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Abstract. In this paper, we investigate to what extent the conclusion of
the Lebesgue dominated convergence theorem holds if the assumption
of dominance is dropped. Specifically, we study both topological and
algebraic genericity of the family of all null sequences of functions that,
being continuous on a locally compact space and integrable with re-
spect to a given Borel measure in it, are not controlled by an integrable
function.
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1. Introduction

Lebesgue’s Dominated Convergence Theorem (LDCT) is probably the most
useful tool to interchange limits and integrals of a sequence of functions. In its
most common version (see, e.g., [22, Chapter 1]), it asserts that if (X,M, μ) is
a measure space and f, f1, f2, . . . are extended real-valued measurable func-
tions on X, such that fn(x) −→ f(x) (n → ∞) for μ-almost every x ∈ X
and there is an integrable function g : X → [−∞,+∞] with |fn(x)| ≤ g(x)
for μ-almost every x ∈ X and all n ≥ 1, then f is integrable on X and
‖fn − f‖1 → 0 as n → ∞ (where ‖h‖1 denotes the 1-norm

∫
X

|h|dμ), so
that, in particular, limn→∞

∫
X

fn dμ =
∫

X
f dμ. The result can be generali-

zed to extended complex-valued functions, to orders of integration p ≥ 1 and
to other kinds of convergence, such as convergence in measure or μ-almost
uniform convergence (see, e.g., [19, Chapter 21]), but we will focus on the
former version.

Since measurability of the fns and almost everywhere pointwise con-
vergence fn −→ f seem to be “natural” conditions in order that 1-norm
convergence can take place, the following question arises:
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Is it feasible to expect ‖fn − f‖1 → 0 without assuming the exis-
tence
of some dominating integrable function g?

In turn, since |fn| ≤ g implies automatically integrability for the fns
and f , then, after replacing fn by fn − f , the problem can be reduced to get
‖fn‖1 → 0 by assuming fn(x) −→ 0 almost everywhere but not dominance.

The aim of this paper is to provide an affirmative answer to the above
question, in both topological and algebraic senses. The preliminary back-
ground and terminology is collected in Sect. 2. Our assertions, together with
motivating related results in the literature, are presented in Sect. 3. Finally,
the proof of our results will be provided in Sects. 4 to 6.

2. Notation and Preliminaries

Those readers who are familiar with Borel measures, lineability, prevalency,
and Baire categories can skip this section. As usual, we will denote by
N, N0, R, Q and c, respectively, the set of natural numbers, the set N∪{0},
the real line, the field of rational numbers, and the cardinality of the contin-
uum.

Assume that X is a Hausdorff topological space. Then, the family B
of Borel sets of X is the least σ-algebra on X containing all open sets.
Then, any continuous function X → R is measurable if X is endowed with
a measurable space structure defined by a σ-algebra M ⊃ B. The symbols
C(X), Cc(X), C0(X) will represent, respectively, the set of all continuous
functions X → R, the subset of those f ∈ C(X) having compact support,
and the subset of those f ∈ C(X) vanishing at infinity. Recall that the
support of an f : X → R is the set {x ∈ X : f(x) 
= 0} (A denotes closure
of A), and that f is said to vanish at infinity provided that, given ε > 0,
there exists a compact K ⊂ X, such that |f(x)| < ε for all x ∈ X\K
(with the agreement C0(X) := C(X) if X itself is compact). The functional
‖f‖∞ := supx∈X |f(x)| is a norm both in Cc(X) and C0(X), and if X is
a locally compact Hausdorff space, then C0(X) is the completion of Cc(X)
(see [22, Chapter 3]), so that, in particular, C0(X) becomes a Banach space
under the last norm with Cc(X) being dense in it.

For any measure space (X,M, μ), the vector space L1(μ) of measurable
functions f : X → [−∞,+∞], such that ‖f‖1 < +∞ is a Banach space
under the norm ‖ · ‖1 (see, e.g., [19, Chapter 14]). Recall that, in L1(μ),
two functions are identified whenever they are equal μ-almost everywhere
(μ-a.e.).

Suppose that X is a locally compact Hausdorff space. A Borel measure
μ on X is a positive measure defined on some σ-algebra M ⊃ B. If this is the
case, then μ is called regular provided it satisfies, for all A ∈ M, that μ(A) =
sup{μ(K) : K compact, K ⊂ A} (inner regularity) and μ(A) = inf{μ(G) : G
open, G ⊃ A} (outer regularity). Observe that if f ∈ C(X) and μ is a Borel
measure on X, then f is measurable. Then, expressions as Y ∩ L1(μ), where
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Y ⊂ C(X), make sense, meaning the set of all f : X → R that are in Y , such
that ‖f‖1 < +∞.

A subset A of a topological space Z is said to be of first category when-
ever there are countably many nowhere dense sets Fn (n ∈ N), such that
A =

⋃∞
n=1 Fn. Recall that a subset B ⊂ Z is called nowhere dense if its

closure has empty interior. A set S ⊂ Z is said to be residual whenever X\S
is of first category. Baire’s category theorem (see, e.g., [20]) asserts that if
Z is completely metrizable, then any countable intersection of dense open
subsets is still dense. If this is the case, a set S ⊂ Z is residual if and only if
it contains a dense Gδ subset. In a topological sense, residual sets are “very
large” in such spaces Z. Moreover, recall that a topological space Z is called
second-countable if it possesses a countable open basis, and σ-compact if Z
is the union of countable many compact subsets.

