖a,b = ‖fa,b‖0,1.
The Bernstein–Chlodovsky operators applied to the function f described

above are defined by

(Cn,a,bf) (x) = (Bnfa,b)
(

x − a

b − a

)
, a ≤ x ≤ b,

where Bn denote the Bernstein operators defined by

(Bnf) (x) =
n∑

ν=0

pn,ν (x) f
(ν

n

)
, 0 ≤ x ≤ 1,

with Bernstein basis polynomials

pn,ν (x) =
(

n

ν

)
xν (1 − x)n−ν

, 0 ≤ ν ≤ n.
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In the special case [a, b] = [0, 1], we have Cn,0,1 ≡ Bn.
The symmetric version

(Cn,−c,cf) (x) = (Bnf−c,c)
(

x + c

2c

)

with −a = b = c > 0 was recently introduced by Kilgore [12, Eq. (7.1)]. Using
this Chlodovsky generalization of the Bernstein operators he [12, Theorems 1
and 2 ] gave a constructive proof for the Weierstrass approximation theorem
in weighted spaces of continuous functions defined on [0,∞) or on (−∞,∞).
See also [13].

In the following we suppose that the parameters a, b are coupled with
n, i.e., a = an and b = bn. Because the difference between two nodes of Cn,a,b

is at least (b − a) /n it is clear that the condition bn − an = o (n) as n → ∞
is necessary for having convergence of (Cn,an,bn

f) (x) to f (x).
In the special case an = 0 < bn, for n ∈ N, these polynomials were

introduced by I. Chlodovsky [7] in 1937 in order to approximate functions on
infinite intervals. He showed that under the condition (1.3), if a function f
satisfies

lim
n→∞ exp

(
−σn

bn

)
‖f‖bn

= 0, (1.1)

for every σ > 0, then

lim
n→∞ (Cn,0,bn

f) (x) = f (x)

at each point x of continuity of f . Moreover, he proved convergence in each
continuity point for the large class of functions f satisfying the growth con-
dition f (t) = O (exp (tp)) as t → +∞, if the sequence (bn) satisfies the
condition

bn = O
(
n1/(p+1+η)

)
(n → ∞) , (1.2)

for an arbitrary small η > 0. For more results on Chlodovsky operators see
the survey article [9] by Karsli.

Explicit expressions of the coefficients c
[bn]
k (f, x) in terms of Stirling

numbers were given by Karsli [10]. He derived the asymptotic expansion if
the function f satisfies condition (1.1) for every σ > 0.

Throughout the paper we assume that the sequences (an) and (bn) sat-
isfy

bn − an > 0, lim
n→∞ (−an) = lim

n→∞ bn = +∞, and lim
n→∞

−anbn

n
= 0.

(1.3)
The purpose of this note is a pointwise complete asymptotic expansion

for the sequence of Bernstein–Chlodovsky operators in the form:

(Cn,an,bn
f) (x) ∼ f (x) +

∞∑
k=1

c
[an,bn]
k (f, x)

(−anbn

n

)k

+ o

((−anbn

n

)q)

(1.4)
as n → ∞, for sufficiently smooth functions f satisfying f (t) = O (exp (αtp))
as t → +∞, provided that the sequences (an) , (bn) satisfy (−anbn) =
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o
(
n1/(p+1)

)
as n → ∞. The coefficients c

[an,bn]
k (f, x), which depend on f

and an, bn, are bounded with respect to n.
The latter formula means that, for each fixed x > 0 and for all positive

integers q:

(Cn,an,bn
f) (x) = f (x) +

q∑
k=1

c
[an,bn]
k (f, x)

(−anbn

n

)k

+ o

((−anbn

n

)q)

as n → ∞.

2. Main Result

For real constants α ≥ 0 and p ≥ 0, let Wα,p denote the class of functions
f ∈ C (R) satisfying the growth condition:

f (t) = O (exp (α |t|p)) (|t| → +∞) .

