Mediterr. J. Math. (2020) 17:189 https://doi.org/10.1007/s00009-020-01613-4 1660-5446/20/060001-8 *published online* October 24, 2020 -c Springer Nature Switzerland AG 2020

Mediterranean Journal **I** of Mathematics

On the Exponential Diophantine Equation $(m^2 + m + 1)^x + m^y = (m + 1)^z$

Murat Ala[n](http://orcid.org/0000-0003-2031-2725)o

Abstract. Let $m \geq 1$ be a positive integer. We show that the exponential Diophantine equation $(m^2 + m + 1)^x + m^y = (m + 1)^z$ has no positive integer solutions other than $(x, y, z) = (1, 1, 2)$ when $m \notin \{1, 2, 3\}.$

Mathematics Subject Classification. Primary 11D61; Secondary 11D75.

Keywords. Exponential Diophantine equations, *m*-adic valuation.

1. Introduction

Let *u, v, w* be relatively prime positive integers greater than one and assume that the exponential Diophantine equation

$$
u^x + v^y = w^z \tag{1.1}
$$

in positive integers x, y, z has a solution (x_0, y_0, z_0) . Two famous conjectures related to uniqueness of this solution (x_0, y_0, z_0) are due to Jesmanowicz and Terai with some restriction on (1.1) . In 1956, Jestmanowicz conjectured that if u, v and w are any Pythagorean triples, i.e., positive integers satisfying $u^2 + v^2 = w^2$, then the solution $(x_0, y_0, z_0) = (2, 2, 2)$ is the unique solution of (1.1) [\[5\]](#page-5-0). Another similar conjecture is proposed by Terai which states that if u, v, w, p, q, r are fixed positive integers satisfying $u^p + v^q = w^r$ with $u, v, w, p, q, r \geq 2$, then the Eq. [\(1.1\)](#page-0-0) has unique positive integer solution $(x_0, y_0, z_0) = (p, q, r)$ [\[19](#page-6-0), 20]. Exceptional cases are listed explicitly in [\[24\]](#page-6-2). Although both conjectures are proved to be true in many special cases, see for example $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$ $[1,3,4,6,8,10-13,18,21-23,25]$, they are still remain an unsolved problem yet. We refer to $[9,17]$ $[9,17]$ $[9,17]$ for a detailed information on these two conjectures. In this note we study the exponential Diophantine equation

$$
(m2 + m + 1)x + my = (m + 1)z
$$
 (1.2)

where $m > 1$ is a positive integer, and we prove the following.

Theorem 1.1. Let $m > 1$ be a positive integer. If $m > 3$ then the Eq. [\(1.2\)](#page-0-1) has *only the positive integer solution* $(x, y, z) = (1, 1, 2)$ *. For* $m = 2$ *and* $m = 3$ *the Eq.* [\(1.1\)](#page-0-0) *has exactly two solutions, namely* $(x, y, z) = (1, 1, 2), (2, 5, 4)$ *and* $(x, y, z) = (1, 1, 2), (1, 5, 4)$ *, respectively.*

In the above theorem, we exclude the case $m = 1$ just for preserving the exponent in the expression m^y . In fact, it is easy to see that the equation $3^x+1=2^z$ has only the positive integer solution $(x, z) = (1, 2)$ by considering it modulo 8. For the next two values of m , the Eq. (1.2) turns into the equations $7^x + 2^y = 3^z$ and $13^x + 3^y = 4^z$, for which both of them have more than one solution [\[14](#page-6-12)[,26](#page-6-13)]. So the aim of this study is to give an answer to the question whether or not the Eq. (1.2) has any positive integer solutions other than $(x, y, z) = (1, 1, 2)$ when $m > 3$. The proof depends on elementary congruence considerations and some results on linear forms in two *m*−adic logarithms.