Another way to assess the largeness of a property is by means of the
modern theory of lineability (see [2–5,8,14,15,23] for terminology and back-
ground), which focusses on the algebraic genericity of a family within a vector
space. Assume that Z is a vector space and A ⊂ Z. Then, A is said to be lin-
eable if there is an infinite-dimensional vector space M , such that M\{0} ⊂ A;
and maximal-lineable if, moreover, dim(M) = dim(Z). If, in addition, Z is a
topological vector space, then A is called spaceable (dense-lineable, maximal
dense-lineable, resp.) in Z whenever there is a closed infinite-dimensional (a
dense, a dense dim(Z)-dimensional, resp.) vector subspace M of Z, such
that M\{0} ⊂ A. Now, assume that Z is a vector space contained in some
(linear) algebra. Then, the subset A is called algebrable if there is an infinitely
generated algebra M—that is, the cardinality of any system of generators
of M is infinite—so that M\{0} ⊂ A; and, if α is a cardinal number, then
A is said to be strongly α-algebrable if there exists an α-generated free al-
gebra M with M\{0} ⊂ A. Recall that if Z is contained in a commutative
algebra, then a set B ⊂ Z is a generating set of some free algebra con-
tained in A if and only if, for any N ∈ N, any nonzero polynomial P in N
variables without constant term, and any distinct f1, . . . , fN ∈ B, we have
P (f1, . . . , fN ) 
= 0 and P (f1, . . . , fN ) ∈ A. The reader can easily check that
many implications among these properties hold; for instance, spaceability im-
plies lineability, dense-lineability (if dim(X) = ∞) implies lineability, strong
α-algebrability (if α is infinite) implies algebrability, and others.

3. Statement of the Results

There are in the literature a number of results related to the topic we are
concerned with, see, for instance, [9,21]. Unless otherwise stated, the measure
considered on an interval of R will be always the Lebesgue measure m.

In [7], it is proved that, in the vector space of sequences:

CBLs := {(fk)k ∈ (RR)N : each fk is continuous, bounded and integrable,

‖fk‖∞ −→
k→∞

0 and sup
k≥1

‖fk‖1 < +∞}
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(which becomes a non-separable Banach space when endowed with the norm
‖(fk)k‖ = supk ‖fk‖∞+supk ‖fk‖1), the subset {(fk)k ∈ CBLs : ‖fk‖1 
−→ 0}
is spaceable. Note that what does not hold for the sequences of this subset is
the conclusion of LDCT. As a complementary statement, it is shown in [10]
that in the F-space:

Y :=
{

(fk)k ∈ (RR)N : each fk is continuous and integrable, ‖fk‖1 −→
k→∞

0

and fk −→
k→∞

0 uniformly on compacta in R

}

(under the topology of both compact and 1-norm convergence), the subset
{(fk)k ∈ Y : each fk is unbounded } is maximal dense-lineable in Y (the
result is formulated for functions [0,+∞) → R, but minor changes in the
proof yields that it holds for functions R → R). This time, the conclusion
of LDCT holds for the sequence of the subset, but each member of each
sequence is unbounded (which, incidentally, is not an obstacle for dominance).
For results dealing with lineability of families of sequences of measurable
functions [0, 1] → R or [0,+∞) → R—where several kinds of convergence are
considered—see [1, Section 7] and [11]. See also [6] and [12] for lineability
facts related to expect values of sequences of random variables defined on a
probability space.

In this paper, we focus on the effect of dropping the dominance hypoth-
esis in LDCT, so as to complement the results from the previous paragraph.
We shall show that, under a topological or algebraic point of view, such effect
is almost imperceptible, in the sense that the conclusion of LDCT still holds
for “many” sequences, even uniformly bounded sequences. Moreover, this will
be carried out into a rather general setting.

To state our assertions, we adopt the following notation and conventions:
• X is a fixed locally compact Hausdorff space.
• μ is a Borel measure on X, so that we have a measure space (X,M, μ)

with M ⊃ B.
• μ is a Baire measure (that is, μ(K) < +∞ for all compact subsets

K ⊂ X), regular, and non-finite (that is, μ(X) = +∞).
• We say that a sequence (fk)k ⊂ L1(ν) is L1-undominated if there is no

g ∈ L1(ν), such that |fk| ≤ g on X for all k ∈ N or, equivalently, if
supk |fk| 
∈ L1(ν) (note that the function supk |fk| : X → [0,+∞] is
always measurable).

In what follows, we define the space we are going to deal with:

Definition 3.1. The space c0,1,∞(C0, L
1) will denote the vector space of all

sequences (fk)k ⊂ C0(X) ∩ L1(μ), such that ‖fk‖1 −→ 0 and ‖fk‖∞ −→
0 as k → ∞ and F will stand for the class of L1-undominated sequences
(fk)k ∈ c0,1,∞(C0, L

1).

Besides the linear structure, we endow c0,1,∞(C0, L
1) with the natural

structure of (linear) algebra by completing sum and scalar multiplication with
the coordinatewise product fg = (fkgk)k, where f = (fk)k and g = (gk)k.
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This makes sense, because the product of two functions from C0(X) ∩ L1(μ)
is still in C0(X) ∩ L1(μ) (use that the members of C0(X) are bounded)
and, for f and g as above, we have ‖fkgk‖∞ → 0 ← ‖fkgk‖1 as k → ∞,
which in turn follows from the facts ‖fkgk‖∞ ≤ ‖fk‖∞ · supn ‖gn‖∞ and
‖fkgk‖1 ≤ ‖fk‖1 · supn ‖gn‖∞.