Note that in the special instance p = 0 the class Wα,0 consists of the bounded
continuous functions on R. Since W0,p and Wα,0 coincide we consider only
the case α > 0.

Recall that the Stirling numbers s (n, k) and S (n, k) of first and second
kind, respectively, are defined by the relations:

zn =
n∑

k=0

s (n, k) zk and zn =
n∑

k=0

S (n, k) zk (z ∈ C) ,

where z0 = 1 and zn = z (z − 1) · · · (z − n + 1), for n ∈ N, denote the falling
factorials.

The following theorem is the main result.

Theorem 2.1. Let α, p ≥ 0. Suppose that the function f ∈ Wα,p is 2q times
differentiable in the point x > 0. Let (−an) and (bn) be sequences of reals
tending to infinity and satisfying the growth condition:

− anbn = o
(
n1/(p+1)

)
(n → ∞) . (2.1)

Then, for any positive integer q, the Bernstein–Chlodovsky operators Cn,an,bn

possess the asymptotic expansion:

(Cn,an,bn
f) (x) = f (x) +

q∑
k=1

c
[an,bn]
k (f, x)

(−anbn

n

)k

+ o

((−anbn

n

)q)

as n → ∞, where

c
[an,bn]
k (f, x) = O (1) (n → ∞) . (2.2)

The coefficients c
[a,b]
k (f, x) have the explicit representation:

c
[a,b]
k (f, x) =

2k∑
s=k

f (s) (x)
s!

s∑
j=0

A (k, s, j)
(b − a)j (x − a)s−j

(−ab)k
(a < b)
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with numbers

A (k, s, j) =
s∑

r=max{j,k}
(−1)s−r

(
s

r

)
s (r − j, r − k) S (r, r − j) . (2.3)

Remark 2.2. Note that the coefficients c
[an,bn]
k (f, x) depend on n but are

bounded with respect to n.

Remark 2.3. Our assumption (2.1) on the sequence (−anbn) corresponds to
Chlodovsky’s condition (1.2). Furthermore, it is related to the assumption in
the case an = 0 (see, [3, Theorem 1, Eq. (4)]).

In the special case q = 1 Theorem 2.1 implies the following Voronovskaja-
type result.

Corollary 2.4. Let α, p ≥ 0. Suppose that the function f ∈ Wα,p admits a
second derivative at the point x > 0. Let (−an) and (bn) be sequences of
reals tending to infinity and satisfying the growth condition (2.1) . Then, the
Bernstein–Chlodovsky operators Cn,an,bn

satisfy the asymptotic relation:

lim
n→∞

n

−anbn
((Cn,an,bn

f) (x) − f (x)) =
1
2
f (2) (x) (2.4)

Remark 2.5. The expansion in Theorem 2.1 is completely different to the
(pointwise) complete asymptotic expansion:

(Bnf) (x) ∼ f (x) +
∞∑

k=1

c
[0,1]
k (f, x) n−k (n → ∞) ,

for the classical Bernstein polynomials Bn, which is valid for all bounded func-
tions f : [0, 1] → R being sufficiently smooth in x ∈ [0, 1]. The Voronovskaja
formula states that

lim
n→∞ n ((Bnf) (x) − f (x)) =

1
2
x (1 − x) f (2) (x) .

The same is true in the case of the classical Bernstein–Chlodovsky operators
Cn,0,bn

. Their Voronovskaja-type formula:

lim
n→∞

n

bn
((Cn,0,bn

f) (x) − f (x)) =
1
2
xf (2) (x)

was derived in 1960 by Albrycht and Radecki [5]. For further history consult
the survey article [9].