2. Proof of Theorem [1.1](#page-0-2)

Lemma 2.1. *Let* (x, y, z) *be a positive integer solution of the Eq.* [\(1.2\)](#page-0-1)*. The following conditions hold.*

- 1. *y is odd.*
- 2. *There exists an integer t such that* $|x y| = (m + 1)t$.
- *Proof.* 1. By reducing Eq. [\(1.2\)](#page-0-1) modulo $m + 1$ we get that $1 + (-1)^y \equiv 0$ $(\text{mod } (m+1))$ which implies that *y* is odd since $m > 1$.
	- 2. If $x = y$ then we may take $t = 0$. So assume that $|x y| \ge 1$. It is clear from [\(1.2\)](#page-0-1) that $z \ge 2$. So we have that

$$
(m^{2} + m + 1)^{x} + m^{y} \equiv 0 \pmod{(m+1)^{2}}
$$

$$
(-m)^{x} + m^{y} \equiv 0 \pmod{(m+1)^{2}}
$$

$$
m^{|x-y|} + (-1)^{x} \equiv 0 \pmod{(m+1)^{2}}
$$

$$
((m+1)-1)^{|x-y|} + (-1)^{x} \equiv 0 \pmod{(m+1)^{2}}
$$

$$
(-1)^{|x-y|} + (-1)^{|x-y|-1}(m+1)|x-y| + (-1)^{x} \equiv 0 \pmod{(m+1)^{2}}.
$$

Taking into account that *y* is odd we get more precisely

$$
|x - y| \equiv 0 \pmod{(m+1)},
$$

which means that $|x - y| = (m + 1)t$ for some positive integer *t*.

Lemma 2.2. *If* $m \equiv 1 \pmod{4}$ *then* $(x, y, z) = (1, 1, 2)$ *is the only solution of* [\(1.2\)](#page-0-1)*.*

Proof. If $z \leq 2$ then clearly $(x, y, z) = (1, 1, 2)$ is the only solution of (1.2) . Assume that $z \geq 3$ and $m = 4k + 1$ for some positive integer k. If x is even, then $(m^2 + m + 1)^x \equiv 1 \pmod{8}$ and $m^{y-1} \equiv 1$, so from (1.2) we get that $1 + m \equiv 0 \pmod{8}$ which implies $2k + 1 \equiv 0 \pmod{4}$, a contradiction. So *x*

 \Box

must be odd and hence $(m^2 + m + 1)^x \equiv m^2 + m + 1 \pmod{8}$. Then again considering [\(1.2\)](#page-0-1) modulo 8 we get that

$$
(m+1)2 \equiv 0 \pmod{8}
$$

$$
(4k+2)2 \equiv 0 \pmod{8}
$$

$$
4 \equiv 0 \pmod{8}
$$

which is a contradiction. Hence, $(x, y, z) = (1, 1, 2)$ is the only solution of $(1, 2)$ when $m \equiv 1 \pmod{4}$ (1.2) when $m \equiv 1 \pmod{4}$.

Lemma 2.3. Let (x, y, z) be a positive integer solution of the Eq. (1.2) . Then *x* and *y* are relatively prime integers. In particular, $x \neq y$ for $z > 2$.

Proof. If $z \leq 2$ then $x = y = 1$ and hence the result is clear. So assume that $z \geq 3$ and that there exists an odd prime *p* such that $x = x_1 p$ and $y = y_1 p$ for some positive integers x_1 and y_1 since y is odd by Lemma [2.1.](#page-1-0) Let

$$
K = (m^{2} + m + 1)^{x_{1}} + m^{y_{1}}, \quad L = \frac{(m^{2} + m + 1)^{x_{1}p} + m^{y_{1}p}}{(m^{2} + m + 1)^{x_{1}} + m^{y_{1}}}.
$$

So Eq. (1.2) is of the form

$$
KL = (m+1)^{z}
$$
\n
$$
(2.1)
$$

where $gcd(K, L) = 1$ or *p*. Note that $K \equiv 0 \pmod{m+1}$. Hence if $gcd(K, L) = 1$ then $L = 1$ which is clearly impossible for $n > 1$. Thus, $gcd(K, L) = n$, Let 1 then $L = 1$ which is clearly impossible for $p > 1$. Thus, $gcd(K, L) = p$. Let $m+1=p^kq$ for some positive integer *k* such that $gcd(p,q)=1$. From [\(2.1\)](#page-2-0) we have that either $K = p^{kz-1}q^z$, $L = p$ or $K = pq^z$, $L = p^{kz-1}$. For $p > 1$ it is easy to see that