Remark 3.2. 1. A number of assumptions are sometimes redundant. For in-
stance, in the case M = B, if X satisfies, in addition, that every open subset
is σ-compact, then the sole condition of finiteness of μ on compacta implies
regularity for μ (see [22, Chapter 1]).
2. The assumption μ(X) = +∞ is necessary if we demand uniform conver-
gence fn −→ 0. Indeed, uniform convergence implies the existence of m ∈ N,
such that F := supn>m |fn| is bounded. It is clear that F is measurable.
If μ were finite, the function supn |fn| = max{|f1|, . . . , |fm|, F} would be
integrable, which is the non-desired property. In particular, X cannot be
compact.

We first introduce the following auxiliary statement. Note that none of
the assumptions on μ of being Baire, non-finite, or regular is needed this
time.

Lemma 3.3. The vector space c0,1,∞(C0, L
1) becomes a Banach space when

endowed with the norm:

‖f‖ := sup
k≥1

‖fk‖1 + sup
k≥1

‖fk‖∞,

where f = (fk)k. In particular, it is a Baire space.

Proof. That ‖ · ‖ makes sense on Z := c0,1,∞(C0, L
1) and is a norm on it is

an easy exercise. Regarding completeness, assume that (f j)j ⊂ Z is a Cauchy
sequence for ‖ · ‖. Let f j = (f j

k)k (j ∈ N). Fix ε > 0. Then, there is j0 ∈ N

satisfying:

sup
k≥1

‖f j
k − f l

k‖∞ + sup
k≥1

‖f j
k − f l

k‖1 < ε for all j, l ≥ j0. (1)

It follows at once that each sequence (f l
k)k (l ∈ N) is Cauchy both in

(C0(X), ‖ · ‖∞) and (L1(μ), ‖ · ‖1), which are complete metric spaces. Con-
sequently, there are functions fk ∈ C0(X), gk ∈ L1(μ) (k ∈ N), such that,
in their respective topologies, f l

k −→ fk and f l
k −→ gk as l → ∞. The

latter property implies (see, e.g., [19, Theorems 21.4 and 21.9]) the existence
of subsequence (f l(1,s)

1 )s of (f l
1) satisfying f

l(1,s)
1 (x) −→ g1(x) (s → ∞)

for all x ∈ X\Z1, where μ(Z1) = 0. However, f
l(1,s)
2 −→ g2 (s → ∞)

for ‖ · ‖1. Hence, there is a subsequence (f l(2,s)
2 )s of (f l(1,s)

2 )s satisfying
f

l(2,s)
2 (x) −→ g2(x) (s → ∞) for all x ∈ X\Z2, where μ(Z2) = 0. Follow-

ing this procedure, the diagonal subsequence (l(s, s))s possesses the property
that f

l(s,s)
k (x) −→ gk(x) (s → ∞) for all k ∈ N and all x ∈ X\⋃

k∈N
Zk.

Trivially, f
l(s,s)
k (x) −→ fk(x) (s → ∞) for all k ∈ N and all x ∈ X. By

uniqueness of pointwise limit, we get fk = gk μ-a.e. for all k ∈ N, because
μ(

⋃
k∈N

Zk) = 0. Hence f l
k −→ fk (l → ∞) both in maximum norm and
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1-norm for all k ∈ N. Finally, a standard reasoning using (1) yields that
f := (fk)k ∈ Z and f j −→ f as j → ∞ in ‖ · ‖. �

We can now state or main results that will be proved in the forthcoming
sections:

Theorem 3.4. The set F is a residual subset of (c0,1,∞(C0, L
1), ‖ · ‖).

Theorem 3.5. The set F is spaceable in (c0,1,∞(C0, L
1), ‖ · ‖).

Theorem 3.6. If X is second-countable and every open subset of X is σ-
compact, then F is maximal dense-lineable in (c0,1,∞(C0, L

1), ‖ · ‖).

Theorem 3.7. Assume that μ satisfies the following condition:
(C) There exist α, β ∈ (0,+∞), such that every open set having
infinite
measure contains a measurable set M with α < μ(M) < β.
Then, the set F is strongly c-algebrable.

Concerning condition (C) above, see several remarks in Sect. 7 below.

4. Topological Genericity of Unbounded Convergence: Proof of
Theorem 3.4

Let us abridge Z := c0,1,∞(C0, L
1). It is enough to show that F is dense in

Z and that the set

A := Z\F =
{

f = (fk)k ∈ Z :
∥
∥ sup

k≥1
|fk|∥∥

1
< +∞

}

is Fσ in Z; that is, a union of countably many closed sets. With this aim,
note that we can write A =

⋃
n∈N

Fn, where:

Fn :=

{

f ∈ Z :
∥
∥
∥
∥sup

k≥1
|fk|

∥
∥
∥
∥
1

≤ n

}

.

That A is an Fσ will be proved by showing that each Fn is closed.
1. The set F is dense in Z. Observe that A is a vector subspace of Z. Indeed,
if f = (fk)k,g = (gk)k ∈ A and α, β ∈ R, then:

∥
∥
∥
∥sup

k≥1
|αfk + βgk|

∥
∥
∥
∥
1

≤ |α|
∥
∥
∥
∥sup

k≥1
|fk|

∥
∥
∥
∥
1

+ |β|
∥
∥
∥
∥sup

k≥1
|gk|

∥
∥
∥
∥
1

< +∞.