3. Auxiliary Results and Proof of the Main Theorem

Our starting-point is an explicit representation of the central moments of the
Bernstein polynomials in terms of Stirling numbers of the first and second
kind. In the following we write em (x) = xm, m ∈ N0, for the m-th monomial
and ψx (t) = t − x for x ∈ R.
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Lemma 3.1. The central moments of the Bernstein polynomials possess the
representation

(Bnψs
x) (x) =

s∑
k=
 s+1

2 �
n−k

s∑
j=0

A (k, s, j) xs−j

(s = 0, 1, 2, . . .), where the coefficients are given by Eq. (2.3).

For a proof see, e.g., [2].

Lemma 3.2. The central moments of the Bernstein–Chlodovsky operators pos-
sess the representation:

(Cn,a,bψ
s
x) (x) =

s∑
k=
 s+1

2 �
n−k

s∑
j=0

A (k, s, j) (b − a)j (x − a)s−j
, (3.1)

where the coefficients A (k, s, j) are given by Eq. (2.3) .

Proof. We have

(Cn,a,bψ
s
x) (x) =

n∑
ν=0

pn,ν

(
x − a

b − a

)(
a + (b − a)

ν

n
− x

)s

= (b − a)s
n∑

ν=0

pn,ν

(
x − a

b − a

) (
ν

n
− x − a

b − a

)s

= (b − a)s
(
Bnψs

x−a
b−a

) (
x − a

b − a

)

and the lemma follows by Lemma 3.1. �
As we have seen in the proof of Lemma 3.2 the central moments of

the Bernstein–Chlodovsky operators can be expressed in terms of Bernstein
polynomials:

(Cn,a,bψ
s
x) (x) = (b − a)s

(
Bnψs

x−a
b−a

)(
x − a

b − a

)
.

As a consequence from well-known properties of the Bernstein polyno-
mials we obtain the following result:

Lemma 3.3. For a ≤ x ≤ b, it holds

(
Cn,a,bψ

2s
x

)
(x) =

2s∑
k=s

(
(x − a) (b − x)

n

)k

×
s∑

i=2s−k

d2s,i

(
(x − a) (b − x)

(b − a)2

)i−k

(b − a)2s−2k
,

(
Cn,a,bψ

2s+1
x

)
(x) = (b + a − 2x)

2s+1∑
k=s+1

(
(x − a) (b − x)

n

)k

×
s∑

i=2s+1−k

d2s+1,i

(
(x − a) (b − x)

(b − a)2

)i−k

(b − a)2s−2k
,
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where ds,i are certain real numbers.

Proof. Taking advantage of the well-known formulas for the central moments
of the Bernstein polynomials (see [8, Chapt. 10, Theorem 1.1]):

(
Bnψ2s

x

)
(x) =

s∑
j=0

nj−2s
s∑

i=j

d2s,i (x (1 − x))i
,

(
Bnψ2s+1

x

)
(x) = (1 − 2x)

s∑
j=0

nj−(2s+1)
s∑

i=j

d2s+1,i (x (1 − x))i
,

where ds,i are certain real numbers, we obtain

(
Cn,a,bψ

2s
x

)
(x) = (b − a)2s

2s∑
k=s

1
nk

s∑
i=2s−k

d2s,i

(
(x − a) (b − x)

(b − a)2

)i

,

(
Cn,a,bψ

2s+1
x

)
(x) = (b − a)2s (b + a − 2x)

2s+1∑
k=s+1

1
nk

×
s∑

i=2s+1−k

d2s+1,i

(
(x − a) (b − x)

(b − a)2

)i

.

This can be rewritten in the form as stated in the lemma. �

For the sake of brevity, in the following, we write

(Cn,a,bψ
s
x) (x) =

s∑
k=
 s+1

2 �

(−ab

n

)k

Qk,s (a, b, s;x) . (3.2)

Note that, for a ≤ x ≤ b, with a < 0 < b, we have∣∣∣∣ (x − a) (b − x)
n

∣∣∣∣ ≤
∣∣∣1 − x

a

∣∣∣
∣∣∣1 − x

b

∣∣∣ · |ab|
n

,

∣∣∣∣∣
(x − a) (b − x)

(b − a)2

∣∣∣∣∣ ≤ 1
4
,

∣∣∣∣b + a − 2x

b − a

∣∣∣∣ ≤ 1,

(b − a)m ≤ 1, for m ≤ 0, if b − a ≥ 1.