$$
p(m^2 + m + 1)^{x_1} < (m^2 + m + 1)^{x_1 p}
$$

and

$$
pm^{y_1} < m^{y_1 p}.
$$

So the case $L = p$ leads to a contradiction. On the other hand it is known
that $n^2 \nmid L$ see for example [15, P1.2], thus for the case $K = nq^z$, $L = n^{kz-1}$ that $p^2 \nmid L$, see, for example, [\[15,](#page-6-14) P1.2], thus for the case $K = pq^z$, $L = p^{kz-1}$
we have the only possibility $kz - 1 = 1$ which is also a contradiction since we have the only possibility $kz - 1 = 1$ which is also a contradiction since $z \geq 3$. So, there do not exist such a prime *p* and hence *x* and *y* are relatively prime integers. prime integers. -

Let $m' > 1$ be an integer and let $m' = p_1^{t_1} \dots p_k^{t_k}$ be the prime factorization of m' for distinct primes n . The proof of Theorem 1.1 mainly depends tion of m' for distinct primes p_i . The proof of Theorem [1.1](#page-0-2) mainly depends
on a result due to Bugeaud [2] on linear forms in two m' -adic logarithms on a result due to Bugeaud [\[2\]](#page-5-6) on linear forms in two m' -adic logarithms.
Let x_1/μ_1 and x_2/μ_2 be two pon-zero rational numbers with $x_1/\mu_1 \neq \pm 1$ In Let x_1/y_1 and x_2/y_2 be two non-zero rational numbers with $x_1/y_1 \neq \pm 1$. In [\[2](#page-5-6)] Bugeaud provide an upper bound for the m' -adic valuation of

$$
\Lambda = (x_1/y_1)^{b_1} - (x_2/y_2)^{b_2}
$$

whenever $v_{p_i}(x_1/y_1) = v_{p_i}(x_2/y_2) = 0$ for all $1 \leq i \leq k$ where b_1 and b_2 are positive integers. Suppose that there exists a positive integer *g* which is coprime with p_1, \ldots, p_k such that for all prime p_i ,

$$
v_{p_i}\left(\left(\frac{x_1}{y_1}\right)^g - 1\right) \ge t_i, v_{p_i}\left(\left(\frac{x_2}{y_2}\right)^g - 1\right) \ge 1, 1 \le i \le k \tag{2.2}
$$

1[8](#page-5-5)9 Page 4 of 8 M. Alan MJOM

and

$$
v_2\left(\left(\frac{x_1}{y_1}\right)^g - 1\right) \ge 2, v_2\left(\left(\frac{x_2}{y_2}\right)^g - 1\right) \ge 2 \text{ if } 2 \mid m'.\tag{2.3}
$$

Theorem 2.4. ([[\[2](#page-5-6)], Theorem 2]) Let $A_1 > 1, A_2 > 1$ be real numbers such *that*

$$
\log A_i \ge \max\{\log |x_i|, \log |y_i|, \log m'\}, \quad i = 1, 2
$$

and put

$$
b' = \frac{b_1}{\log A_2} + \frac{b_2}{\log A_1}
$$

Under the hypotheses (2.2) *and* (2.3) *assume that* x_1/y_1 *and* x_2/y_2 *are multiplicatively independent If* m' *b*₁ *and b*₂ *are relatively prime then we have* $tiplicatively\ independent.\ If\ m',\ b_1\ and\ b_2\ are\ relatively\ prime\ then\ we\ have$
the unner estimate *the upper estimate*

$$
v_{m'}(\Lambda) \le \frac{53.6g}{(\log m')^4} (\max\{\log b' + \log \log m' + 0.64, 4\log m'\})^2 \log A_1 \log A_2.
$$

Now we apply the above theorem to the Eq. (1.2) by considering the $(m+1)$ – adic valuation.