If we were able to prove that F 
= ∅ then we would have A 
= Z, and it is
an elementary fact that any proper vector subspace of a topological vector
space has empty interior. Hence, its complement F would be dense in Z, as
required. Therefore, it is enough to exhibit an element f ∈ F .

With this aim, note that, by regularity and the fact μ(X) = +∞ > 1,
there is a compact set K1, such that μ(K1) ≥ 1. Since X is locally compact
and Hausdorff, we can find an open set V1 with compact closure, such that

K1 ⊂ V1 ⊂ V1 ⊂ X
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(see, e.g., [22, Theorem 2.7]). Then, μ(V1) < +∞, so μ(X\V1) = +∞ > 1.
Again, by regularity, there is a compact set K2 ⊂ X\V1 with μ(K2) ≥ 1.
Now, take an open set V2 with compact closure, such that

K2 ⊂ V2 ⊂ V2 ⊂ X\V1.

Then, μ(V1 ∪ V2) < +∞, so μ(X\V1 ∪ V2) = +∞ > 1. Thus, there is a
compact set K3 ⊂ X\V1 ∪ V2 with μ(K3) ≥ 1 and, subsequently, there is
an open set V3 with compact closure, such that

K3 ⊂ V3 ⊂ V3 ⊂ X\V1 ∪ V2.

By following this procedure, we can built a sequence (Kn)n of compact sets
as well as a sequence (Vn)n of open sets satisfying:

Kn ⊂ Vn, Vm ∩ Vn = ∅ (m 
= n) and 1 ≤ μ(Kn) < +∞ for all n ∈ N.

In addition, regularity allows us to select the Vns, so that:

μ(Vn) < 2μ(Kn) for every n ∈ N.

According to a result due to Urysohn (see [22, Theorem 2.12]), there exists
a function ϕn ∈ Cc(X), such that 0 ≤ ϕn ≤ 1 on X, ϕn = 1 on Kn and
ϕn = 0 outside Vn. Let us define:

fn :=
1

n · μ(Kn)
· ϕn (n ∈ N) and f := (fn)n.

Clearly, ‖fn‖∞ ≤ 1
n −→ 0 as n → ∞, whereas:

‖fn‖1 =
∫

Vn

ϕn

n · μ(Kn)
dμ ≤

∫

Vn

1
n · μ(Kn)

dμ =
μ(Vn)

n · μ(Kn)
≤ 2

n
−→ 0

as n → ∞. Hence, f ∈ Z. Finally, since the supports of the fns are mutually
disjoint, we get:

∥
∥ sup

n≥1
|fn|∥∥

1
=

∞∑

n=1

‖fn‖1 =
∞∑

n=1

∫

Vn

ϕn

n · μ(Kn)
dμ ≥

∞∑

n=1

∫

Kn

ϕn

n · μ(Kn)
dμ

=
∞∑

n=1

1
n · μ(Kn)

· μ(Kn) =
∞∑

n=1

1
n

= +∞.

To summarize, supn |fn| 
∈ L1(μ) and f ∈ F .
2. For each n ∈ N, the set Fn is closed. Assume that {f j : j ≥ 1} ⊂ Fn and
f j −→ f ∈ Z as j → ∞. It should be shown that f ∈ Fn. Let f = (fk)k

and f j = (f j
k)k (j ∈ N). Let gj := supk |f j

k | (j ∈ N) and g := supk |fk|. Then,
‖gj‖1 ≤ n for all j ∈ N. Our goal is to prove that ‖g‖1 ≤ n. By assumption,
‖f j − f‖ −→ 0 as j → ∞. Then, supk ‖f j

k − fk‖∞ −→ 0. In particular, given
x ∈ X, we obtain from the reverse triangle inequality that:

lim
j→∞

sup
k≥1

∣
∣
∣|f j

k(x)| − |fk(x)|
∣
∣
∣ = 0. (2)

Now, it is easy to see that, if (ak)k ∪ (bk)k ⊂ [0,+∞) and α := supk ak, β :=
supk bk (so that α, β ∈ [0,+∞]), then (under the convention |(+∞)−(+∞)| =
0) we have |α − β| ≤ supk |ak − bk|. It follows from (2) that gj(x) −→ g(x)
as j → ∞ for all x ∈ X. Then, the extended real-valued functions gjs are
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non-negative and measurable, and g = lim infj→∞ gj . From Fatou’s Lemma
(see, e.g., [19, p. 201]), we get:

‖g‖1 =
∫

X

g dμ ≤ lim inf
j→∞

∫

X

gj dμ = lim inf
j→∞

‖gj‖1 ≤ lim inf
j→∞

n = n.

Consequently, ‖g‖1 ≤ n, as required. The proof is finished.

5. Spaceability and Lineability of Unbounded Convergence:
Proofs of Theorems 3.5 and 3.6

First, we prove that F is spaceable in Z := c0,1,∞(C0, L
1). To this aim,

we are going to construct an infinite-dimensional closed subspace M with
M\{0} ⊂ F .