This immediately implies the following estimate for the central moment of
the Bernstein–Chlodovsky operators.

Lemma 3.4. Let (−an) and (bn) be sequences of reals tending to infinity and
satisfying the condition −anbn = o (n) as n → ∞. Then, for s = 0, 1, 2, . . .,
the quantities Qk,s (an, bn, s;x)

(⌊
s+1
2

⌋ ≤ k ≤ s
)

are bounded with respect to
n, and

(Cn,an,bn
ψs

x) (x) = O

((−anbn

n

)
 s+1
2 �)

(n → ∞) .
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A crucial tool is the following estimate due to Bernstein (see [14, The-
orem 1.5.3, p. 18f]).

Lemma 3.5. (Bernstein)For 0 ≤ t ≤ 1, the inequality

0 ≤ z ≤ 3
2

√
nt (1 − t)

implies ∑
ν

|ν−nt|≥2z
√

nt(1−t)

pnν (t) ≤ 2 exp
(−z2

)
.

The next lemma presents a form of Lemma 3.5 which is more useful
for application to Chlodovsky operators on the real line. It follows the idea
of Albrycht and Radecki [5] who proved a similar result for the classical
Chlodovsky operators.

Lemma 3.6. Let a < x < b. If 0 < δ ≤ 3 (x − a) (b − x) / (b − a) it holds
∑

ν|a+(b−a) ν
n |≥δ

pnν

(
x − a

b − a

)
≤ 2 exp

(
− nδ2

4 (x − a) (b − x)

)

Proof of Lemma 3.6. Putting t = (x − a) / (b − a) in Lemma 3.5, we have
∑

ν

|ν−n x−a
b−a |≥2z

√
n x−a

b−a
b−x
b−a

pnν

(
x − a

b − a

)

=
∑

ν

|a−x+(b−a) ν
n |≥2z

√
n−1(x−a)(b−x)

pnν

(
x − a

b − a

)
≤ 2 exp

(−z2
)

if 0 ≤ z ≤ 3
2

√
nx−a

b−a
b−x
b−a . Choose δ = 2z

√
n−1 (x − a) (b − x). Then

∑
ν|a−x+(b−a) ν

n |≥δ

pnν

(
x − a

b − a

)
≤ 2 exp

(
− nδ2

4 (x − a) (b − x)

)

if 0 ≤ δ/
(
2
√

n−1 (x − a) (b − x)
)

≤ 3
2

√
nx−a

b−a
b−x
b−a . The latter inequality is

equivalent to

δ ≤ 3
(x − a) (b − x)

b − a
which is a condition of the lemma. �

Lemma 3.7. Let a < x < b and 0 < δ ≤ 3 (x − a) (b − x) / (b − a). If a
bounded function f : [a, b] → R satisfies f (t) = 0, for all t ∈ (x − δ, x + δ) ∩
[a, b], it follows the estimate

|(Cn,a,bf) (x)| ≤ 2 exp
(

− nδ2

4 (x − a) (b − x)

)
‖f‖a,b .
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Proof. Because of f
(
a + (b − a) ν

n

)
= 0 for all ν ∈ {0, . . . , n} with∣∣a + (b − a) ν

n − x
∣∣ < δ we have

|(Cn,a,bf) (x)| =

∣∣∣∣∣∣∣∣∣
∑

ν

|a+(b−a) ν
n |≥δ

pn,ν

(
x − a

b − a

)
f

(
a + (b − a)

ν

n

)
∣∣∣∣∣∣∣∣∣

≤ ‖f‖a,b

∑
ν

|a+(b−a) ν
n |≥δ

pn,ν

(
x − a

b − a

)

and the assertion follows by an application of Lemma 3.6. �

A direct consequence is the following localization result for Bernstein–
Chlodovsky polynomials which is interesting in itself.