Lemma 2.5. *Let* $m > 7$ *. If* $m \equiv 3 \pmod{4}$ *or* 2 | *m then the Eq.* [\(1.2\)](#page-0-1) *has only the positive integer solution* $(x, y, z) = (1, 1, 2)$ *.*

Proof. If $z \leq 2$ then then the assertion is trivially true. Assume that $z \geq 3$. Since y is odd, we rewrite the Eq. (1.2) as

$$
(m+1)^{z} = (m^{2} + m + 1)^{x} - (-m)^{y}
$$

and consider the $(m + 1)$ −adic valuation of $(m^2 + m + 1)^x - (-m)^y$ *.* Since $(m + 1) \mid m^2 + m$ ($m + 1 \mid -m - 1$) and also $4 \mid m^2 + m$ $4 \mid (-m - 1)$ if $(m+1)$ | $m^2 + m$, $(m+1)$ | $-m-1$, and also $4 \mid m^2 + m$, $4 \mid (-m-1)$ if $m+1$ is even. So, by Lemma [2.3,](#page-2-2) the hypotheses of Theorem [2.4](#page-3-1) are satisfied for $g = 1$ by taking $x_1 := m^2 + m + 1$ and $x_2 := -m$. Thus, from Theorem [2.4](#page-3-1) we have the estimate

$$
z \le \frac{53.6}{\left(\log\left(m+1\right)\right)^4} \left(\max\{\log b' + \log\log\left(m+1\right) + 0.64, 4\log\left(m+1\right)\}\right)^2
$$

$$
\times \log\left(m^2 + m + 1\right) \log m \tag{2.4}
$$

where $b' = \frac{b}{\log m} + \frac{b}{\log m^2 + m + 1}$.
First assume that $\log b' + \log \log$

First assume that $\log b' + \log \log (m + 1) + 0.64 > 4 \log (m + 1)$. We will that this is not possible. But $M = \max\{x, y\}$. Then show that this is not possible. Put $M = \max\{x, y\}$. Then

$$
M\left(\frac{1}{\log m} + \frac{1}{\log(m^2 + m + 1)}\right) \ge b' > \frac{(m+1)^4}{e^{0.64}\log(m+1)}\tag{2.5}
$$

and it follows that $M > 2205$ since $m \geq 8$. On the other hand, from the Eq. (1.2) we see that Eq. (1.2) we see that

$$
x\frac{\log(m^2+m+1)}{\log(m+1)} < z \quad \text{and} \quad y\frac{\log m}{\log(m+1)} < z.
$$

Thus $M \frac{\log m}{\log (m+1)} < z$. Combining this inequality and [\(2.4\)](#page-3-2) together with (2.5) we get that (2.5) we get that

$$
M \le 53.6 \left(\log M + U(m) + 0.64\right)^2 V(m). \tag{2.6}
$$

where

$$
U(m) = \log \left(\frac{\log (m+1)}{\log m} + \frac{\log (m+1)}{\log (m^2 + m + 1)} \right)
$$

and

$$
V(m) = \frac{\log (m^2 + m + 1)}{(\log (m + 1))^3}.
$$

For $m \geq 8$, both $U(m)$ and $V(m)$ are decreasing and $U(m) \leq U(8) < 0.46$, $V(m) \le V(8) < 0.41$. Thus from (2.6) we get

$$
M < 22\left(\log M + 1.1\right)^2,
$$

which implies $M < 1576$, a contradiction. So $\log b' + \log \log (m + 1) + 0.64 \le$
 $\frac{4 \log (m + 1)}{m + \log \cos \theta}$ from (2.4) we have that $4\log(m+1)$. In this case from (2.4) we have that

$$
z < 53.6 \times 16 \times W(m),
$$

where $W(m) = \frac{\log m \log (m^2 + m + 1)}{(\log (m + 1))^2}$. In the above one can see that $W(m)$ < 2 for all positive m, and hence we get that $z \le 1716$. Therefore, *u* is also 2 for all positive *m*, and hence we get that $z < 1716$. Therefore, *y* is also bounded as $0.95y < y \frac{\log m}{\log(m+1)} < z < 1716$ and hence $y < 1807$ for $m \ge 8$.
Similarly, from the inequality Similarly, from the inequality

$$
1.96x < x \frac{\log m^2 + m + 1}{\log(m+1)} < z < 1716,
$$

we get $x < 876$ for $m \geq 8$. Thus all x, y and z are bounded. Moreover, from Lemma [2.1](#page-1-0) *m* is also bounded with $m + 1 < M < 1807$. As a final step we checked with a short computer program in Maple that the equation (1.2) has no solution other than $(x, y, z) = (1, 1, 2)$ with these restrictions and those of Lemma [2.1](#page-1-0) when *m* is in the range $8 \le m \le 1807$. This completes the proof. \Box

