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On the Exponential Diophantine Equation
(m2 + m + 1)x + my = (m + 1)z

Murat Alan

Abstract. Let m ≥ 1 be a positive integer. We show that the exponential
Diophantine equation (m2 +m+ 1)x +my = (m + 1)z has no positive
integer solutions other than (x, y, z) = (1, 1, 2) when m �∈ {1, 2, 3}.
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1. Introduction

Let u, v, w be relatively prime positive integers greater than one and assume
that the exponential Diophantine equation

ux + vy = wz (1.1)

in positive integers x, y, z has a solution (x0, y0, z0). Two famous conjectures
related to uniqueness of this solution (x0, y0, z0) are due to Jeśmanowicz and
Terai with some restriction on (1.1). In 1956, Jeśmanowicz conjectured that
if u, v and w are any Pythagorean triples, i.e., positive integers satisfying
u2 + v2 = w2, then the solution (x0, y0, z0) = (2, 2, 2) is the unique solution
of (1.1) [5]. Another similar conjecture is proposed by Terai which states
that if u, v, w, p, q, r are fixed positive integers satisfying up + vq = wr with
u, v, w, p, q, r ≥ 2, then the Eq. (1.1) has unique positive integer solution
(x0, y0, z0) = (p, q, r) [19,20]. Exceptional cases are listed explicitly in [24].
Although both conjectures are proved to be true in many special cases, see
for example [1,3,4,6,8,10–13,18,21–23,25], they are still remain an unsolved
problem yet. We refer to [9,17] for a detailed information on these two con-
jectures. In this note we study the exponential Diophantine equation

(m2 + m + 1)x + my = (m + 1)z (1.2)

where m > 1 is a positive integer, and we prove the following.

Theorem 1.1. Let m > 1 be a positive integer. If m > 3 then the Eq. (1.2) has
only the positive integer solution (x, y, z) = (1, 1, 2). For m = 2 and m = 3
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the Eq. (1.1) has exactly two solutions, namely (x, y, z) = (1, 1, 2), (2, 5, 4)
and (x, y, z) = (1, 1, 2), (1, 5, 4), respectively.

In the above theorem, we exclude the case m = 1 just for preserving
the exponent in the expression my. In fact, it is easy to see that the equation
3x+1 = 2z has only the positive integer solution (x, z) = (1, 2) by considering
it modulo 8. For the next two values of m, the Eq. (1.2) turns into the
equations 7x + 2y = 3z and 13x + 3y = 4z, for which both of them have more
than one solution [14,26]. So the aim of this study is to give an answer to
the question whether or not the Eq. (1.2) has any positive integer solutions
other than (x, y, z) = (1, 1, 2) when m > 3. The proof depends on elementary
congruence considerations and some results on linear forms in two m−adic
logarithms.

2. Proof of Theorem 1.1

Lemma 2.1. Let (x, y, z) be a positive integer solution of the Eq. (1.2). The
following conditions hold.

1. y is odd.
2. There exists an integer t such that |x − y| = (m + 1)t.

Proof. 1. By reducing Eq. (1.2) modulo m + 1 we get that 1 + (−1)y ≡ 0
(mod (m + 1)) which implies that y is odd since m > 1.

2. If x = y then we may take t = 0. So assume that |x − y| ≥ 1. It is clear
from (1.2) that z ≥ 2. So we have that

(m2 + m + 1)x + my ≡ 0 (mod (m + 1)2)

(−m)x + my ≡ 0 (mod (m + 1)2)

m|x−y| + (−1)x ≡ 0 (mod (m + 1)2)

((m + 1) − 1)|x−y| + (−1)x ≡ 0 (mod (m + 1)2)

(−1)|x−y| + (−1)|x−y|−1(m + 1)|x − y| + (−1)x ≡ 0 (mod (m + 1)2).

Taking into account that y is odd we get more precisely

|x − y| ≡ 0 (mod (m + 1)),

which means that |x − y| = (m + 1)t for some positive integer t.
�

Lemma 2.2. If m ≡ 1 (mod 4) then (x, y, z) = (1, 1, 2) is the only solution of
(1.2).