Proposition 3.8 (Localization theorem). Let α, p ≥ 0 be fixed constants and
propose that f ∈ Wα,p satisfies the estimate

|f (t)| ≤ K exp (α |t|p) (t ∈ R) .

Furthermore, fix the real number x ∈ (a, b) and let δ > 0. Then f (t) = 0, for
all t ∈ (x − δ, x + δ), implies

|(Cn,a,bf) (x)| ≤ 2K exp
(

− nδ2

4 (x − a) (b − x)

)
exp (α max {|a| , |b|}p) .

Suppose that limn→∞ (−an) = limn→∞ bn = +∞. Then, for sufficiently
large values of n, we can assume that an < −1 < 1 < bn, such that
max {|an| , |bn|} ≤ −anbn. Since (x − an) (bn − x) = O (−anbn) as n → ∞,
there is as positive constant M (x) (independent of n), such that

1
4 (x − an) (bn − x)

≥ M (x)
−anbn

,

for sufficiently large values of n. Hence, we have

exp
(

− nδ2

4 (x − a) (b − x)

)
≤ exp

(
−M (x)

nδ2

−anbn

)
.

We conclude that, for large n,

|(Cn,an,bn
f) (x)| ≤ 2K exp

(
−M (x)

nδ2

−anbn
+ α (−anbn)p

)

= 2K exp

(
−M (x)

n

−anbn

(
δ2 − α

M (x)
· (−anbn)p+1

n

))
.

Proof of Theorem 2.1. Suppose that f is continuous on R being 2q times
differentiable at the point x ∈ R. Define the function hx by

f =
2q∑

s=0

f (s) (x)
s!

ψs
x + hxψ2q

x (3.3)
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and hx (x) = 0. It is a consequence of Taylor’s theorem that hx is continu-
ous at x. Hence, hx ∈ C (R). Applying the operator Cn,a,b to both sides of
Eq. (3.3) we obtain

(Cn,a,bf) (x) =
2q∑

s=0

f (s) (x)
s!

(Cn,a,bψ
s
x) (x) +

(
Cn,a,b

(
hxψ2q

x

))
(x) .

The first sum is equal to
2q∑

s=0

f (s) (x)
s!

(Cn,a,bψ
s
x) (x) =

2q∑
s=0

f (s) (x)
s!

s∑
k=
 s+1

2 �

(−ab

n

)k

Qk,s (a, b, s;x)

=
2q∑

k=0

(−ab

n

)k 2k∑
s=k

f (s) (x)
s!

Qk,s (a, b, s;x)

=
2q∑

k=0

c
[a,b]
k (f, x)

(−ab

n

)k

.

Note that c
[a,b]
0 (f, x) = 1. Eq. (2.2) is a consequence of Lemma 3.4. We

conclude that
2q∑

s=0

f (s) (x)
s!

(Cn,an,bn
ψs

x) (x) =
q∑

k=0

c
[an,bn]
k (f, x)

(−anbn

n

)k

+o

((−anbn

n

)q)

as n → ∞. In order to complete the proof we have to show that the remainder
can be estimated by

(
Cn,an,bn

(
hxψ2q

x

))
(x) = o

((−anbn

n

)q)
(n → ∞) .

To this end let (δn) be a sequence of positive numbers such that

δ2n =
−anbn

nM (x)

(
α (−anbn)p − q log

−anbn

n
+

√
n

−anbn

)
(n ∈ N) .

(3.4)
Note that the conditions (1.3) and (2.1) imply that δn = o (1) as n → ∞.
Define

εn = sup {|hx (t)| : t ∈ (x − δn, x + δn)} .