As in the previous section, we can find a sequence (Kn)n of compact
sets, a sequence (Vn)n of open sets, and a sequence (ϕn)n ⊂ Cc(X) satisfying:

Kn ⊂ Vn, 1 ≤ μ(Kn) ≤ μ(Vn) < 2μ(Kn) < +∞ (n ∈ N),
Vm ∩ Vn = ∅ (m,n ∈ N; m 
= n),

0 ≤ ϕn ≤ 1 on X, ϕn = 1 on Kn, and ϕn = 0 on X\Vn (n ∈ N).
Nj = {n(j, 1) < n(j, 2) < n(j, 3) < · · · < n(j, k) < · · · } (j ∈ N).

For each j ∈ N, define the sequence f j = (fj,k)k by:

fj,k :=
1

k · μ(Kn(j,k))
· ϕn(j,k) (k ∈ N).

As in the last section, it is easy to see that each f j belongs to Z. Let us show
that (f j)j is a basic sequence in Z. Plainly, no f j is zero. Now, assume that
(cj)j∈N ⊂ R. By taking into account that the Vns are pairwise disjoint, that
0 ≤ ϕn ≤ 1, and that ϕn = 1 on Kn, we obtain:
∥
∥
∥
∥
∥
∥

N∑

j=1

cjf j

∥
∥
∥
∥
∥
∥

= sup
k≥1

sup
1≤j≤N

|cj |
k · μ(Kn(j,k))

+ sup
k≥1

N∑

j=1

|cj |
k · μ(Kn(j,k))

∫

Vn(j,k)

ϕn(j,k) dμ

for all N ∈ N. Therefore:
∥
∥
∥
∥
∥
∥

p∑

j=1

cjf j

∥
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
∥

q∑

j=1

cjf j

∥
∥
∥
∥
∥
∥

whenever p, q ∈ N with p < q. Consequently, Nikolskii’s theorem (see, e.g.,
[13, pp. 36–38]) guarantees that (f j)j is a basic sequence in the Banach space
Z (with basic constant 1).

Now, we define:

M := span {f j}j∈N.

Since (f j)j is a basic sequence, we have that M is an infinite-dimensional
closed vector subspace of Z. It must be shown that M\{0} ⊂ F . Take
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f = (fk)k ∈ M\{0}. Then, there is a unique sequence (cj)j ∈ R
N, such that:

f =
∞∑

j=1

cjf j in (Z, ‖ · ‖).

Moreover, there is at least one j with cj 
= 0. Let N be the first among such
js. For each k ∈ N, we have fk =

∑∞
j=N cjfj,k =

∑∞
j=N

cj
k·μ(Kn(j,k))

· ϕn(j,k).
Since the Vn’s are pairwise disjoint and the ϕn’s are non-negative, we get:

|fk| =
∞∑

j=N

|cj |
k · μ(Kn(j,k))

· ϕn(j,k) ≥ |cN |
k · μ(Kn(N,k))

· ϕn(N,k).

Again, the disjointness of the Vns yields:

sup
k≥1

|fk| ≥
∞∑

k=1

|cN |
k · μ(Kn(N,k))

· ϕn(N,k).

Recall that ϕn = 1 on Kn and Kn ⊂ Vn. We conclude that:
∥
∥
∥
∥sup

k≥1
|fk|

∥
∥
∥
∥
1

≥ |cN | ·
∞∑

k=1

∫

V (N,k)

1
k · μ(Kn(N,k))

· ϕn(N,k) dμ

≥ |cN | ·
∞∑

k=1

∫

K(N,k)

1
k · μ(Kn(N,k))

dμ

= |cN | ·
∞∑

k=1

1
k

= +∞.

Consequently, supk |fk| is not μ-integrable; that is, f ∈ F . This finishes the
proof Theorem 3.5.

To face dense-lineability, the following lemmas will be invoked. The first
one might be well known, but since we have not been able to find an exact
reference, we provide a proof. The content of the second one is taken from
[2, Theorem 7.3.1].

Lemma 5.1. (a) The set

D :=
{
f = (fk)k ⊂ Cc(X) : there exists k0 = k0(f) ∈ N such

that fk = 0 for all k > k0
}

is a dense subset of Z.
(b) If X is second-countable and every open subset of X is σ-compact, then
Z is separable.

Proof. (a) First of all, every h ∈ Cc(X) belongs to C0(X), and is integrable,
because ‖h‖1 ≤ ‖h‖∞ ·μ(K), where K is the support of h, which is compact.
Then, μ(K) < +∞, whence ‖h‖1 < +∞. This implies that D ⊂ Z.

As for the density, fix an ε > 0 and a vector f = (fk)k ∈ Z. Then,
‖fk‖1 + ‖fk‖∞ → 0 as k → ∞. Take k0 ∈ N, such that ‖fk‖1 < ε

3 and
‖fk‖∞ < ε

3 for all k > k0. Define gk := 0 for all k > k0. Trivially:

‖fk − gk‖1 <
ε

3
and ‖fk − gk‖∞ <

ε

3
for all k > k0.
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Fix k ∈ {1, 2, . . . , k0}. On one hand, since h := fk ∈ L1(μ), there is A ∈ M
with μ(A) < +∞, such that

∫
X\A

|h| < ε
4 ; and since h ∈ C0(X), there

is a compact set L1, such that |h| < min{ ε
3 , 1} outside L1. On the other

hand, the regularity of μ entails the existence of a compact set L2 ⊂ A with
μ(A\L2) < ε

4 . Let us define K := L1 ∪ L2, which is a compact set. Then,
|h| < ε

3 , 1 on X\K and μ(A\K) < ε
4 . Moreover, as X\K ⊂ (X\A)∪(A\K),

we get:
∫

X\K

|h|dμ ≤
∫

X\A

|h|dμ +
∫

A\K

|h|dμ <
ε

4
+ μ(A\K) · 1 <

ε

2
.