Proof of Theorem [1.1.](#page-0-2) From Lemmas [2.2](#page-1-1) and [2.5](#page-3-4) it remains to check the Eq. [\(1.2\)](#page-0-1) only for $m \in \{2, 3, 4, 6, 7\}$. The results for the equations $7^x + 2^y = 3^z$, $13^{x} + 3^{y} = 4^{z}$, and $57^{x} + 7^{y} = 8^{z}$ which corresponds to the case $m = 2$, $m = 3$ and $m = 7$ in the Eq. (1.2) have already been established by a number of authors, at least $[14,26]$ $[14,26]$ $[14,26]$ and $[16,$ Theorem 6 respectively. For $m = 4$, the equation [\(1.2\)](#page-0-1) turns into the equation $21^x + 4^y = 5^z$. If *x* is even then by [\[7\]](#page-5-7) this equation has no solution in positive integers whereas if *x* is odd then by [\[16](#page-6-15), Lemma 6] it has only one solution, namely $(x, y, z) = (1, 1, 2)$. Finally we consider the equation $43^x + 6^y = 7^z$ for $m = 6$. If *x* is odd then the equation has only one solution $(x, y, z) = (1, 1, 2)$ by [\[16](#page-6-15), Lemma 6]. Suppose that *x* is

even, say $x = 2X$. If $y > 1$ then from the congruence $1 \equiv 7^z \pmod{8}$ we see that *z* is also even, say $z = 2Z$. Thus we write

$$
2^y 3^y = (7^Z - 43^X)(7^Z + 43^Z).
$$

Note that only one of the factors in the right hand side is divisible by 4 and $3 \nmid 7^2 + 43^2$. So we have two possibilities

$$
7^Z - 43^X = 2^{y-1}3^y
$$

$$
7^Z + 43^Z = 2
$$

or

$$
7^Z - 43^X = 2 \cdot 3^y
$$

$$
7^Z + 43^Z = 2^{y-1}
$$

Clearly the first one is impossible. From the second one, we get that $7^Z =$ $2^{y-2} + 3^y$. Reducing this equation modulo 3, we find that *y* is even, a contradiction. Therefore, we conclude that $y = 1$. Assume that x is even for otherwise the equation $43^x + 6 = 7^z$ has only one solution $(x, y, z) = (1, 1, 2)$ from [16, Lemma 6]. Let $x = 2X$. By reducing modulo 4 we see that z is from [\[16,](#page-6-15) Lemma 6]. Let $x = 2X$. By reducing modulo 4 we see that *z* is odd, but it is easy to see that the equation $43^{2X} + 6 = 7^z$ has no solution in positive integers when z is odd by considering it modulo 43. This completes the proof. \square the proof. \Box