Because hx is continuous with hx (x) = 0 we have εn = o (1) as n → ∞. We
split the remainder into two parts(

Cn,an,bn

(
hxψ2q

x

))
(x)

=
∑

ν

|an+(bn−an) ν
n −x|<δn

pn,ν

(
x − an

bn − an

)(
hxψ2q

x

) (
an + (bn − an)

ν

n

)

+
∑

ν

|an+(bn−an) ν
n −x|≥δn

pn,ν

(
x − an

bn − an

) (
hxψ2q

x

) (
an + (bn − an)

ν

n

)

=
∑

1
+

∑
2
,
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say. Let us start with the estimate of the first sum:∣∣∣∑
1

∣∣∣ ≤ εn

∑
ν

|an+(bn−an) ν
n −x|<δn

pn,ν

(
x − an

bn − an

)
ψ2q

x

(
an + (bn − an)

ν

n

)

≤ εn

(
Cn,an,bn

ψ2q
x

)
(x) = εnO

((−anbn

n

)q)
= o

((−anbn

n

)q)

as n → ∞, where we used Lemma 3.4. By the Taylor formula (3.3), the
second sum can be rewritten as∑

2
=

∑
ν

|an+(bn−an) ν
n −x|≥δn

pn,ν

(
x − an

bn − an

)

×
(

f
(
an + (bn − an)

ν

n

)
−

2q∑
s=0

f (s) (x)
s!

ψs
x

(
an + (bn − an)

ν

n

))

and we obtain∣∣∣∑
2

∣∣∣ ≤ 2 exp
(

−M (x)
nδ2n

−anbn

)

×
(

‖f‖an,bn
+

2q∑
s=0

∣∣f (s) (x)
∣∣

s!
max {|x − an|s , |bn − x|s}

)
,

where in the last step Lemma 3.6 was applied. Note that
2q∑

s=0

∣∣f (s) (x)
∣∣

s!
max {|x − an|s , |bn − x|s} = O

(
(−anbn)2q

)
(n → ∞) .

Hence,
∑

2
= O

(
exp

(
α (−anbn)p − M (x)

nδ2n
−anbn

))

+ O

(
exp

(
2q log (−anbn) − M (x)

nδ2n
−anbn

))

as n → ∞. In the case p = 0, i.e., f is bounded on R, we have
∑

2
= O

(
exp

(
2q log (−anbn) − M (x)

nδ2n
−anbn

))
(n → ∞) .

We can assume that α > 0. Therefore, in the case p > 0, we have
∑

2
= O

(
exp

(
α (−anbn)p − M (x)

nδ2n
−anbn

))
(n → ∞) .

Obviously, it is sufficient to estimate the latter relation. By Eq. (3.4), we infer
that ∑

2
= O

(
exp

(
q log

−anbn

n
−

√
n

−anbn

))

= O

((−anbn

n

)q

e−
√

n/(−anbn)

)
(n → ∞) .
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Finally, we conclude that the remainder can be estimated by

(
Cn,an,bn

(
hxψ2q

x

))
(x) = o

((−anbn

n

)q)
(n → ∞)

which completes the proof of the theorem. �

Proof of Corollary 2.4. In the special case q = 1, Theorem 2.1 states that

(Cn,an,bn
f) (x) = f (x) + c

[an,bn]
1 (f, x)

−anbn

n
+ o

(−anbn

n

)
(n → ∞)

which can be rewritten in the form
n

−anbn
((Cn,an,bn

f) (x) − f (x)) = c
[an,bn]
1 (f, x) + o (1) (n → ∞) .

We have

c
[a,b]
1 (f, x) =

n

−ab
· f (2) (x)

2!
(
Cn,a,bψ

2
x

)
(x) =

1
2
f (2) (x)

(x − a) (b − x)
−ab

and the desired formula follows because

lim
n→∞ c

[an,bn]
1 (f, x) =

1
2
f (2) (x) lim

n→∞
(x − an) (bn − x)

−anbn
=

1
2
f (2) (x) .

This completes the proof. �
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