Again by Urysohn’s result used in the previous section (see [22, Theorem
2.12]), there exists a function ϕ ∈ Cc(X), such that 0 ≤ ϕ ≤ 1 on X and
ϕ = 1 on K. Then, the function gk := ϕ · h belongs to Cc(X) and satisfies
for k ∈ {1, . . . , k0} the following:

• ‖fk − gk‖∞ = ‖h(1 − ϕ)‖∞ = supX\K |h| ≤ ε
3 < ε

2 , and
• ‖fk − gk‖1 = ‖h(1 − ϕ)‖1 =

∫
X\K

|h|dμ < ε
2 .

It follows easily that the vector g := (gk)k belongs to D and satisfies ‖g −
f‖ < ε

2 + ε
2 = ε, which proves the density of D.

(b) Note that in the proof of (a), we have in fact shown that Cc(X) is
dense in C0(X) ∩ L1(μ) in the topology generated by the norms ‖ · ‖∞ and
‖ · ‖1. Since D is dense in Z and the members of D are essentially N -tuples
(f1, . . . , fN ) of functions from Cc(X) (N ∈ N), it is enough to prove the
existence of a countable set C ⊂ Cc(X), such that every member of Cc(X)
can be approximated (in both cited norms) by members of C.

Fix a nonempty open subset O ⊂ X. From the assumption, O is σ-
compact. However, it is also second-countable, because this property is in-
herited by every topological subspace. Then, there is a countable open ba-
sis {Wm : m ∈ N} for the restriction of the topology of X to O. By
σ-compactness and local compactness (which is also inherited by O because
O is open), there is a sequence (Uk)k of open sets in O with compact clo-
sures contained in O such that O =

⋃
k∈N

Uk and Un ⊂ Un+1 for all n ∈ N

(see, e.g., [16, pp. 325–326]). From this, it follows easily that the countable
collection (Gn)n∈N of all nonempty intersections of the form Wm ∩Uk is still
an open basis for the topology of O and its members have compact closures
contained in O.

Now, local compactness implies the existence, for each n ∈ N, of an
open subset Vn with compact closure, such that Gn ⊂ Gn ⊂ Vn ⊂ Vn ⊂ O
(see Remark 4 in Sect. 7 below). Note that every X\Vn is a closed subset
of X that is not empty because X is not compact. Since X is Hausdorff,
locally compact and second-countable, it is metrizable (see, e.g., [16, p. 342]).
Fix a metric d generating the topology of X. For every n ∈ N, define the
function ϕn : X → R by:

ϕn(x) =
d(x,X\Vn)

d(x,Gn) + d(x,X\Vn)
.
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This function is well defined, because both sets Gn and X\Vn are closed and
have empty intersection. Trivially, ϕn ∈ Cc(X) and 0 ≤ ϕn ≤ 1. However, by
considering its restriction to O, we also get ϕn ∈ Cc(O), because its support
is contained in Vn, which is a compact subset of O. It is important the fact
that ϕn(x) = 1 if and only if x ∈ Gn. The family Φ of the restrictions of
the ϕn’s (n ∈ N) to O enjoys the following properties:

• It is nonvanishing; that is, given x0 ∈ O, there is ϕ ∈ Φ with ϕ(x0) 
= 0.
This is evident, because there exists n ∈ N, such that x0 ∈ Gn, so
x0 ∈ Gn. Then, ϕn(x0) = 1 
= 0.

• It is separating; that is, given distinct points x, y ∈ O, there is ϕ ∈ Φ
with ϕ(x) 
= ϕ(y). Indeed, there are open sets G, S ⊂ O, such that
x ∈ G, y ∈ S and G ∩ S = ∅ (Hausdorff property is inherited by any
subspace). From local compactness, one derives the existence of open
sets U, V with compact closures, such that x ∈ U ⊂ U ⊂ G and
y ∈ V ⊂ V ⊂ S. Since (Gn)n is an open basis, there exist m,n ∈ N

with x ∈ Gm ⊂ U and y ∈ Gn ⊂ V . However Gm ⊂ G, Gn ⊂ S and
G ∩ S = ∅, so x ∈ Gm 
� y. Then, the function ϕ := ϕm ∈ Φ satisfies
ϕ(x) = 1 
= ϕ(y).

According to the Stone–Weierstrass theorem in its version for completely reg-
ular spaces (see [18, Theorem 16.5.7]; recall that any Hausdorff locally com-
pact space is completely regular, see [24, p. 136]), the algebra B generated
by Φ is dense in C(O) under the compact-open topology. The members of
B are finite linear combinations, with coefficients in R, of finite products of
powers of elements of Φ. A simple argument invoking the continuity of the
scalar multiplication on a topological vector space shows that the collection
CO of all finite linear combinations, with coefficients in Q of the above prod-
ucts is a (countable) dense subset of C(O). Note that CO ⊂ Cc(O). Again
by σ-compactness and local compactness, there is a sequence (Ok)k of open
sets in X with compact closures, such that O =

⋃
k∈N

Ok and On ⊂ On+1

for all n ∈ N. Let us define:

C :=
⋃

n∈N

COn
.