Proof. If z ≤ 2 then clearly (x, y, z) = (1, 1, 2) is the only solution of (1.2).
Assume that z ≥ 3 and m = 4k + 1 for some positive integer k. If x is even,
then (m2 + m + 1)x ≡ 1 (mod 8) and my−1 ≡ 1, so from (1.2) we get that
1 + m ≡ 0 (mod 8) which implies 2k + 1 ≡ 0 (mod 4), a contradiction. So x
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must be odd and hence (m2 + m + 1)x ≡ m2 + m + 1 (mod 8). Then again
considering (1.2) modulo 8 we get that

(m + 1)2 ≡ 0 (mod 8)

(4k + 2)2 ≡ 0 (mod 8)

4 ≡ 0 (mod 8)

which is a contradiction. Hence, (x, y, z) = (1, 1, 2) is the only solution of
(1.2) when m ≡ 1 (mod 4). �

Lemma 2.3. Let (x, y, z) be a positive integer solution of the Eq. (1.2). Then
x and y are relatively prime integers. In particular, x �= y for z > 2.

Proof. If z ≤ 2 then x = y = 1 and hence the result is clear. So assume that
z ≥ 3 and that there exists an odd prime p such that x = x1p and y = y1p
for some positive integers x1 and y1 since y is odd by Lemma 2.1. Let

K = (m2 + m + 1)x1 + my1 , L =
(m2 + m + 1)x1p + my1p

(m2 + m + 1)x1 + my1
.

So Eq. (1.2) is of the form

KL = (m + 1)z (2.1)

where gcd(K,L) = 1 or p. Note that K ≡ 0 (mod m+1). Hence if gcd(K,L) =
1 then L = 1 which is clearly impossible for p > 1. Thus, gcd(K,L) = p. Let
m + 1 = pkq for some positive integer k such that gcd(p, q) = 1. From (2.1)
we have that either K = pkz−1qz, L = p or K = pqz, L = pkz−1. For p > 1
it is easy to see that

p(m2 + m + 1)x1 < (m2 + m + 1)x1p

and

pmy1 < my1p.

So the case L = p leads to a contradiction. On the other hand it is known
that p2 � L, see, for example, [15, P1.2], thus for the case K = pqz, L = pkz−1

we have the only possibility kz − 1 = 1 which is also a contradiction since
z ≥ 3. So, there do not exist such a prime p and hence x and y are relatively
prime integers. �

Let m′ > 1 be an integer and let m′ = pt11 . . . ptkk be the prime factoriza-
tion of m′ for distinct primes pi. The proof of Theorem 1.1 mainly depends
on a result due to Bugeaud [2] on linear forms in two m′−adic logarithms.
Let x1/y1 and x2/y2 be two non-zero rational numbers with x1/y1 �= ±1. In
[2] Bugeaud provide an upper bound for the m′−adic valuation of

Λ = (x1/y1)
b1 − (x2/y2)

b2

whenever vpi
(x1/y1) = vpi

(x2/y2) = 0 for all 1 ≤ i ≤ k where b1 and b2
are positive integers. Suppose that there exists a positive integer g which is
coprime with p1, . . . , pk such that for all prime pi,

vpi

((
x1

y1

)g

− 1
)

≥ ti, vpi

((
x2

y2

)g

− 1
)

≥ 1, 1 ≤ i ≤ k (2.2)
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and

v2

((
x1

y1

)g

− 1
)

≥ 2, v2

((
x2

y2

)g

− 1
)

≥ 2 if 2 | m′. (2.3)

Theorem 2.4. ([[2], Theorem 2]) Let A1 > 1, A2 > 1 be real numbers such
that

logAi ≥ max{log|xi|, log|yi|, logm′}, i = 1, 2

and put

b′ =
b1

logA2
+

b2
logA1

.

Under the hypotheses (2.2) and (2.3) assume that x1/y1 and x2/y2 are mul-
tiplicatively independent. If m′, b1 and b2 are relatively prime then we have
the upper estimate

vm′(Λ) ≤ 53.6g
(logm′)4

(max{log b′ + log logm′ + 0.64, 4 logm′})2 logA1 logA2.

Now we apply the above theorem to the Eq. (1.2) by considering the
(m + 1)−adic valuation.

Lemma 2.5. Let m > 7. If m ≡ 3 (mod 4) or 2 | m then the Eq. (1.2) has
only the positive integer solution (x, y, z) = (1, 1, 2).

Proof. If z ≤ 2 then then the assertion is trivially true. Assume that z ≥ 3.
Since y is odd, we rewrite the Eq. (1.2) as

(m + 1)z = (m2 + m + 1)x − (−m)y

and consider the (m + 1)−adic valuation of (m2 + m + 1)x − (−m)y. Since
(m + 1) | m2 + m , (m + 1) | −m − 1, and also 4 | m2 + m, 4 | (−m − 1) if
m+1 is even. So, by Lemma 2.3, the hypotheses of Theorem 2.4 are satisfied
for g = 1 by taking x1 := m2+m+1 and x2 := −m. Thus, from Theorem 2.4
we have the estimate

z ≤ 53.6
(log (m + 1))4

(max{log b′ + log log (m + 1) + 0.64, 4 log (m + 1)})2

× log (m2 + m + 1) logm (2.4)

where b′ =
x

logm
+

y

logm2 + m + 1
.