Acknowledgements

I would like to thank the referees for their careful reading and valuable remarks.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Bertók, C.: The complete solution of the Diophantine equation $(4m^2 + 1)^x$ + (5*m*² [−] 1)*^y* = (3*m*) *^z*. Period Math Hung. **72**, 37–42 (2016)
- [2] Bugeaud, Y.: Linear forms in two m-adic logarithms and applications to Diophantine problems. Compos. Math. **132**(2), 137–158 (2002)
- [3] Cao, Z.: A note on the Diophantine equation $a^x + b^y = c^z$. Acta Arith. **91**, 85–93 (1999)
- [4] Fu, R., Yang, H.: On the exponential diophantine equation $(am^2+1)^x$ + $(bm^2 - 1)^y = (cm)^z$ with *c* | *m*. Period Math Hung. **75**, 143–149 (2017)
- [5] Jestmanowicz, L.: Some remarks on Pythagorean numbers. Wiadom Mat. 1, 196–202 (1955/1956)
- [6] Kızıldere, E., Miyazaki, T., Soydan, G.: On the Diophantine equation ((*c* + $(1)m^2 + 1)^x + (cm^2 - 1)^y = (am)^z$. Turk. J. Math. **42**, 2690–2698 (2018)
- [7] Le, M.: On Cohn's conjecture concerning the Diophantine equation $x^2 + 2^m =$ *yⁿ*. Arch. Math. **78**, 26–35 (2002)
- $[8]$ Le, M., Soydan, G.: An application of Baker's method to the Jest manufacture conjecture on primitive Pythagorean triples. Period Math Hung. (2019). [https://](https://doi.org/10.1007/s10998-019-00295-0) doi.org/10.1007/s10998-019-00295-0
- [9] Le, M., Scott, R., Styer, R.: A survey on the ternary purely exponential diophantine equation $a^x + b^y = c^z$. Surv. Math. Appl. 14, 109–140 (2019)
- [10] Ma, M., Chen, Y.: Jesmanowicz' conjecture on Pythagorean triples. Bull. Aust. Math. Soc. **96**, 30–35 (2017)
- [11] Miyazaki, T.: Exceptional cases of Terai's conjecture on Diophantine equations. Arch Math. **95**, 519–527 (2010)
- [12] Miyazaki, T.: Generalizations of classical results on Jestmanowicz' conjecture concerning Pythagorean triples. J. Number Theory **133**, 583–595 (2013)
- [13] Miyazaki, T., Terai, N.: On Jesmanowicz' conjecture concerning primitive Pythagorean triples II. Acta Math. Hung. **147**, 286–293 (2015)
- [14] Nagell, T.: Sur une classe d'´equations exponentielles. Ark Mat. **3**(4), 569–582 (1958)
- [15] Ribenboim, P.: Catalan's Conjecture: Are 8 and 9 the Only Consecutive Powers?. Academic Press, Boston (1994)
- [16] Scott, R.: On the equations $p^x - b^y = c$ and $a^x + b^y = c^z$. J. Number Theory **44**, 153–165 (1993)
- [17] Soydan, G., Demirci, M., Cangül, I.N., Togbé, A.: On the conjecture of Jeśmanowicz. Int. J. Appl. Math. Stat. **56**, 46–72 (2017)
- [18] Su, J., Li, X.: The exponential diophantine equation $(4m^2+1)^x+(5m^2-1)^y=$ (3*m*) *^z*. Abstr. Appl. Anal. 1–5 (2014)
- [19] Terai, N.: The Diophantine equation $a^x + b^y = c^z$. Proc. Jpn. Acad. Ser. A Math. Sci. **56**, 22–26 (1994)
- [20] Terai, N.: Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations. Acta Arith. **90**, 17–35 (1999)
- [21] Terai, N.: On the exponential Diophantine equation $(4m^2+1)^x + (5m^2-1)^y =$ (3*m*) *^z*. Int. J. Algebra **6**, 1135–1146 (2012)
- [22] Terai, N.: On Jesmanowicz' conjecture concerning primitive Pythagorean triples. J. Number Theory **141**, 316–323 (2014)
- [23] Terai, N., Hibino, T.: On the exponential Diophantine equation $(12m^2+1)^x$ + $(13m^2 - 1)^y = (5m)^z$. Int. J. Algebra **9**, 261–272 (2015)
- [24] Terai, N., Hibino, T.: On the Exponential Diophantine Equation $a^x + lb^y = c^z$. Int. J. Algebra **10**, 393–403 (2016)
- [25] Terai, N., Hibino, T.: On the exponential Diophantine equation $(3pm^2 - 1)^x$ + (*p*(*^p* [−] 3)*m*² + 1)*^y* = (*pm*) *^z*. Period Math Hung. **74**, 227–234 (2017)
- [26] Uchiyama, S.: On the Diophantine equation $2^x = 3^y + 13^z$.. Math. J. Okayama Univ. **19**, 31–38 (1976)

Murat Alan Mathematics Department, Faculty of Arts and Sciences Yildiz Technical University Davutpasa Campus, Esenler 34210 Istanbul Turkey e-mail: alan@yildiz.edu.tr

Received: November 23, 2019. Revised: April 10, 2020. Accepted: October 6, 2020.