Then, C is a countable subset of Cc(X).
Fix f ∈ Cc(X) and ε > 0. Then, the support of f is contained in

some Om. Note that μ(Om) < +∞, because Om is compact. Since f ∈
C(Om), the above proved denseness yields the existence of ϕ ∈ COm

with
|f(x)−ϕ(x)| < ε

1+μ(Om) for all x ∈ Om. Since f and ϕ vanish outside Om,
we get:

‖f − ϕ‖∞ < ε and ‖f − ϕ‖1 =
∫

Om

|f − ϕ|dμ ≤ ε · μ(Om)
1 + μ(Om)

< ε,

as required. �

Lemma 5.2. Assume that E is a metrizable topological vector space. Suppose
that A and B are subsets of E satisfying the following:

(i) A is maximal-lineable,
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(ii) B is dense-lineable,
(i) A + B ⊂ A, and

(iv) A ∩ B = ∅.

Then, A is maximal dense-lineable in E.

Under the assumptions of Theorem 3.6 and thanks to Lemma 5.1(b),
Z is a separable infinite-dimensional Banach space. Then, a standard appli-
cation of Baire’s category theorem yields that dim(Z) = c. Recall that we
have denoted A := Z\F and that A is a vector space. We have already
proved that F is spaceable, which, together with a new application of Baire’s
theorem, gives that F is maximal-lineable. On one hand, D is dense in Z by
Lemma 5.1(a). However, D itself is a vector space, so it is dense-lineable. As
D ⊂ A, we get D ∩ Z = ∅ and F + D ⊂ F + A ⊂ F . Therefore, we can
apply Lemma 5.2 with E := Z, A := F and B := D. This finishes the proof
of Theorem 3.6.

6. Algebrability of Unbounded Convergence: Proof of
Theorem 3.7

Our next goal is to prove Theorem 3.7. Consider the constants α, β furnished
by condition (C). By following a procedure similar to the one given in the
proof of Theorem 3.4 (see Sect. 4), and using (C), we can inductively produce
a sequence (Kn)n of compact sets as well as a sequence (Vn)n of mutually
disjoint, relatively compact, open sets, and a sequence ϕn ∈ Cc(X), such
that, for all n ∈ N, we have:

Kn ⊂ Vn, α < μ(Kn) < β, μ(Vn) < 2μ(Kn) < 2β, 0 ≤ ϕn ≤ 1,

ϕn(x) = 1 for all x ∈ Kn, and ϕn(x) = 0 for all x ∈ X\Vn.

This time, the existence of Kn in the nth step is guaranteed by (C) and
the fact that the open set X\V1 ∪ · · · ∪ Vn−1 (defined as X if n = 1) has
infinite measure, so that Kn is extracted by regularity from a measurable set
M ⊂ X\V1 ∪ · · · ∪ Vn−1 satisfying α < μ(M) < β.

Take a linearly Q-independent set H ⊂ (0,+∞) with card(H) = c. For
each t ∈ H, define the function sequence f t = (ft,n)n by:

ft,n =
1

(log(n + 1))t · μ(Kn)
· ϕn.

As in Sect. 4, it is easy to see that f t ∈ Z (the facts μ(Kn) > α, μ(Vn) < 2β
are crucial). Now, we denote by B the linear algebra generated by the family
{f t : t ∈ H}. We are going to show that B is freely generated by {f t : t ∈ H}
and is contained in F ∪ {0}.

With this aim, fix N ∈ N, a nonzero polynomial P of N real vari-
ables without constant term and pairwise distinct numbers t1, . . . , tN ∈ H.
It suffices to prove that g = (gn)n := P (f t1 , . . . , f tN ) ∈ F . Note first that
g ∈ Z, because Z is an algebra (under the coordinatewise product). Since
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P 
= 0, there are a nonempty finite set F ⊂ N
N
0 \{(0, 0, . . . , 0)} and con-

stants αm ∈ R\{0} (m = (m1, . . . ,mN ) ∈ F ), such that P (x1, . . . , xN ) =∑
m∈F αmxm1

1 · · · xmN

N . Then, each component gn has the expression:

gn =
∑

m∈F

αm
ϕmt

n

(log(n + 1))mt · μ(Kn)|m| ,

where mt := m1t1 + · · · + mN tN and |m| := m1 + · · · + mN . Our unique
task is to show that:

G := sup
n≥1

|gn| = sup
n≥1

∣
∣
∣
∣
∣

∑

m∈F

αm
ϕmt

n

(log(n + 1))mt · μ(Kn)|m|

∣
∣
∣
∣
∣

∈ L1(μ).

Notice the numbers mt (m ∈ F ) are pairwise distinct due to the
Q-independence of t1, . . . , tN . Then, there is a unique n ∈ F , such that
n t < mt for all m ∈ F\{n}. Since the supports of the gns are mutually
disjoint, we obtain:

G =
∞∑

n=1

|gn| =
∞∑

n=1

∣
∣
∣
∣
∣

∑

m∈F

αm
ϕmt

n

(log(n + 1))mt · μ(Kn)|m|

∣
∣
∣
∣
∣

=
∞∑

n=1

∣
∣
∣
∣

αn

(log(n + 1))n t · μ(Kn)|n| · (
ϕn t

n + Φn

)
∣
∣
∣
∣ ,

where

Φn :=
∑

m∈F\{n}

αm ϕmt
n μ(Kn)|n|−|m|

αn (log(n + 1))mt−n t
.