First assume that log b′ +log log (m + 1)+0.64 > 4 log (m + 1). We will
show that this is not possible. Put M = max{x, y}. Then

M

(
1

logm
+

1
log(m2 + m + 1)

)
≥ b′ >

(m + 1)4

e0.64 log (m + 1)
(2.5)

and it follows that M > 2205 since m ≥ 8. On the other hand, from the
Eq. (1.2) we see that

x
log(m2 + m + 1)

log(m + 1)
< z and y

logm
log(m + 1)

< z.
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Thus M
logm

log(m + 1)
< z. Combining this inequality and (2.4) together with

(2.5) we get that

M ≤ 53.6 (logM + U(m) + 0.64)2 V (m). (2.6)

where

U(m) = log
(

log (m + 1)
logm

+
log (m + 1)

log(m2 + m + 1)

)

and

V (m) =
log (m2 + m + 1)
(log (m + 1))3

.

For m ≥ 8, both U(m) and V (m) are decreasing and U(m) ≤ U(8) < 0.46,
V (m) ≤ V (8) < 0.41. Thus from (2.6) we get

M < 22 (logM + 1.1)2 ,

which implies M < 1576, a contradiction. So log b′ + log log (m + 1) + 0.64 ≤
4 log (m + 1). In this case from (2.4) we have that

z < 53.6 × 16 × W (m),

where W (m) =
logm log (m2 + m + 1)

(log (m + 1))2
. In the above one can see that W (m) <

2 for all positive m, and hence we get that z < 1716. Therefore, y is also

bounded as 0.95y < y
logm

log(m + 1)
< z < 1716 and hence y < 1807 for m ≥ 8.

Similarly, from the inequality

1.96x < x
logm2 + m + 1

log(m + 1)
< z < 1716,

we get x < 876 for m ≥ 8. Thus all x, y and z are bounded. Moreover, from
Lemma 2.1 m is also bounded with m + 1 < M < 1807. As a final step we
checked with a short computer program in Maple that the equation (1.2) has
no solution other than (x, y, z) = (1, 1, 2) with these restrictions and those of
Lemma 2.1 when m is in the range 8 ≤ m ≤ 1807. This completes the proof.

�

Proof of Theorem 1.1. From Lemmas 2.2 and 2.5 it remains to check the
Eq. (1.2) only for m ∈ {2, 3, 4, 6, 7}. The results for the equations 7x+2y = 3z,
13x+3y = 4z, and 57x+7y = 8z which corresponds to the case m = 2, m = 3
and m = 7 in the Eq. (1.2) have already been established by a number of
authors, at least [14,26] and [16, Theorem 6] respectively. For m = 4, the
equation (1.2) turns into the equation 21x + 4y = 5z. If x is even then by [7]
this equation has no solution in positive integers whereas if x is odd then by
[16, Lemma 6] it has only one solution, namely (x, y, z) = (1, 1, 2). Finally we
consider the equation 43x + 6y = 7z for m = 6. If x is odd then the equation
has only one solution (x, y, z) = (1, 1, 2) by [16, Lemma 6]. Suppose that x is
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even, say x = 2X. If y > 1 then from the congruence 1 ≡ 7z (mod 8) we see
that z is also even, say z = 2Z. Thus we write

2y3y = (7Z − 43X)(7Z + 43Z).

Note that only one of the factors in the right hand side is divisible by 4 and
3 � 7Z + 43Z . So we have two possibilities

7Z − 43X = 2y−13y

7Z + 43Z = 2

or

7Z − 43X = 2 · 3y

7Z + 43Z = 2y−1

Clearly the first one is impossible. From the second one, we get that 7Z =
2y−2 + 3y. Reducing this equation modulo 3, we find that y is even, a con-
tradiction. Therefore, we conclude that y = 1. Assume that x is even for
otherwise the equation 43x + 6 = 7z has only one solution (x, y, z) = (1, 1, 2)
from [16, Lemma 6]. Let x = 2X. By reducing modulo 4 we see that z is
odd, but it is easy to see that the equation 432X + 6 = 7z has no solution in
positive integers when z is odd by considering it modulo 43. This completes
the proof. �
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