Now, observe that for each m ∈ F\{n} the sequence
{

αm ϕmt
n μ(Kn)

|n|−|m|

αn

}

n

is uniformly bounded on X, and that 1
(log(n+1))r → 0 as n → ∞, for every

r > 0. Since F\{n} is finite, it follows that Φn −→ 0 uniformly on X.
Therefore, there exists n0 ∈ N, such that |Φn(x)| < 1

2 for all n ∈ N, n ≥ n0

and all x ∈ X. Hence, by the reverse triangle inequality, we obtain:

G(x) ≥
∞∑

n=n0

∣
∣
∣
∣

αn

(log(n + 1))n t · μ(Kn)|n|

∣
∣
∣
∣ ·

∣
∣
∣
∣ϕ

n t
n (x) − 1

2

∣
∣
∣
∣ for all x ∈ X.

Consequently:
∫

X

G(x) dμ ≥
∞∑

n=n0

∫

Kn

∣
∣
∣
∣

αn

(log(n + 1))n t · μ(Kn)|n|

∣
∣
∣
∣ ·

∣
∣
∣
∣ϕ

n t
n (x) − 1

2

∣
∣
∣
∣ dμ

=
∞∑

n=n0

∫

Kn

|αn|
2(log(n + 1))n t · μ(Kn)|n| dμ

=
∞∑

n=n0

|αn|
2(log(n + 1))n t · μ(Kn)|n|−1

≥ |αn|
2 · β|n|−1

·
∞∑

n=n0

1
(log(n + 1))n t

= +∞,
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where the facts μ(Kn) < β, ϕn|Kn
= 1, and n t > 0 have been used. To

summarize, G 
∈ L1(μ), as required.

7. Final Remarks

1. As the most evident example, all preceding Theorems 3.4–3.7 can be
applied to X = R

N (N ∈ N) (or to a rectangle X = I1 × · · · × IN ,
with the Ij ’s intervals of R, being unbounded at least one of them)
and μ = m = the Lebesgue N -dimensional measure. Indeed, R

N is
a second-countable locally compact Hausdorff space all of whose open
subsets are sigma-compact, and m is a regular Borel non-finite measure
that is finite on compacta and satisfies condition (C) in Theorem 3.7
(any pair 0 < α < β < +∞ works).

2. In fact, we can formulate a more general situation in which condition
(C) is satisfied; namely, (C) is fulfilled by a nonatomic Borel measure ν
satisfying the assumptions in Sect. 3. Recall that a measure ν defined
on a measurable space (Ω,Σ) is nonatomic if Ω lacks atoms, and a set
A ⊂ Ω is called an atom if ν(A) > 0 and, given B ∈ Σ, one has either
ν(B) = 0 or ν(A\B) = 0. The measure ν is called semifinite provided
that ν(A) = sup{ν(B) : B ∈ Σ, B ⊂ A and ν(B) < +∞}. If μ is as
in Sect. 3, then finiteness at compacta together with regularity implies
semifiniteness. Now, it is known (see [19, Theorem 11.27]) that, if ν is
semifinite and nonatomic, then [0, ν(A)] = {ν(B) : B ∈ Σ and B ⊂ A}.
This proves our claim, because, again, any pair 0 < α < β < +∞ does
the job.

3. Nevertheless, being nonatomic is not necessary for (C) to hold. For ins-
tance, if X = N under the discrete topology and μ is the cardinal
measure on the set M = P(N) of all parts of N, then μ satisfies all
axioms given in Sect. 3, including (C) (with α = 1/2 and β = 2, say),
and each singleton {m} is an atom. However, the measure μ(A) :=∑∞

n=1 n · card(A ∩ {n}) satisfies all axioms given in Sect. 3 prior to
Theorems 3.4–3.7 and each {m} is an atom for it, but (C) is not fulfilled.

4. In the proof of Lemma 5.1(b), the following facts have been tacitly used.
Assume that (X, τ) is a Hausdorff topological space and that A ⊂ B ⊂
X. Then, the closure of A with respect to the induced topology τB of
τ in B, denoted A

B
, can be computed as A

B
= A ∩ B. Moreover, A

is τ -compact if and only if it is τB-compact. It follows that if A
B

is
τB-compact, then A = A

B
(which implies A ⊂ B): indeed, A

B
is τ -

compact, so τ -closed, because X is Hausdorff; then, A
B

is a τ -closed
set containing A, so A

B ⊃ A; but A
B

= A ∩ B ⊂ A, which yields the
identity.

5. We can also consider the size of a subset of a vector space from a
measure-theoretical point of view. In this direction, Hunt, Sauer, and
Yorke [17] coined in 1992 the following concept of prevalence. Let Z be
a metrizable topological vector space over R or C. A subset A ⊂ Z is
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called prevalent in Z provided that there exist a Borel set S ⊂ Z and a
Borel measure μ on Z satisfying the following conditions:

(i) A ⊃ Z\S,
(ii) μ(S + v) = 0 for every v ∈ Z,
(iii) 0 < μ(K) < ∞ for some compact subset K ⊂ Z.
In [17, p. 222], it is shown that if Z is infinite-dimensional, then the
complement of a proper vector subspace is always prevalent. However,
in Sect. 4, it is proved that A := (c0,1,∞(C0, L

1)\F is a proper vec-
tor subspace of c0,1,∞(C0, L

1). Thus, we can conclude: The set F is a
prevalent subset of (c0,1,∞(C0, L

1), ‖ · ‖).
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